Adapters in Lymphocyte Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Adapters in Lymphocyte Signaling PERSPECTIVE SERIES Lymphocyte signal transduction Gary Koretzky, Series Editor Adapters in lymphocyte signaling Albrecht Leo,1 Jürgen Wienands,2 Gottfried Baier,3 Vaclav Horejsi,4 and Burkhart Schraven5 1Institute for Immunology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany 2Institute for Biochemistry, University of Bielefeld, Bielefeld, Germany 3Institute for Medical Biology and Human Genetics, University of Innsbruck, Innsbruck, Austria 4Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 5Institute for Immunology, Otto-von-Guericke-University, Magdeburg, Germany Address correspondence to: Burkhart Schraven, Institute for Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany. Phone: 49-391-67-15800; Fax: 49-391-67-15852; E-mail: [email protected]. J. Clin. Invest. 109:301–309 (2002). DOI:10.1172/JCI200214942. In order to exert their effector functions, lymphocytes Two groups of adapter proteins can be defined: need to be activated. This process requires at least two adapter proteins that represent integral membrane stimuli, a primary stimulus, which is mediated via an proteins (transmembrane adapter proteins, or TRAPs) immunoreceptor (e.g., the T cell receptor [TCR], the B cell and adapter proteins that are preferentially located in receptor [BCR], or the Fc receptors [FcRs]), and a costim- the cytoplasm (cytosolic adapter proteins, or CAPs). ulatory signal (see Frauwirth and Thompson, this Per- Four TRAPs have been identified and cloned: LAT spective series, ref. 1), which is mediated via so-called (linker for activation of T cells), TRIM (T cell recep- accessory receptors (e.g., CD28 on T cells and CD19 on B tor–interacting molecule), SIT (SHP-2–interacting cells). These two types of signals, as well many others that TRAP), and PAG/Cbp (protein associated with gly- are generated by triggering of regulatory receptors cosphingolipid-enriched microdomains/Csk-binding expressed on the lymphocyte surface, are transmitted to protein). The known TRAPs all have short extracellu- the intracellular compartment, where they initiate cas- lar domains, which (except perhaps for SIT) probably cades of biochemical events that finally produce a cellu- do not bind specific external ligands. In contrast to lar response. How, then, are these externally applied sig- the CAPs, most of which possess both modular bind- nals integrated to yield an appropriate immune response? ing domains and TBSMs, the cytoplasmic domains of Here we review the current knowledge about the the TRAPs lack SH2 domains, SH3 domains, and membrane-adjacent signaling events that are generat- other modular protein-protein interaction domains ed immediately after triggering of immunoreceptors, but contain multiple (up to ten) TBSMs. These focusing in particular on the functions of one group of sequences become phosphorylated by Src and/or Syk signaling proteins, collectively termed “adapter” or protein tyrosine kinases (PTKs) after triggering of “linker” proteins. In addition, we offer a (very subjec- antigen receptors (Figure 1). tive) discussion of key unanswered questions related to The main function of TRAPs can be deduced based the connection of signal-transducing receptors with on these structural properties. After phosphorylation, the cellular environment. TRAPs serve as anchors for the SH2 domains of intra- cellular signaling and effector molecules (e.g., phos- TRAPs and CAPs pholipases, lipid kinases, protein tyrosine kinases, pro- By definition, adapter proteins lack both enzymatic and tein tyrosine phosphatases, or CAPs such as Grb2, transcriptional activities but control lymphocyte acti- Gads, and SLP-76), thus targeting the latter to the plas- vation by mediating constitutive or inducible protein- ma membrane. This allows the formation and nucle- protein or protein-lipid interactions via modular inter- ation of membrane-associated signaling scaffolds, action domains. Such domains include, for example, Src which are required for the propagation of receptor- homology 2 (SH2), Src homology 3 (SH3), phosphoty- mediated signals to the intracellular environment (for rosine-binding (PTB), and pleckstrin-homology (PH) examples, see Figures 2 and 3). domains, as well as tyrosine-based signaling motifs (TBSMs; for details regarding the binding specificities Adapters in signaling through the TCR of these domains, see Figure 1). TBSMs comprise short Among the best-characterized membrane-associated peptide sequences containing a core tyrosine residue, signaling scaffolds in T cells is the Ca2+-initiation com- which, upon phosphorylation, mediates a high-affinity plex, which comprises LAT (a TRAP), Gads and SLP-76 interaction with SH2 or PTB domains. The specificity (both CAPs), the effector molecules PLCγ1 and Itk (a of this interaction is determined by the amino acids PTK of the Tec family), and the Grb2/SOS complex, flanking the tyrosine residue. which activates p21ras (2). The current model for Ca2+- The Journal of Clinical Investigation | February 2002 | Volume 109 | Number 3 301 Figure 1 (a–c) Schematic illustration of the binding characteris- tics of the protein-protein or protein-lipid interaction modules expressed by adapter proteins. (a) In general, SH2 and PTB domains bind to phosphorylated TBSMs, whose binding specificities are determined by the amino acids surrounding the core tyrosine (C-terminal in case of PTB domains, N-terminal in case of SH2 domains). (b) SH3 domains constitutively interact with proline- rich regions. (c) PH domains bind to phospholipids. (d) Schematic presentation of a selection of adapter pro- teins involved in proximal TCR signaling. plasma membrane after phosphorylation (4). For example, the three C-terminal TBSMs of LAT (Y171, Y191, and Y226) can mediate binding of Grb2 and its associ- ated nucleotide exchange factor SOS (5). Which of these three tyrosines actually represents the major binding site for Grb2 in vivo is as yet unclear. Two of these TBSMs (Y171 and Y191) can also facilitate binding of Gads (5), a CAP that associates constitutively with SLP-76. Binding of Gads to LAT therefore brings SLP-76 to the membrane (6, 7). Initially, it was thought that, by binding to LAT, SLP-76 might be brought into the vicin- ity of ZAP-70, thus allowing its phos- phorylation (8). However, the most recent analysis of Gads-deficient mice suggests that phosphorylation of SLP-76 may be independent of binding to LAT (9). In any case, phosphorylated SLP-76 provides the binding site for the SH2 initiation complex formation and activation in T and domain of the tyrosine kinase Itk, to generate a mem- B lymphocytes provides a good example of the mecha- brane-associated complex consisting of LAT, Gads, nisms by which TRAPs operate in signal transduction SLP-76, and Itk (10). (Figures 2 and 3). Recruitment of Itk into this complex occurs in paral- Lymphocyte activation is initiated by triggering of lel with the binding of another key effector molecule, immunoreceptors (TCR, BCR, FcRs) by their natural PLCγ1, to one of the remaining TBSMs in LAT (5). ligands (e.g., antigen/MHC in the case of T cells). Thus, PLCγ1 is also integrated into the Ca2+-initiation Immediately thereafter, Src PTKs (Lck, Fyn, and Lyn) complex, where it becomes activated by dual phospho- become activated by a mechanism that is still not rylation, mediated by ZAP-70 and Itk (Figure 3; see also completely understood, as discussed below, and in ref. 11). Activated PLCγ1 cleaves the membrane-associ- turn phosphorylate tandem tyrosine residues within ated phosphoinositide PIP2, thus generating the sec- specialized signaling motifs termed ITAMs (im- ond messengers IP3 and DAG. IP3 causes mobilization munoreceptor tyrosine-based activation motifs; Bil- of Ca2+ from intra- and extracellular stores, thus rais- ladeau and Leibson, this Perspective series, ref. 3). ing intracellular Ca2+ levels, whereas DAG represents a ITAMs are present in the cytoplasmic domains of the classical activator of conventional and novel protein immunoreceptor-associated signal–transducing sub- kinase C (PKC) isotypes (Figure 2). units such as CD3γ, -δ, and -ε, the TCRζ-chains, and Among the PKC family members that are expressed the BCR-associated signaling molecules Igα and Igβ in T cells, PKCθ stands out, since it seems to exert (CD79a and CD79b). Dually phosphorylated ITAMs nonredundant functions that are essential for T cell provide the docking sites for the tandem SH2 activation. For example, PKCθ is required for activation domains of the Syk family PTKs ZAP-70 (in T cells) of the transcription factors NF-κB and AP-1 (12, 13). and Syk (in B cells), which are thereby targeted to the Moreover, PKCθ appears to localize selectively into the cell membrane and subsequently become activated center of the mature immunological synapse (IS; see through phosphorylation by Src PTKs. Dustin, this Perspective series, ref. 14) during antigen In T cells, one major substrate for ZAP-70 is LAT, stimulation (15). The elucidation of the molecular which recruits several key signaling molecules to the events underlying targeting of PKCθ to the IS is of par- 302 The Journal of Clinical Investigation | February 2002 | Volume 109 | Number 3 ticular interest, especially because DAG is known to served TBSM in the cytoplasmic domain of Igα. recruit all PKC isotypes to the plasma membrane. Remarkably, this TBSM is located outside the ITAM Most recently it has been demonstrated that DAG (21). These data
Recommended publications
  • Overexpression of Syk Tyrosine Kinase in Peripheral T-Cell Lymphomas
    Leukemia (2008) 22, 1139–1143 & 2008 Nature Publishing Group All rights reserved 0887-6924/08 $30.00 www.nature.com/leu ORIGINAL ARTICLE Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas AL Feldman1, DX Sun1, ME Law1, AJ Novak2, AD Attygalle3, EC Thorland1, SR Fink1, JA Vrana1, BL Caron1, WG Morice1, ED Remstein1, KL Grogg1, PJ Kurtin1, WR Macon1 and A Dogan1 1Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; 2Department of Hematology, Mayo Clinic, Rochester, MN, USA and 3Department of Histopathology, Royal Marsden Hospital, London, UK Peripheral T-cell lymphomas (PTCLs) are fatal in the majority of Materials and methods patients and novel treatments, such as protein tyrosine kinase (PTK) inhibition, are needed. The recent finding of SYK/ITK translocations in rare PTCLs led us to examine the expression Cases of Syk PTK in 141 PTCLs. Syk was positive by immuno- We studied specimens from 141 patients with PTCL diagnosed 15 histochemistry (IHC) in 133 PTCLs (94%), whereas normal by WHO criteria. There were 86 men and 55 women of a T cells were negative. Western blot on frozen tissue (n ¼ 6) mean age of 59 years (range, 5–88 years). The study was and flow cytometry on cell suspensions (n ¼ 4) correlated with approved by the Institutional Review Board and the Biospeci- IHC results in paraffin. Additionally, western blot demonstrated mens Committee of Mayo Clinic. All patients provided informed that Syk-positive PTCLs show tyrosine (525/526) phosphory- lation, known to be required for Syk activation. Fluorescence consent for the use of their tissues for research purposes.
    [Show full text]
  • ITK Inhibitors for the Treatment of T-Cell Lymphoproliferative Disorders John C
    ITK Inhibitors for the Treatment of T-Cell Lymphoproliferative Disorders John C. Reneau, MD, PhD1, Steven R. Hwang, MD2, Carlos A. Murga-Zamalloa, MD1, Joseph J. Buggy, PhD3, James W. Janc, PhD3 and Ryan A. Wilcox, MD, PhD1 1University of Michigan, Ann Arbor, MI; 2Mayo Clinic, Rochester, MN; 3Corvus Pharmaceuticals, Inc., Burlingame, CA Introduction Results and Methods Conclusions • T-cell lymphomas (TCL) comprise a rare, aggressive, and Table 1: CPI-818 specifically inhibits ITK Figure 2: CPI-818 has minimal effect on normal T cells • CPI-818 is a potent ITK specific inhibitor, while CPI-893 inhibits both heterogeneous subtype of non-Hodgkin lymphoma B IC50 (nM) A ITK and RLK • Outcomes for patients with TCL remain poor and novel therapies are ITK RLK • Normal T cells express both ITK and RLK which can compensate for needed CPI-818 (ITKi) 2.3 260 inhibition of ITK function CPI-893 (ITK/RLKi) 0.36 0.4 • Engagement of the T-cell receptor (TCR) in malignant T-cells leads to • Malignant T cells almost exclusively express ITK, or express RLK at Kinome screening was performed for CPI-818 (ITKi) and CPI-893 (ITK/RLKi). CPI-818 (ITKi) had high interleukin-2-inudcible T-cell kinase (ITK) dependent activation of NF- specificity for ITK over RLK (IC50 2.3 nM and 260 nM, respectively). In contrast CPI-893 (ITK/RLKi) had a very low levels high affinity for both ITK and RLK (IC50 0.36 nM and 0.4 nM, respectively) 1 κB and GATA3, and promotes chemotherapy resistance . (A) Peripheral blood T cells from healthy donors were isolated by negative selection.
    [Show full text]
  • Review Tec Kinases: a Family with Multiple Roles in Immunity
    Immunity, Vol. 12, 373±382, April, 2000, Copyright 2000 by Cell Press Tec Kinases: A Family Review with Multiple Roles in Immunity Wen-Chin Yang,*³§ Yves Collette,*³ inositol phosphates, but they are thought to be relevant Jacques A. NuneÁ s,*³ and Daniel Olive*² for binding of PtdIns lipids to the same sites. In most *INSERM U119 cases, PH domains bind preferentially to PtdIns (4,5)P2 Universite de la Me diterrane e and inositol (1,4,5) P3 (Ins (1,4,5) P3). However, the Btk 13009 Marseille PH domain binds PtdIns (3,4,5)P3 and Ins (1, 3, 4, 5)P4 France the tightest. PtdIns (3, 4, 5)P3, one of the products of the action of PI3K, is thought to act as a second messen- ger to recruit regulatory proteins to the plasma mem- brane via their PH domains (see below). Many of the Antigen receptors on T, B, and mast cells are multimo- mutations in Btk that lead to XLA are point mutations lecular complexes that are activated by interactions with that cluster at one end of the PH domain and could be external signals. These signals are then transmitted to predicted to impair binding to Ins (3,4,5)P (for review regulate gene expression and posttranscriptional modi- 3 see Satterthwaite et al., 1998a) (Figure 1b). Similarly, fications. Nonreceptor tyrosine kinases (NRTK) are key CBA/N xid mice carry an R28C mutation in the Btk PH players that relay and integrate these signals. NRTK are domain. The recent structure of the PH domain from divided into distinct families defined by a prototypic Btk complexed with Ins (1,3,4,5)P4 provides an explana- member: Src, Tec, Syk, Csk, Fes, Abl, Jak, Fak, Ack, tion for several mutations associated with XLA: mis- Brk, and Srm (Bolen and Brugge, 1997).
    [Show full text]
  • Itk Promotes the Integration of TCR and CD28 Costimulation, Through Its
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.11.293316; this version posted September 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hallumi et al. 1 Article 2 Itk promotes the integration of TCR and CD28 3 costimulation, through its direct substrates, SLP-76 4 and Gads 5 Enas Hallumi1, Rose Shalah1, Wan-Lin Lo2, Jasmin Corso3, Ilana Oz1, Dvora Beach1, Samuel 6 Wittman1, Amy Isenberg1, Meirav Sela1, Henning Urlaub3,4, Arthur Weiss2,5 and Deborah 7 Yablonski1* 8 1 Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of 9 Technology, Haifa 3525433, Israel 10 2 Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, 11 Department of Medicine, University of California, San Francisco, San Francisco, CA, USA 12 3 Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 13 37077 Göttingen, Germany 14 4 Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, 15 37075 Göttingen, Germany 16 5 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA 17 * Correspondence: [email protected] 18 Abstract: The costimulatory receptor, CD28, synergizes with the T cell antigen receptor (TCR) to 19 promote IL-2 production, cell survival and proliferation. Despite their profound synergy, the 20 obligatory interdependence of the signaling pathways initiated by these two receptors is not well 21 understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two 22 additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • ITK-Syk from Deregulated Lymphocyte Activation by Premature Terminal
    Premature Terminal Differentiation Protects from Deregulated Lymphocyte Activation by ITK-Syk This information is current as Martina P. Bach, Eva Hug, Markus Werner, Julian Holch, of September 28, 2021. Clara Sprissler, Konstanze Pechloff, Katja Zirlik, Robert Zeiser, Christine Dierks, Jürgen Ruland and Hassan Jumaa J Immunol 2014; 192:1024-1033; Prepublished online 27 December 2013; doi: 10.4049/jimmunol.1300420 Downloaded from http://www.jimmunol.org/content/192/3/1024 Supplementary http://www.jimmunol.org/content/suppl/2013/12/26/jimmunol.130042 Material 0.DCSupplemental http://www.jimmunol.org/ References This article cites 55 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/192/3/1024.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Premature Terminal Differentiation Protects from Deregulated Lymphocyte Activation by ITK-Syk Martina P.
    [Show full text]
  • Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation (Son of Sevenless/T-Cell Anergy) MONIKA RAAB*T, YUN-CAI CAI*T, STEPHEN C
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 8891-8895, September 1995 Immunology p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: Implications for T-cell costimulation (son of sevenless/T-cell anergy) MONIKA RAAB*t, YUN-CAI CAI*t, STEPHEN C. BUNNELLI, STEPHANIE D. HEYECKt, LESLIE J. BERGt, AND CHRISTOPHER E. RUDD*§¶ *Division of Tumor Immunology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115; Departments of tMedicine and §Pathology, Harvard Medical School, Boston, MA 02115; and *Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02128 Communicated by Stuart F. Schlossman, Dana-Farber Cancer Institute, Boston, MA, May 4, 1995 ABSTRACT T-cell activation requires cooperative signals 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase generated by the T-cell antigen receptor c-chain complex ITK (formerly EMT or TSK), and the complex between (TCRC-CD3) and the costimulatory antigen CD28. CD28 growth factor receptor-bound protein 2 and son of sevenless interacts with three intracellular proteins-phosphatidylino- guanine nucleotide exchange protein (GRB-2-SOS) (21-25). sitol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine PI 3-kinase and GRB-2 Src-homology 2 (SH2) domains bind kinase ITK (formerly TSK or EMT), and the complex between to a phosphorylated version of the Tyr-Met-Asn-Met growth factor receptor-bound protein 2 and son of sevenless (YMNM) motif within CD28 (21, 22, 25). PI 3-kinase consists guanine nucleotide exchange protein (GRB-2-SOS).
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Actin Cytoskeleton TCR-Induced Regulation of Vav and the Kinase
    Kinase-Independent Functions for Itk in TCR-Induced Regulation of Vav and the Actin Cytoskeleton This information is current as Derek Dombroski, Richard A. Houghtling, Christine M. of September 24, 2021. Labno, Patricia Precht, Aya Takesono, Natasha J. Caplen, Daniel D. Billadeau, Ronald L. Wange, Janis K. Burkhardt and Pamela L. Schwartzberg J Immunol 2005; 174:1385-1392; ; doi: 10.4049/jimmunol.174.3.1385 Downloaded from http://www.jimmunol.org/content/174/3/1385 References This article cites 45 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/174/3/1385.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Kinase-Independent Functions for Itk in TCR-Induced Regulation of Vav and the Actin Cytoskeleton1 Derek Dombroski,2* Richard A.
    [Show full text]
  • Ibrutinib As a Potential Therapeutic Option for HER2 Overexpressing Breast Cancer – the Role of STAT3 and P21
    Ibrutinib as a potential therapeutic option for HER2 overexpressing breast cancer – the role of STAT3 and p21 A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the College of Pharmacy and Nutrition University of Saskatchewan Saskatoon By Chandra Bose Prabaharan © Copyright Chandra Bose Prabaharan, November 2019. All rights reserved Permission to Use Statement By presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes, may be granted by the professors who supervised my thesis work or, in their absence, by the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written consent. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other uses of the materials in this thesis in whole or in part should be addressed to: College of Pharmacy and Nutrition 104 Clinic Place University of Saskatchewan Saskatoon, Saskatchewan, S7N 2Z4, Canada OR Dean College of Graduate and Postdoctoral Studies Room 116 Thorvaldson Building 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada i Abstract Treatment options for HER2 overexpressing breast cancer are limited, and the current anticancer therapies are associated with side effects.
    [Show full text]
  • Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia
    cancers Review Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia Kalpana K. Bhanumathy 1,*, Amrutha Balagopal 1, Frederick S. Vizeacoumar 2 , Franco J. Vizeacoumar 1,3, Andrew Freywald 2 and Vincenzo Giambra 4,* 1 Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (A.B.); [email protected] (F.J.V.) 2 Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (F.S.V.); [email protected] (A.F.) 3 Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada 4 Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy * Correspondence: [email protected] (K.K.B.); [email protected] (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.) Simple Summary: Protein phosphorylation is a key regulatory mechanism that controls a wide variety of cellular responses. This process is catalysed by the members of the protein kinase su- perfamily that are classified into two main families based on their ability to phosphorylate either tyrosine or serine and threonine residues in their substrates. Massive research efforts have been invested in dissecting the functions of tyrosine kinases, revealing their importance in the initiation and progression of human malignancies. Based on these investigations, numerous tyrosine kinase inhibitors have been included in clinical protocols and proved to be effective in targeted therapies for various haematological malignancies.
    [Show full text]
  • SUPPLEMENTAL TABLE 1. Mass Spectrometry on EGFRL858R/T790M Protein
    SUPPLEMENTAL TABLE 1. Mass spectrometry on EGFRL858R/T790M protein % Mass Modification on Compound EGFRL858R/T790M Protein 1 96% 2 95% 3 109% 4 108% SUPPLEMENTAL TABLE 2. EGFR modulation in A431, H1975 and HCC827 cells by compound 3. EC50 (nM) Cell Lines A431 H1975 HCC827 EGFR Genotype WT L858R/T790M DelE746-A750 pEGFR > 4331 58 ± 34 187 ± 88 pAKT > 4331 55 ± 12 80 ± 49 pERK > 5000 39 ± 25 65 ± 6 pS6RP > 4841 29 ± 22 74 ± 48 Occupancy > 4260 34 ± 9 nd n > 3; ave ± STD; nd = not determined SUPPLEMENTAL TABLE 3. Kinase selectivity profile of compound 3, afatinib and WZ4002 at 1 µM. Compound 3 WZ4002 Afatinib FLT3 94% TXK* 98% ERBB4/HER4* 99% EGFR (L858R/T790M)* 91% BTK* 90% EGFR (WT)* 99% JAK3* 87% EGFR (WT)* 89% ERBB2/HER2*§ 98% TXK* 84% EGFR (L858R, T790M)* 87% EGFR (L858R, T790M)* 93% Aurora A 82% FLT3 87% TXK* 87% EGFR (WT)* 81% JAK3* 86% BLK* 84% FAK/PTK2 77% ERBB4/HER4* 85% BTK* 79% BMX/ETK* 74% FMS 77% ITK* 63% CHK2 74% BLK* 74% YES/YES1 55% ERBB4/HER4* 66% FAK/PTK2 73% LYN 53% BTK* 64% BMX/ETK* 69% c-Src 54% TEC* 62% CHK2 64% ITK* 58% FGFR3 54% TEC* 53% §ERBB2/HER2 included in kinase panel Compounds were tested against a 62 kinase panel at Reaction Biology Corporation which includes representative kinases from each branch of the kinome tree. Kinases inhibited greater than 50% are indicated. Asterisks indicate kinases that share Cys 797 with EGFR. For afatinib, ERBB2/HER2 kinase was included in the 62 kinase panel.
    [Show full text]