N-Functionalization of the Tetrahedrane Fe2(CO)6(/z-SNH) Max Herberhold*, Uw e Bertholdt, Wolfgang M ilius, Bernd Wrackmeyer Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth Dedicated to Prof. Dr. Lothar Beyer on the occasion of his 60th birthday Z. Naturforsch. 51 b, 1283-1289 (1996); received March 27, 1996 Azadiferrathia, Tetrahedrane, Cluster Anion, Element- Bonds, NMR Spectra The azadiferrathia tetrahedrane, Fe 2(CO)6(£/-SNH) (1), was deprotonated to give the anion [Fe2(CO)6(/J-SN)]_ (2) which reacts with halides of phosphorus, , , , and boron by formation of element-nitrosen bonds. The new compounds were characterized by their IR. NMR('H, mB, i3C, i5N, 29Si,3 P, m Sn)and mass spectra. The molecular structure of [Fe2(CO)6(A/-SN-SiMe2CH 2-)]2 (11) was determined by X-ray structure analysis (space group Pi; triclinic; a = 799.8(2), b = 958.5(2), c = 1035.7(2) pm, a = 86.30(2)°, (3 = 81.27(2)°, 7 = 69.90(2)°).

Introduction Results and Discussion The reaction of carbonyliron complexes with Syntheses bis(trimethylsilyl)sulfurdiimide, The reactions of the anion 2 with various element Me3Si(NSN)SiMe3, followed by chromatography halides are summarized in Scheme 1. Apparently, on silica, leads to the azadiferrathia tetrahedrane any triorganosilyl, -germyl or -stannyl chloride can 1 [1]. The corresponding anion 2 is formed by be used to prepare complexes of the type 3-5. The deprotonation using sodium [2], "BuLi in hex­ reactions of 2 with bis(chlorosilyl) compounds, as ane or DBU (l,8-diazabicyclo[5.4.0]undec-7-ene) shown in Scheme 2, afford the new compounds 9 [3] [eq. (1)]. It was already shown that 2 reacts - 11, of which 11 was studied by X-ray diffraction with Me^'BuSiCl to give the N-silylated complex (vide infra). Fe2(CO)6(//-SN-SiMe2'Bu) [2], and that N-organo- It appears that the reaction of 2 with arsenic chlo­ substituted derivatives Fe 2(CO)6(/u-SN-R) are ac­ rides is also straightforward, and the products 6a and cessible from the reaction of 2 with carbenium or 6b are isolated in moderate to good yields. In con­ trialkyl oxonium cations [3], These successful trans­ trast, 'BU2PCI does not react with 2. If the reaction formations of 2 prompted us to start a systematic of 2 with either 'PnPCl or Cy 2PCl is monitored by study of the N-functionalization of 1. Here we de­ IR spectroscopy , the presence of the desired prod­ scribe the new complexes which contain group 15 ucts can be observed for about 5 - 1 0 min at -78°C, (phosphanyl, arsanyl), group 14 (silyl, germyl. stan- but thereafter decomposition into unidentified com­ nyl) and group 13 (boryl) substituents at the nitrogen pounds takes place, as is also apparent from the atom. 11P NMR spectra of reaction solutions. However, it turns out that 2 reacts with cyclic diaminophospho- rus halides bearing bulky substituents ('Bu groups) (i) at the nitrogen atoms to give reasonably stable prod­ / -N»7 V © N ------S x A N S ucts (7a, 7b). Compounds 7c and 7d with the less / > < S \ ------5Ü------/ X \ \ bulky N'Pr groups had to be characterized at low (OC)3Fe —------Fe(CO)3 -C4H10, -Li (OC^Fe ------Fe(CO>3 temperature. \ DBU f 2 The boron-substituted tetrahedranes 8 can be readily isolated if at least one dialkylamino group is linked to boron. All attempts to obtain dialkyl- boryl derivatives failed. Although 2 reacts with the 9-BBN derivatives 9-chloro- and 9-methoxy- * Reprint requests to Prof. Dr. M. Herberhold. borabicyclo[3.3.1 jnonane, it was not possible so

0939-5075/96/0900-1283 $ 06.00 © 1996 Verlag der Zeitschrift für Naturforschung. All rights reserved. 1284 M. Herberhold et al. ■ N-Functionalization of the Tetrahedrane Fe 2 (CO)6 (//-SNH)

M RR' R,R'M 3a Si Me Me \ 3b Si Me H N ------S 3c Si Me ‘Bu /,X\ 3d Si Me SiM e, (OC )3Fe ______Fe( CO)3 3e Si 'Bu H 3 f Si Ph ’Bu 3. 4. 5 4 Ge Me Me 5a Sn Me Me A 5b Sn Et Et tßu,As \ R,RMC1 N ------S -er / X } , R R (OC)3F e ______Fe(C O )3 ^ \ t B u , A s C l ( PCI ( p 6a -er \ © N ------S R R N ------S / > v -CI /X\' (O C ),F c _ ------_F e(C O )3 (OC)3Fe ______Fe(CO)3 r °, f ASCI. As k Ö \ R f \ N ------S 7a ‘Bu (C H ,), ‘Bu (C H ,), A X s > RRBCI 7b (OC)3F c ______F e(C O )3 'Pr (C H ,), -er 7c 7d ‘Pr (S iM e,), 6b

RR'B RR N ------S 8a N'Pr, N'Pr, / X c 8b N(Bu)CH:CH:NBu (OC)3Fe ______F e(C O )3 8c N M e2 Fe Scheine 1

^ SiMe,SiMe2v^ sr > N ' ' n —- s / / W / x \ \ (OC)3Ft------Fe(CO)3 (OC)3Fe------Fe(CO)3

9

CISiMe2SiMe2Cl -2CI"

° Nc > s 2 / ^ \N (OC)3Fe—------Fe(CO)3 ClSiMe2OSiMe2Cl ClSiMe2CH2CH2SiMe2Cl -2 C r -2 CI'

^ SiMe,OSiMe,^ ^ SiMe2CH2CH2SiMe^ S -—- N N ----- S S----- N ----- S // X \ / X o / / V \ / X \ - (OC)3Fe------Fe( CO )3 (OC )3Fe ------Fe(CO)3 (OC)3Fe------Fe(CO)3 (OC)3Fe------Fe(CO)3 10 11

Scheine 2 M. Herberhold et al. • N-Functionalization of the Tetrahedrane Fe 2 (CO)6 (//,-SNH) 1285

Table I. I5N, 2ySi and 31P NMR data of the tetrahedranes spectra (see Experimental part). In the IR spectra the 3 and 7 (chemical shifts [ppm], coupling constants [Hz], z/(CO) absorptions appear as a characteristic pattern solvent: CaD^, 25°C). of five or six bands indicating a Fe 2(CO)6 unit of b'5 N <$29Si 1 y(29si, I5n ) Cs or lower symmetry [5]. In the mass spectra, the molecular ions are detected together with fragments 3a -359.2 35.5 5.6 generated by stepwise loss of CO. 3b -370|al 22.1 3c -371.0 35.6 5.6 The nature of the element-nitrogen bonds in 3 - 3d -362.1 -19.7 (SiMe->), 3.9 11 is of particular interest. In the cases of 3 and 32.1 (SiMei) 7, LiN NMR spectra were measured (Table I), in 3e -374,0 30.8 addition to 29Si or 11P NMR spectra (cf. Figures 1 3f [d] 9.8 and 2), and chemical shifts <5ll9Sn and 6n B were <515N ^31P '7(3IP,I5N) determined for compounds 5 and 8.

7a|b| -292.0 (cycle), 137.5 59.6 (cycle). The magnitude of the coupling constants -292.2 (Fe.SN) 99.6 (Fe-iSN) l'7(29Si,15N)l is small, similar to '7(29Si,l5N) in 2,5- 7b|b| -296.6 (Fe2SN), 119.6 94.0 (FeiSN), dihydro-1,2,5-azoniasilaboratoles 16,7], in which -300.3 (cycle) 72.0 (cycle) an ammonium-type nitrogen atom is present. The 7c [d] 136.1 intensities of the 29Si satellites in the l5N NMR 7d|c| 168.1 [d] spectra of 3 are somewhat higher than expected. [a]: <5(14N); [b]: -20°C; [c]: <$(29Si) = -4.6ppm, 27(31 P,29Si) It is therefore assumed that 57Fe satellites over­ = 11.7Hz; [d]: not measured. lap with the 29Si satellites. The coupling constants 'y(57Fe,l5N) are in the same order of magnitude far to isolate well-defined products. The n B NMR (« 6 Hz [2]) as *y(29Si,15N). In the case of 7, as in spectra of reaction solutions indicate the formation other phosphorus-nitrogen compounds [8], the mag­ of (9-BBN)tO (b 11 B = 58.0 [4]) which suggests an nitude and the sign (usually positive; reduced cou­ unexpected course of these reactions. pling constant 1 K(31 P,I5N) < 0) of the coupling con­ stants 17(3IP,15N) are dominated by the phosphorus Spectroscopic results atom, in particular by the influence of the lone pair of electrons [9]. Therefore, the '/ ( 3IP,15N) values All compounds 3 -1 1 were characterized by IR, of 7 are rather similar to those measured for deriva­ 'H and l3C NMR. and in most cases by El mass tives in which the azadiferrathia tetrahedrane unit is replaced by the Me2N group [10]. The neighbour-

S(,5N) -290 -300 Fig. 1. 30.4 MHz l3N NMR spectrum of 6(15N) Fe2(CO)6(//-SN-SiMe2?Bu) (3c) (saturated in CaD^, 25°C), measured by using the refocused INEPT pulse Fig. 2. 30.4 MHz 15N{1H} NMR spectrum of sequence (based on 37(lsNSiC'H) « 1.5 Hz). 2ySi satel­ Fe2(CO)6[/i-SN-P(NCBu)CH2)->CH'>] (7b) (1 g in C7DS, lites are marked with arrows. -20°C. 1286 M. Herberhold et al. ■ N-Functionalization of the Tetrahedrane Fe 2 (CO)6 (^ -S N H )

Table II. Selected bond lengths |pm] and angles [°J in 0(4) [Fe2(CO)6(//-SN-SiMe2CH2‘'-)]2 (11).

S-N 169.2(3) Fe( 1)- S - Fe(2) 69.4( 1) Fe( 1) - Fe(2) 250.6(1) Fe( 1) - S - N 58.4( 1) Fe( 1) - N 194.8(3) Fe(2) - S - N 58.0(1) Fe(2)- N 194.4(2) Fe( 1) - Fe(2) - S 55.1(1) Fe(1)- S 219.8(1) Fe(2) - Fe( 1)- S 55.5( 1) Fe(2)- S 220.7(1) N - Fe( 1) - S 47.7(1) N -S i 178.5(3) Fe(l) - N -Si 134.3(1) F e (l)-C (l) 179.5(4) Fe(2) - N -Si 138.9(2) Fe(1)-C(2) 179.3(3) S - N - Si 129.1(1) Fe(1)-C(3) 180.8(3) C(8) - Si - C(9) 112.7(1) Fig. 3. Molecular structure of Fe(2)- C(4) 180.2(4) Si - C(7) - C(7A) 116.3(4) [Fe2(CO)6(/u-SN-SiMe2CH2-)]2 (11). F e(2)- C(5) 180.2(4) Fe( 1) - N - Fe(2) 80.2(1) Fe(2)- C(6) 179.7(3) Fe( 1) - N -S 73.9(1) tetrahedrane units in 11 and in Fe 2(CO)6[/*-SN- Si - C(7) 186.5(3) Fe(2) - N -S 74.4( 1) C(7) - C(7A) 154.3(6) Fe( 1) - Fe(2) - N 50.0(1) C7H7Mo(CO)3] [3]. This is also true for the ge­ C(l)-0(1) 113.6(5) Fe(2)- Fe(l) - N 49.8(1) ometry of the CO ligands and their eclipsed ar­ C(2) - 0(2) 113.7(4) N - Fe(2) - S 47.6(1) rangement. The Si-N bonds [178.5(3) pm] in 11 C (3 )- 0(3) 113.2(4) N - Si - C(7) 108.8(1) are longer than in N-silylamines (172.5 - 174.0 pm C(4) - 0(4) 112.6(5) N - Si - C(8) 103.4(1) [18]), as expected for an ammonium-type nitrogen C(5) - 0(5) 113.1(5) N - Si - C(9) 107.4(2) C(6)- 0(6) 113.7(4) C(7) - Si - C(8) 112.6(2) atom. In a binuclear Fe(II) complex containing the Si -C(8) 185.2(3) C(7) - Si - C(9) 111.5(1) organo-substituted 2,5-dihydro-1,2,5-azasilabor-1 - Si - C(9) 185.5(3) yl groups both in bridging positions between the two iron atoms and in terminal positions, the Si- hood to an ammonium-type nitrogen atom causes N bond lengths are 175.6(4) pm and 172.9(5) pm deshielding for 29Si [6, 7], and also for 11B [ 11 J,31P for the four- and three-coordinate nitrogen atom, [12], and ll9Sn [13]. A comparison of the relevant respectively [19]. data for compounds 3, 5, 7 and 8 shows the same trend. Therefore, the bonding situation at the nitro­ Conclusions gen atom corresponds to that of an ammonium-type The N-functionalization of the parent complex nitrogen, at least as far as the element-nitrogen bond 1 by the reaction of its anion 2 with various ele­ is concerned. The <§15N values of compounds 3 and ment halides takes place smoothly in the case of 7 are found in the usual range of amines bearing triorganosilyl-, -germyl-, -stannyl-, arsanyl, and di- silyl or phosphanyl substituents [14]. alkylaminoboryl chlorides. The behaviour of phos­ phorus halides and of boron halides without a stabi­ X-ray structure analysis of lizing dialkylamino group is less predictable. Chem­ [FeiiCOj^ip-SN-SiMeiCHi-jh (H) ical shifts <315N, <5nB, 629S'i, 63IP, and <$ll9Sn, as Suitable single crystals of 11 (Scheme 2) were ob­ well as coupling constants '7(29Si,15N) all indicate tained from a concentrated CH 2CI2 solution with an that the cluster nitrogen atom possesses ammonium upper layer of hexane. Table 2 gives characteristic character. Coupling constants */(3lP,15N) are less bond distances and angles [15], and the molecular indicative since their magnitude (and sign) is dom­ structure of 11 - with a center of inversion between inated by the influence of the lone pair of electrons the atoms C(7) and C(7a) - is shown in Fig. 3. The S- at the phosphorus atom. N bond [169.2(3) pm] in 11 is slightly shorter than in Fe2(CO)6[//-SN-C7H7Mo(CO)3] [171.0(2) pm] Experimental [3], Ru2(CO)6(//-SN-'Bu) [170.5(4) and 172.6(4) All compounds were handled under an atmosphere pm] [16], and Fe3(CO)9(//-S)(//-SN-'Bu) [170.0(2) of dry argon, and the solvents were carefully dried. pm] [17], but is clearly in the range of S-N single The starting materials were prepared following litera­ bonds. Altogether, there are only marginal differ­ ture procedures: Fe2(CO)6(//-SNH) (1) [1], triethyltin ences in bond distances and angles between the chloride [20], l,3-di-/m-butyl-2-chloro-l,3-diaza-2- M. Herberhold et al. • N-Functionalization of the Tetrahedrane Fe 2 (CO)6 (/<-SN H ) 1287 phosphacyclopentane, -cyclohexane und 2-chloro-1,3- (Fe2SNSi+, 30). - IR (cm '): A/(CO)(hexane): 2076 (m), diisopropyl-1,3-diaza-2-phosphacyclopentane [21], 2034 (vs), 2000 (vs), 1990 (s), 1981 (m). - 'H NMR 2-chloro-1,3-diisopropyl-4,4,5,5-tetramethyl-1,3-diaza- (C6D6): 6'H = -0.13 (SiMe2), 4.37 (SiH), '/(^Si.'H) 2-phospha-4,5-disilacyclopentane [22], = 212 Hz. - l3C NMR (C6D6): <513C = -1.4 (SiMe2), di-/m-butyl-chloro-arsane [23], '7(29Si,l3C) = 57.1 Hz, 209.6 (CO). 2-chloro-1,3-dioxa-2-arsacyclopentane [24], Fe2(CO)b(SN-SiMe 2 Bu) (3c) [2]: Orange crystals, chlorobis(diisopropylamino)borane [25], yield 94%. - EI-MS, m/e (%): 441 (M+, 35), 273 (M+- 1,3-dibutyl-2-chloro-1,3-diaza-2-boracyclopentane [26], 6CO , 100), 217 (Fe2SNSiMe2H+, 40). - IR (cm“ 1): chloro(ferrocenyl)dimethylaminoborane [27]. i/(CO)(hexane): 2075 (m), 2032 (vs), 1999 (vs), 1988 Butyl lithium in hexane, trimethyltin chloride, trimethyl- (s), 1977 (m), 1947 (w). - 'H NMR (C6D6): 6'H = -0.09 germanium bromide, all chlorosilanes and DBU were (SiMe2), 0.71 (C(CH3)3). - l3C NMR (C6D6): 6 l3C = -2.3 used as commercial products. (SiMe2), 18.7 (C(CH3)3), 26.1 (C(CH3)3), 209,9 (CO). IR spectra: Perkin Elmer 983G - Mass spectra: Fe2(CO)()(SN-SiMe2SiMei,) (3d): Orange oil, yield Finnegan MAT 8500 - NMR spectra: Bruker ARX 250, 95%. - EI-MS, m/e(%) 457 (M+, 65), 289 (M+-6CO, 100), Bruker AC 300 and Bruker AM 500, all equipped with 273 (Fe2SNSi2C4H, i+, 40). - IR (cm“ 1): ^(CO)(hexane): multinuclear units; 'H (Me4Si, C6Ü6: 6 7.15), <$'3C 2074 (m), 2031 (vs), 1998 (vs), 1987 (s), 1977 (m), 1972 (Me4Si, C6D6: 6 128.0); bu B (Et20-B F 3, H (n B) = (w). - ' H NMR (C6D6): <$'H = 0.02 (SiMe3), 0.08 (SiMe2). 32.083791 MHz), 6I5N (MeN02, H (,5N) = 10.136767 - 13C NMR (C6D6): <$13C = -2.4 (SiMe3), '7(29Si,'3C) = MHz), <529Si (Me4Si, E (29Si) = 19.867184 MHz), <53'P 45.7 Hz, 1.2 (SiMe2), ’y(29Si,'3C) = 46.8 Hz, 209.9 (CO). [H3P 0 4(85% aq), £ ( 3IP) = 40.480747 MHz], <$‘19Sn Fe2(CO)t(SN-Si'B112H) (3e): Orange oil, yield 51%. - (Me4Sn, ^ (1 ,ySn) = 37.290665 MHz). Measurements EI-MS, m/e (%) 469 (M+, 10), 301 (M+-6CO, 100), 245 were carried out at 25 ± l°C,exeptfor lriNNMRof7aand (Fe2SNSiC4Hi i+, 65). - IR (cm“ ' ): ^(CO)(hexane): 2075 7b (-20°C) using saturated solutions in 5mm (o.d.) tubes. (m), 2033 (vs), 1998 (vs), 1990 (s), 1979 (m). - 'H N M R i5N NMR spectra were measured either directly with in­ (C6D6): 6'H = 0.90 (C(CH3)3), 3.96 (SiH), '7(29Si,' H) = verse gated 1H decoupling (compounds 7) or by using the 209 Hz. - 13C NMR (C6D6):<,)'3C = 21.1 (C(CH3)3), 28.2 refocussed INEPT pulse sequence (based on long range (C(CH3)3), 209.6 (CO). '■"'N-'H scalar coupling) with 'H decoupling [28] (com­ Fe2(CO)b(SN-Si!BuPli 2) (3f): Orange oil, yield 43%. pounds 3). All 29Si NMR spectra were measured by using - EI-MS, m/e (%) 564 (M+, 6), 397 (M+-6CO, 50), 341 the INEPT pulse sequence with 'H decoupling [28], (Fe2SNSiHPh2+, 50),263 (Fe2SNSiPh+,15). - IR (cm“ '): i'(COMhexane): 2074 (m), 2032 (vs), 1998 (vs), 1990 N-Substituted azadiferrathia tetrahedranes (3 - 11). Gen­ (s), 1977 (m). - !H NMR (C6D6): 6*H = 1.10 (C(CH3)3), eral procedure 37(29Si,'H) = 126 Hz. 7.56 (Ph), 7.75 (Ph). - ,3C NMR (C6D6): 6 i3C = 20.2 (C(CH3)3), 27.9 (C(CH3)3), 128.1 (o- A solution of about 200 mg of Fe2(CO)6(//-SNH) Ph), 131.0 (p-Ph), 132.6 (ipso-Ph), 136.3 (m-Ph), 209.4 (about 0.6mmol) in hexane (or thf for 9-11) was reacted (CO). at -78°C with the stoichiometric amount of the deproto- Fe2(CO)t,(SN-GeMey) (4): Orange crystals, m.p.: 89- nating agent (usually BuLi. DBU for 3a - 3f, 8a - 8c and 90°C(decomp.), yield 86%. - EI-MS, m/e (%): 445 (M+, 9 - 11). The hexane suspension (or thf solution in the 50), 277 (M+-6CO, 100), 247 (Fe2SNGeCH3+, 75). - IR cases of 9 - 11) was stirred for a few minutes, and the (cm“ 1): z/(CO)(hexane): 2072 (m), 2029 (vs), 1996 (vs), stoichiometric amount of the appropriate halogeno com­ 1983 (s), 1975 (m), 1968 (w). - 'H NMR (C6D6): 6 ] H pound was then added. After stirring for about 1 h (3 d = 0.04. - l3C NMR (C6Dft): 613C = 1.4 (GeMe3), 210.4 for 3f), the suspensions were decanted or filtrated and the (CO). desired tetrahedranes were isolated by evaporation of the Fe2(CO)b(SN-SnMe 3) (5a) [2]: Orange crystals, m.p.: solvent. 42-45°C(decomp.), yield 53%. - EI-MS,: m/e (%): 491 Fe2(CO)t(SN-SiMey) (3a) [I]: Orange crystals, m.p.: (M+, 35), 323 (M+-6CO, 100), 278 (Fe2SNSn+, 70). - 46-48°C, yield 85%. - EI-MS, m/e (%): 399 (M+, 25), IR (cm“ '): i/(CO)(hexane): 2069 (m), 2025 (vs), 1982 231 (M+-6CO, 100), 186 (Fe2SNSi+,55). - IR (cm“ '): (vs), 1978 (s), 1963 (m). - ' H NMR (C6D6): 6 1H = -0.02, ^(CO)(hexane): 2072 (m), 2032 (vs), 1992 (vs), 1986 27("9Sn,'H) = 56.5 Hz. - l3C NMR (C6D6): 613C = -3.4 (s), 1976 (m), 1966 (w). 'H NMR (C6D6): 6'H = -0.16 (SnMe3), '7 (" 9Sn,l3C) = 375.4 Hz, 210.7 (CO). - " 9Sn (SiMe3). - l3C NMR (C6D6): <513C = 1.0 (SiMe3), 209.9 NM R(C6D6): ^ 1 l9Sn = 207.0. (CO). Fe2(CO)(,(SN-SnEti) (5b): Orange crystals, m.p.: 41- Fei(CO)()(SN-SiMe2H) (3b): Orange oil, yield 99%. - 42°C(decomp.), yield 33%. - EI-MS, m/e (%): 533 (M+, EI-MS, m/e (%) 385 (M \ 14), 217 (M+-6CO, 100), 186 10), 365 (M+-6CO, 60), 279 (Fe2SNSnH+, 65), 159 1288 M. Herberhold et al. ■ N-Functionalization of the Tetrahedrane Fe 2 (CO)ö(//-SNH)

(Fe2SNH+, 100). - IR (cm ’): z/(CO)(hexane): 2067 (m), (CH3), 3J(3IP,I3C) = 8.8 Hz, 26.3 (d) (CH3),V(31P.I3C) = 2024 (vs), 1990 (vs), 1976 (s), 1962 (m). - 'H NMR 5.9 H z, 52.2 (d) (CH), 2J(3IP,I3C) = 40.3 Hz, 210.6 (CO). (CftDft): <5’ H = 0.95 (m, CH 2), 1.11 (m. CH3). - l3C NMR Fe2(CO)b[SN-B(N‘Pnh] (8a): Orange-red oil, yield (C6D6): ' 19Sn = 172.7. i'(COXhexane): 2070 (m), 2042 (vs), 1999(vs), 1990(s), Fe2(CO)b(SN-As'BinJ (6 a): Orange brown oil, yield 1976 (m). - 'H NMR (C 6D6): d'H = 1.18 (d, CH3), 3.39 76%. - EI-MS. m/e (%): 515 (M+, 5), 347 (M+-6CO, 55), (sept. CH). - "B NMR (C 6D6):<,»1IB = 30.6. - l3C NMR 289 (Fe2SNAsC4H8+, 100), 233 (Fe2SNAs+, 60). - IR (C6D6): 6 13C = 23.5 (CH3), 47.2 (CH). 208,9 (CO). (cm-1 ): ^(CO)(hexane): 2071 (m), 2030 (vs), 1995 (vs), Fe2(CO)t[SN-B(NBuCH2)2] (8b): Orange-red oil, 1987 (s), 1976 (m), 1970 (w). - 'H NMR (C6D6): ölH yield 68 %. - EI-MS. m/e (%) 507 (M+, 7), 339 (M+- = 0.94. - l3C NMR (C6D6): <513C = 28.3 (C(CH3)3, 41.3 6CO, 47), 86 (HOB(NHCH2)2+, 100). - IR (cm-1 ): (C(CH3)3, 209.9 (CO). i/(CO)(hexane): 2075 (m), 2033 (vs), 1995 (vs), 1989 Fe2(CO)b[SN-As(OCH 2)2] (6b): Orange crystals, de­ (s), 1980 (m). - 'H NMR (C 6D6): ö'H = 0.94 (q, CH3), composition: 90-92°C, yield 55%. - EI-MS, m/e (%) 461 1.27 (m, CH2CH2), 2.75 (s + t, cyclic-CH2 + Bu-CH2). - (M+, 41), 293 (M+-6CO, 100), 233 (Fe2SNAs+, 88). - IR 11B NMR (C6D6): 6 11B = 28.4. - 13C NMR (C 6D6): 6 l3C = (cm-1): (CO)(hexane): 2077 (m), 2038 (vs), 2002 (vs), 14.3 (CH3), 20.5, 31.9 (Bu-CH2), 46.0, 47.2 (cyclic-CH 2 1997 (s), 1985 (m). - 1H NMR (C6D6): <$'H =: 3.22, 3.63. + Bu-CH2), 209,8 (CO). - I3C NMR (C6D6): <5i3C = 68.3 (CH2), 209.5 (CO). Fe2(CO)e(SN-B(NMe2)Fc) (8c): Orange-red oil, yield 22%. - IR (cm-1 ): i/(CO)(hexane): 2072 (m), 2031 (vs), Fe2(CO)b[SN-P(NtBuCH 2)2] (7a): Orange brown oil, yield 89%. - EI-MS, m/e (%) 527 (M+, 1), 359 (M+-6CO, 1995 (vs), 1988 (s), 1977 (m). - 1H NMR (C 6D6): Ö]H = 2.47 (s, N(CH3)2), 3.98 (s, Cp), 4.09, 4.15 (vt, C 5H4). - 2,5), 234 (SP(H)(N;BuCH2)2+, 15), 203 (H2P('BuCH2)2+, 11B NMR (C6D6): <$" B = 38.2. - 13C NMR (C6D6): <^13C 100). - IR (cm-1): i/(CO)(hexane): 2068 (m), 2027 (vs), 1990 (vs), 1983 (s), 1973 (m), 1964 (w). - 'H NMR = 38.2, 41.9 (N(CH3)2), 69.2 (Cp), 69.6 (C 5H4, quart.), (C6D6): <5'H = 1.06 (C(CH3)3), 2.68 (m) (CH2), 3.17 (m) 70.9, 74.9 (C 5H4), 208,9 (CO). (CH2). - l3C NMR (C6D6): ö]3C = 30.1 (d) (C(CH3)3). [Fe2(CO)(,(SN-SiMe2-)]2 (9): Orange oil, yield 81%, V (31 P,I3C) = 10.2 Hz, 46.4 (d) (CH2), 27(31 P,13C) = 8.6 Hz, EI-MS, m/e (%) 740 (M+-CO, 0.5), 432 (M+-12CO, 100), 54.1 (d) (C(CH3)3), 2/( 3lP,13C) = 19.7 Hz, 210.8 (CO). 216 (Fe2SNSiMe2+, 40). - IR (cm-1): ^(CO)(hexane): 2074 (m), 2033 (vs), 2001 (vs), 1988 (s). - ’H NMR Fe2(COh[SN-P(N,BuCH2)2CH2] (7b): Orange brown (C6D6): <$'H = 0.46. - l3C NMR (C6D6): <5,3C = 2.0 oil, yield 94%. - EI-MS, m/e (%) 429 (M+-4CO, 2), (SiMe2), 209.8 (CO). - 29Si NMR (C 6D6): <529Si = 25.4. 373 (M+-6CO, 10), 215 (P(N'BuCH2)2CH2+, 100), 103 [Fe2(CO)ß(SN-SiMe2-)]2 0 (lO): Orange crystals, m.p.: (P(NHCH2)2CH2+, 100). - IR (cm-1 ): z/(CO)(hexane): 87-88°C (decomp.), yield 73%. - EI-MS,: m/e (%) 2068 (m), 2026 (vs), 1991 (vs), 1981 (s), 1971 (m). - 'H 756 (M+-CO, 5), 448 (M+-12CO, 100),418 (M+-12CO- N M R(C6D6):<()1H = 1.09(C(CH3)3), 1.67 (m) (CCH2C), C2H6, 80), 402 (M+-12CO-OMe2, 15), - IR (cm-1): 2.50 (m) (NCH2), 3.05 (m) (NCH2). - l3C NMR (C6D6): i/(CO)(hexane): 2077 (m), 2035 (vs), 2001 (vs), 1990 6I3C = 26.8 (CCH2C), 29.6 (d) (C(CH3)3), V(3IP,I3C) = (s), 1982 (m). - 'H NMR (C 6D6): <5‘H = 0.00. - l3C NMR 14.7 Hz, 39.5 (d) (NCH2), 2/( 31P,13C) = 5.0 Hz, 56.8 (d) (C6D6): <513C = 0.4 (SiMe2), 209.6 (CO). - 29Si NMR (C(CH3)3), 27(31P,i3C) = 28.0 Hz, 210.8 (CO). (C6D6): <529Si = 8.9. Fe2(CO)6[SN-P(NiPrCH2)2] (7c): Orange brown oil. [Fe2(CO)h(SN-SiMe2CH2-)]2 (11)-' Orange crystals, - IR (cm-1): t/(CO)(hexane): 2069 (m), 2027 (vs), 1992 m.p.: 52-56°C (decomp.), yield 95%. - EI-MS, m/e (%) (vs), 1983 (s), 1973 (m), 1965 (w). - 'H NMR (C6D6): 796 (M+, 2), 460 (M+- 12CO, 100), 432 (Fe 4S2N2Si2Me4+, b'H = 0.93 (CH(CH3)2, 0.99 (CH(CH3)2, 2.52 (CH2), 40). - IR (cm-1): ^(CO)(thf): 2073 (m), 2030 (vs), 1988 2.97 (CH2), 3.13 (CH(CH3)2. - 13C NMR (C6D6):: (^l3C (s). - 'H NMR (CD2C12): <*)'H = 0.23 (SiMe2), 0.59 = 22.4 (d) (CH3), V (3IP,I3C) = 8.2 Hz, 22.6 (d) (CH3), (SiCH2-). - ,3C NMR (CD2C12): <513C = -1.1 (SiMe2), 3([3IP,13C) = 7.1 Hz, 45.6 (d) (CH2), 2i( 31P,l3C) = 9.4 Hz, 9.7 (SiCH2-), 210.0 (CO). - 29Si NMR (CD 2CI2): <^29Si = 49.1 (d) (CH), 27(3 IP,i3C) = 23.1 Hz, 210.8 (CO). 26.5. F(?2(CO)()[SN-P(NiPrSiMe2)2] (7d): Orange brown oil. - IR (cm-1): ^(CO)(hexane): 2069 (m), 2027 (vs), 1997 X-ray crystal structure of (vs), 1991 (s), 1982 (m). 1971 (w). - 'H NMR (C6D6): Fe2(COk(f i-SN-SiMe2CH2CH2SiMe2-NS)Fe2(COh (11) 6*H = 0.15 (Si(CH3)3), 0.38 (Si(CH3)3), 1.08 (CH(CH3)2, Triclinic, a = 799.8(2), b = 958.5(2), c = 1035.7(2) 1.18 (CH(CH3)2, 3.59 (CH(CH3)2. - l3C NMR (C(lD6):: pm, a = 86.30(2)°, 0 = 81.27(2)°, 7 = 69.90(2), Z= 1, Ö]'C = 2.1 (Si(CH3)2), V(31P,I3C) = 4.9 Hz, 24.2 (d) space group P I, Dc = 1.794 gcm-3, orange needles: 0.22 M. Herberhold et al. ■ N-Functionalization of the Tetrahedrane Fe 2 (CO)ö(^-SNH) 1289 x 0.22 x 1.00 m m \ absorption coefficient: 2.211 mm-1 , transmission factors: 0.0288/0.0585), R/wR-value (w 1 = 4099 reflections measured in u;-26>-scan-mode, thereof a 2(F)): 0.0369/0.0324, min./max. residual electron den­ 3375 independent (F>0.0cr(F)), measured in the range of sity: -0.75/0.75 eÄ~3. 4°<20<55° on a Siemens P4 diffractometer (MoKa, A = 71.069 pm, graphite monochromator), 173K. The structure was solved by direct methods Acknowledgement (SHELXTL PLUS), all non- atoms were refined with anisotropic temperature factors. Hydrogen atoms Support of this work by the Deutsche Forschungsge­ are on calculated positions, 182 parameters refined, em­ meinschaft (DFG) and the Fonds der Chemischen Indu­ pirical correction of absorption via -0-Scans (min./max. strie is gratefully acknowledged.

[ 1 ] M. Herberhold, W. Biihlmeyer, Angew. Chem. 96, 64 Leopoldshafen (FRG) on quoting the depository (1984); Angew. Chem., Int. Ed. Engl. 23, 80 (1984). number CSD-405547. [2] B. Wrackmeyer, E. Kupce, B. Distier, K. Dirnberger, [16] M. Herberhold, W. Bühlmeyer, A. Gieren, M. Herberhold, Z. Naturforsch. 46b, 1679 (1991). T. Hübner, J. Wu, Z. Naturforsch. 42b, 65 (1987). [3] M. Herberhold, U. Bertholdt, W. Milius, Z. Natur- [17] R. Meij, D. J. Stufkens. K. Vrieze, A. M. F. Brouw­ forsch. 50b, 1252(1995). ers, J. D. Schagen, J. J. Zwinselman, A. R. Over- [4] R. Köster, W. Schüßler, R. Boese, M. Herberhold, beek, C. H. Stam, J. Organomet. Chem. 170, 337 S. Gerstmann, B. Wrackmeyer, Chem. Ber. 129, 503 (1979). (1996). [18] A. F. Wells, "Structural Inorganic Chemistry", [5] G. Bor, J.Organomet. Chem. 94. 181 (1975). 5. Edition, Clarendon Press, Oxford, 1984. [6] R. Köster, G. Seidel, B. Wrackmeyer, Chem. Ber. [19] R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, 122,1825 (1989). Chem. Ber. 120, 669 (1987). [7] B. Wrackmeyer, J.Süß, W. Milius, Chem. Ber. 129, [20] K. A. Kozeschkow, Ber. Dt. Chem. Ges. 66, 1661 147 (1996). (1933). [8] B. Wrackmeyer, Spectrochim. Acta 40A, 963, [21] C. Köhler, B. Wrackmeyer, cf. Dissertation (1984). C. Köhler, Universität Bayreuth (1993). [9] V. M. S. Gil, W. v. Philipsborn, Magn. Res. Chem. [22] C. Stader, B. Wrackmeyer, cf. Dissertation 27,409(1989). C. Stader, Universität Bayreuth (1988). [10] J. P. Gouesnard, J. Dorie, J.Mol. Structure 67, 297 [23] A. Tzschach, W. Lange, Z. Anorg. Allg. Chem. 326, (1980). 280(1964). [11] K. Anton, P. Konrad, H. Nöth, Chem. Ber. 114, 863 [24] C. Anchisi, L. Corda, A. Maccioni, G. Podda, J. Het- (1984). erocycl. Chem. 19, 141 (1982). [12] B. Wrackmeyer, A. Ariza-Castolo, Phosphorus, Sul­ [25] D. W. Aubray, M. F. Läppert, M. K. Majumdar, fur, Silicon 90, 121 (1994). J. Chem. Soc. 1962, 4088. [13] S. Kerschl, B. Wrackmeyer, Z. Naturforsch. 40b, 845 [26] H. Nöth, Z. Naturforsch. 16b, 470 (1961). (1985). [27] U. Dörfler, B. Wrackmeyer, cf Dissertation [14] G. J. Martin, M. L. Martin, J. P. Gouesnard, l?N U. Dörfler, Universität Bayreuth (1994). NMR Spectroscopy, Springer-Verlag Berlin, Heidel­ [28] a) G. A. Morris, R. Freeman, J. Am. Chem. Soc. berg, New York (1981). 101, 760(1979); [15] Further details of the crystal structure analysis are b) D. P. Burum, R. R. Ernst, J. Magn. Reson. 39, available on request from the Fachinformations- 163 (1980); zentrum Karlsruhe GmbH, D-76344 Eggenstein- c) G. A. Morris, J. Magn. Reson. 41, 185 (1980).