Proscylliidae 1293
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Record of the False Catshark, Pseudotriakis Microdon, from Australian Seas
Records ofthe Western Australian Museum 17: 235-236 (1995). Short communication First record of the false catshark, Pseudotriakis microdon, from Australian seas Gerald R. Alien and Mark A. Cowan Department of Aquatic Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000 The shark family Pseudotriakidae is distributed formalin, and is now lodged in the collection of the worldwide, mainly in deep waters of continental Western Australian Museum (registration number slopes. Two species were formerly recognised, but P.30826-Q01). Compagno (1984) placed the Indo-Pacific Compagno (1984, part 2) provided diagnostic Pseudotriakis acrales Jordan and Snyder, 1904 in the information, an outline drawing, and a brief synonymy of the Atlantic P. microdon Capello, 1868. summary of the biology of P. microdon. In part 1 of The known distribution of P. microdon consists of this same work he gave detailed illustrations of the widely scattered, mainly Northern Hemisphere measurements and explained the terminology locations, including off the northeastern United which is used in the following paragraph. States, Iceland, France, Portugal, Madeira, Azores, The following measurements (in cm) were Senegal, Cape Verde Islands, Japan, Taiwan, and recorded when the specimen was freshly thawed: the Hawaiian Islands. Prior to the first Australian total length 200.0; precaudallength 174.0; prenarial record reported below, the only locations in the length 10.7; preoral length 10.1; preorbital length Southern Hemisphere were New Zealand and the 14.5; prespiracular length 22.3; prebranchiallength Aldabra Islands group, just north of Madagascar. 34.0; head length 44.5; prepectoral length 45.5; Most of the specimens taken thus far were prepelvic length 127.0; vent-caudal length 87.0; pre captured by deep-set longlines or occasionally by first dorsal length 86.0; pre-second dorsal length bottom trawlers. -
Extinction Risk and Conservation of the World's Sharks and Rays
RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation -
ATLANTIC WEASEL SHARK FAST FACTS Paragaleus Pectoralis SIZE: Matures At: ♀ 75-90Cm | ♂ 80Cm Also Known As the Little Tiger Shark
SHARKfactsheet ATLANTIC WEASEL SHARK FAST FACTS Paragaleus pectoralis SIZE: Matures at: ♀ 75-90cm | ♂ 80cm Also known as the Little Tiger Shark. Max: 138cm This small and slender shark is grey-bronze in colour with DIET: striking yellow stripes. Underneath they are white. Squid, octopus & small fish. They belong to a group of sharks known as the Ground Sharks (Carcharhiniformes). This is the largest and most diverse order of sharks, containing at least 291 species RANGE: and 8 families. Eastern Atlantic. From Cape Verde & The Atlantic Weasel Shark belongs to the Weasel Shark Mauritania to northern family (Hemigaleidae), of which there are 8 species. Namibia. Weasel sharks have long snouts, wide mouths, and HABITAT: sharp-edged teeth. They also have large oval shaped Tropical-warm coastal eyes and a third eyelid, known as a nictitating membrane. waters. Found in the This protects their eyes while feeding. shallows up to depths of 100m. The Atlantic Weasel Shark is a specialist at hunting squid and octopus. And also prey on small fish such as soles STATUS: and sardines. Data Deficient Illustration © Marc Dando © Marc Illustration They can be found close to shore in the surf zone, as well as offshore. These bottom-dwelling sharks range from shallow waters to depths of 100m. Females gives birth to litters of 1-4 pups between May and June, off the coast of Senegal. These are born ~47 cm. ATLANTIC WEASEL SHARK THREATS We know little about Atlantic Weasel Sharks. Yet they seem to reproduce slowly which suggests they’re particularly vulnerable to human threats. More information is crucial to the conservation of this species: • FISHERIES – The western coast of Africa is intensively fished. -
An Introduction to the Classification of Elasmobranchs
An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved. -
Abstract Book
Abstract Book Sharks International Conference UNIVERSIDADE FEDERAL DA PARAÍBA Reitora MARGARETH DE FÁTIMA FORMIGA MELO DINIZ Vice-Reitora BERNARDINA MARIA JUVENAL FREIRE DE OLIVEIRA Pró-Reitora de Pós-graduação MARIA LUIZA PEREIRA DE ALENCAR MAYER FEITOSA EDITORA DA UFPB Diretora IZABEL FRANÇA DE LIMA Supervisão de Administração GEISA FABIANE FERREIRA CAVALCANTE Supervisão de Editoração ALMIR CORREIA DE VASCONCELLOS JUNIOR Supervisão de Produção JOSÉ AUGUSTO DOS SANTOS FILHO CONSELHO EDITORIAL ADAILSON PEREIRA DE SOUZA (CIÊNCIAS AGRÁRIAS) ELIANA VASCONCELOS DA SILVA ESVAEL (LINGUÍSTICA, LETRAS E ARTES) FABIANA SENA DA SILVA (INTERDISCIPLINAR) GISELE ROCHA CÔRTES (CIÊNCIAS SOCIAIS APLICADAS) ILDA ANTONIETA SALATA TOSCANO (CIÊNCIAS EXATAS E DA TERRA) LUANA RODRIGUES DE ALMEIDA (CIÊNCIAS DA SAÚDE) MARIA DE LOURDES BARRETO GOMES (ENGENHARIAS) MARIA PATRÍCIA LOPES GOLDFARB (CIÊNCIAS HUMANAS) MARIA REGINA VASCONCELOS. BARBOSA (CIÊNCIAS BIOLÓGICAS) Edited by Cyntia Rafaela Ferreira de Moraes Vicente Vieira Faria Fernanda Andreoli Rolim Charles F. Cotton Otto Bismarck Fazzano Gadig Ricardo S. Rosa Abstract Book Sharks International Conference Editora UFPB João Pessoa 2018 Abstracts for the 2018 Sharks International Conference SBEEL – Sociedade Brasileira para o Estudo de Elasmobrânquios AES – American Elasmobranch Society Squalus - Fundación colombiana para la investigación y conservación de tiburones y rayas João Pessoa, Brazil 3-8 June 2018 Sharks International Conference 2018 34th Annual Meeting of the American Elasmobranch Society X Reunião da Sociedade Brasileira para o Estudo de Elasmobrânquios VI Encuentro Colombiano sobre Condrictios Edited by Cyntia Rafaela Ferreira de Moraes Vicente Vieira Faria Fernanda Andreoli Rolim Charles F. Cotton Otto Bismarck Fazzano Gadig Ricardo S. Rosa COMMITTEES Organizing Committee Ramón Bonfil Ricardo de Souza Rosa Océanos Vivientes A. -
Ground Sharks
click for previous page - v - TABLE OF CONTENTS Code Page 9. ORDER CARCHARHINIFORMES - GROUND SHARKS ....................................................................................... 251 9.1 FAMILY SCYLIORHINIDAE - Catsharks .................................................. SCYL ........................................... 253 Apristurus....................................................................................................... SCYL Aprist ................................ 257 A. atlanticus ..................................................................................... SCYL Aprist 1 ............................... 261 A. brunneus ...................................................................................... SCYL Aprist 2 ............................... 262 A. canutus ............................................................................................ SCYL Aprist 3 ............................... 263 A. herklotsi ........................................................................................ SCYL Aprist 4 ............................... 264 A. indicus ............................................................................................. SCYL Aprist 5 ............................... 265 A. investigatoris ................................................................................... SCYL Aprist 6 ............................... 267 A. japonicus ....................................................................................... SCYL Aprist 7 ............................... 268 -
Report on Sicklefin Weasel Shark Hemigaleus Microstoma
Rec. zool. Surv. India: Vol. 120(2)/153–159, 2020 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v120/i2/2020/144516 ISSN (Print) : 0375-1511 Report on Sicklefin weasel shark Hemigaleus microstoma (Bleeker, 1852) (Carcharhiniformes: Hemigaleidae) from the Andaman Islands, Indian EEZ with DNA barcodes K. K. Bineesh1*, R. Kiruba Sankar2, M. Nashad3, O. R. Arun Retheesh2, Ravi Ranjan Kumar4 and V. S. Basheer5 1Zoological Survey of India, Andaman and Nicobar Regional Centre, Haddo, P.B. No. 744 102, Andaman and Nicobar Islands, India; Email: [email protected] 2ICAR-Central Island Agricultural Research Institute, Garacharama, P.B. No.744101, Andaman & Nicobar Islands, India 3Fishery Survey of India, Port Blair Zonal Base, P.B No.744101, Andaman & Nicobar Islands, India 4Department of Ocean Studies and Marine Biology, Pondicherry University, P.B.No. 744112, Andaman Islands, India 5National Bureau of Fish Genetic Resources (NBFGR), CMFRI Campus, P.B.No.1603, Ernakulam North, P.O., Kochi - 682018, Kerala, India Abstract Hemigaleus microstoma The occurrence of sickle fin weasel shark Bleeker,H. 1852 microstoma is reported here from Indian EEZ, off the Andaman Islands in the Bay of Bengal. Two specimens of total length (TL) 610 mm and 628 mm were caught by longline at depths 40-100 m. A detailed diagnostic description and morphometrics of and its comparison with previous literature is provided. COI DNA barcodes were generated for the collected specimens. Keywords: Bycatch, DNA Analysis, Elasmobranchs, Morphometrics, Port Blair Introduction microstoma (Compagno, 1988). Later, White et al. (2005) described a close species Hemigaleus australiensis from Chondrichthyan fishes are mainly exploited as bycatch in Australian waters. -
Malaysia National Plan of Action for the Conservation and Management of Shark (Plan2)
MALAYSIA NATIONAL PLAN OF ACTION FOR THE CONSERVATION AND MANAGEMENT OF SHARK (PLAN2) DEPARTMENT OF FISHERIES MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY MALAYSIA 2014 First Printing, 2014 Copyright Department of Fisheries Malaysia, 2014 All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or any information storage and retrieval system, without prior permission in writing from the Department of Fisheries Malaysia. Published in Malaysia by Department of Fisheries Malaysia Ministry of Agriculture and Agro-based Industry Malaysia, Level 1-6, Wisma Tani Lot 4G2, Precinct 4, 62628 Putrajaya Malaysia Telephone No. : 603 88704000 Fax No. : 603 88891233 E-mail : [email protected] Website : http://dof.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN 978-983-9819-99-1 This publication should be cited as follows: Department of Fisheries Malaysia, 2014. Malaysia National Plan of Action for the Conservation and Management of Shark (Plan 2), Ministry of Agriculture and Agro- based Industry Malaysia, Putrajaya, Malaysia. 50pp SUMMARY Malaysia has been very supportive of the International Plan of Action for Sharks (IPOA-SHARKS) developed by FAO that is to be implemented voluntarily by countries concerned. This led to the development of Malaysia’s own National Plan of Action for the Conservation and Management of Shark or NPOA-Shark (Plan 1) in 2006. The successful development of Malaysia’s second National Plan of Action for the Conservation and Management of Shark (Plan 2) is a manifestation of her renewed commitment to the continuous improvement of shark conservation and management measures in Malaysia. -
Contribution to the Taxonomy and Distribution of Six Shark Species (Chondrichthyes, Elasmobranchii) from the Gulf of Thailand
International Scholarly Research Network ISRN Zoology Volume 2012, Article ID 860768, 24 pages doi:10.5402/2012/860768 Research Article Contribution to the Taxonomy and Distribution of Six Shark Species (Chondrichthyes, Elasmobranchii) from the Gulf of Thailand Simon Weigmann Biocenter Grindel and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany Correspondence should be addressed to Simon Weigmann, [email protected] Received 22 November 2011; Accepted 2 January 2012 Academic Editors: D. Park, J. D. Reimer, D. Russo, and P. Scaps Copyright © 2012 Simon Weigmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A collection of nine shark specimens from six different species, obtained in 1993 from the Gulf of Thailand, was examined in this study. The sharks were determined, morphometrically and meristically analyzed, photographically documented, and compared with relevant literature. Additionally, further available material from the fish collections of the Zoological Museum Hamburg, the Senckenberg Naturmuseum Frankfurt, and the Museum´ national d’Histoire naturelle, Paris, was examined by way of comparison. Contrary to most references, prominent dorsal ridges were detected in several specimens of Chiloscyllium griseum. Additionally, one of the specimens had a very unusual big ocellar blotch on the head which had not been reported for this genus before. For Paragaleus randalli, it could be proven that the teeth morphologically deviate strongly from those shown in literature due to having much larger cusps. Furthermore, the known distribution area of Paragaleus randalli could be extended considerably eastwards by about 2000 km. -
First Records of the False Catshark, Pseudotriakis Microdon Capello, 1868, from the Waters of Eastern Australia and Indonesia
VOLUME 51 PART 2 MEMOIRS OF THE QUEENSLAND MUSEUM BRISBANE 31 DECEMBER 2005 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qmuseum.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qmuseum.qld.gov.au/resources/resourcewelcome.html A Queensland Government Project Typeset at the Queensland Museum FIRST RECORDS OF THE FALSE CATSHARK, PSEUDOTRIAKIS MICRODON CAPELLO, 1868, FROM THE WATERS OF EASTERN AUSTRALIA AND INDONESIA PETER M. KYNE, JEFFREY W. JOHNSON, WILLIAM T. WHITE AND MICHAEL B. BENNETT Kyne, P.M., Johnson, J.W., White, W.T. & Bennett, M.B. 2005 12 31: First records of the false catshark, Pseudotriakis microdon Capello, 1868, from the waters of eastern Australia and Indonesia. Memoirs of the Queensland Museum 51(2): 525-530. Brisbane. ISSN 0079-8835. A new specimen of a rare deepwater chondrichthyan, the false catshark Pseudotriakis microdon Capello, 1868 is documented from the Coral Sea. This represents the first record of the species from off the east coast of Australia and only the second from Australian waters. -
Table Tableau Tabla 2
Table Tableau Tabla 2 Species codes of tunas, Codes des espèces de Códigos de especies de túnidos, tuna‐like species and thonidés, d’espèces de especies afines a los túnidos sharks apparentées et des requins y de tiburones Code / Scientific names / Common names Noms communs Nombres comunes Code / Noms sientifiques / (English) (Français) (Español) Código Nombres científicos Tunas ALB Thunnus alalunga Albacore Germon Atún blanco Thonidés BET Thunnus obesus Bigeye tuna Thon obèse(=Patudo) Patudo Túnidos BFT Thunnus thynnus Atlantic bluefin tuna Thon rouge de l’atlantique Atún rojo BUM Makaira nigricans Atlantic blue marlin Makaire bleu de l'Atlantique Aguja azul del Atlántico SAI Istiophorus albicans Atlantic sailfish Voilier de l'Atlantique Pez vela del Atlántico SKJ Katsuwonus pelamis Skipjack tuna Listao Listado SWO Xiphias gladius Swordfish Espadon Pez espada WHM Tetrapturus albidus Atlantic white marlin Makaire blanc de l'Atlantique Aguja blanca del Atlántico YFT Thunnus albacares Yellowfin tuna Albacore Rabil BLF Thunnus atlanticus Blackfin tuna Thon à nageoires noires Atún des aletas negras BLT Auxis rochei Bullet tuna Bonitou Melva(=Melvera) BON Sarda sarda Atlantic bonito Bonite à dos rayé Bonito del Atlántico BOP Orcynopsis unicolor Plain bonito Palomette Tasarte BRS Scomberomorus brasiliensis Serra Spanish mackerel Thazard serra Serra CER Scomberomorus regalis Cero Thazard franc Carite chinigua FRI Auxis thazard Frigate tuna Auxide Melva KGM Scomberomorus cavalla King mackerel Thazard barré Carite lucio KGX Scomberomorus spp -
Identification Guide to the Deep-Sea Cartilaginous Fishes Of
Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.