INIS-Mf--11421 I ELECTRON SPECTROSCOPY of COLLISIONAL EXCITED ATOMS Coincidence Analysis of the Li+-He Collision System

Total Page:16

File Type:pdf, Size:1020Kb

INIS-Mf--11421 I ELECTRON SPECTROSCOPY of COLLISIONAL EXCITED ATOMS Coincidence Analysis of the Li+-He Collision System NL39C0217 INIS-mf--11421 I ELECTRON SPECTROSCOPY OF COLLISIONAL EXCITED ATOMS Coincidence analysis of the Li+-He collision system ELEKTRONSPECTROSCOPIE VAN BOTSINGSGEINDUCEERDE AANGESLAGEN ATOMEN Coïncidentie analyse van het Li+-He botsingssysteem (met een samenvatting in het Nederlands) PROEFSCHRIFT Ter verkrijging van de graad van Doctor aan de Rijksuniversiteit te Utrecht, op gezag van de Rector Magnificus Prof.Dr. J.A. van Ginkel, volgens besluit van het College van Decanen in het openbaar te verdedigen op woensdag 25 november 1987 des namiddags te 2.30 uur door PETER VAN DER STRATEN geboren op 10 augustus 1959 te Hilversum Promotor: Prof.Dr. A. Niehaus, verbonden aan de fakulteit Natuur- en Sterrenkunde van de Rijksuniversiteit Utrecht Promotor: Prof.Or. R. Morgenstern, verbonden aan de fakulteit der Natuurwetenschappen van de Rijksuniversiteit Groningen Aan mijn ouders, Wilma en Lieke Tekstverwerking Corine Lamberts Tekeningen Wim Post Fotografie Onderwijs Media Instituut Drukkerij Elinkwijk B.V. The work described in this thesis was performed as part of the research programme of the 'Stichting voor Fundamenteel Onderzoek der Materie' (FOM) with financial support from the 'Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek' (ZWO). CONTENTS Chapter 1 Introduction and summary 1 References 5 Chapter 2 Theory 7 2.1. Introduction 7 2.2. Angular distribution of electrons 10 2.3. Energy distribution of electrons 12 2.A. Less restrictive experiments 14 a. Coincident angular distribution of electrons 14 b. Non-coincident energy distribution of electrons 15 c. Non-coincident angular distribution of electrons 16 2.5. Galilean transformation 17 a. The transformation 18 b. The heavy particle collision 19 c. The impact parameter 20 2.6. Collision amplitudes 22 a. Scaling the amplitudes 23 b. Rotation of the coordinate frame 23 c. The observables of the collision 26 Appendix A: Atomic units 28 Appendix B: Rotation of the coordinate frame 29 a. Rotation from collision to rotated frame 29 b. Rotation from collision to natural frame 30 References 31 Chapter 3 Experimental set-up 33 3.1. Introduction 33 3.2. Ion beam preparation 34 3.3. Target beam preparation 37 3.4. Electron spectrometer 38 3.5. Projectile spectrometer 40 a. Ion spectrometer 40 b. Neutral spectrometer 43 3.6. The coincidence technique 45 a. The electronics 45 b. The statistics of a coincidence analysis 47 c. Width of the time peak 51 3.7. Limitations of the coincidence method 53 References 58 Chapter 4 Interference of autoionislng transitions in fast ion-atom collisions 59 4.1. Introduction 59 4.2. The transition amplitude for autoionlsation 61 4.3. Interference of autoionising transitions 68 4.4. Application to experimental data 71 a. Excitation cross sections at high collision energies 71 b. Emission angle-dependent post-collision interaction 73 4.5. Angular shift induced by PCI 79 4.6. Conclusions 83 References 84 Chapter 5 Angular dependent post-collision interaction in Auger processes 85 5.1. Introduction 85 5.2. Theory 87 5.3. High excess energies 91 5.4. Angular dependent line shift 93 5.5. Results 96 105 5.6. Conclusions 106 Appendix 108 References Chapter 6 Quasimolecular or kinematical broadening of autolonisation electron spectra from Li /He collisions? A coincidence study 109 6.1. Introduction 109 6.2. Experiment 112 6.3. Results 113 6.4. Analysis of results 115 a. Analysis of coincidence measurements 115 b. Coincident electton spectra 119 c. Coincident angular distributions 121 d. Inelastic differential cross section for He -excitation 121 e. Non-coincident elsc.tr,n spectra 123 6.5. Dls-.usslon and conclusions 126 References 128 Chapter 7 A coincidence analysis of the excitation mechanisms for two electrons in low energy collisions of Li and He 129 7.1. Introduction 129 7.2. Experiment 131 7.3. Theory 132 7.4. Results 134 7.5. Discussion 147 References 152 Chapter 8 Shapes of excited atoma and charge motions induced by ion-atom collisions 153 8.1. Introduction 153 8.2. Angular distributions of autoionisation electrons and atomic shapes 155 8.3. Asymmetric atomic shapes and charge oscillations induced by L-coherences 161 8.4. Comparison with related work 8.5. Do oscillating charge motions correspond 165 to extra correlations? 166 Appendix 168 References 170 Samenvatting 173 Nawoord 175 Curriculum Vitae 179 Parts of chapter A are published in J. Phys. B: At. Mol. Phys. _19_ (1986) 1361-1370 and in Phys. Rev. A_34_(1986) 4482-4484. Chapter 5 is submitted to Z. Phys. D: Atoms, Molecules and Clusters. Chapter 6 is published in Z. Phys. A - Atoms and Nuclei _320_, 81-88 (1985). Chapter 7 is submitted to J. Phys. B: At. Mol. Phys. Chapter 8 is published in Comments At. Mol. Phys. J7_ (1986) 243-260. A simplified version of chapter 8 appeared in Ned. Tijdsch. v. Nat. B 52 (1986) 121, 124. Inspection of the Ion Spectrometer (photograph Werry Crone). CHAPTER 1 INTRODUCTION AND SUMMARY From the onset of laboratory research in atomic physics at the beginning of this century, collision experiments played an important role. In collisions details of structure and interactions of particles determine the outcome and information on these details can be investigated by observing the collision partners after the collision. The advent of quantum mechanics has increased the importance of collision' experiments, because they allow to observe phenomena, unknown in classical mechanics, that reveal the quantum mechanical laws of nature. Given all initial properties of a given collision system, one can deduce in classical mechanics the evolution of the system in the future. Therefore one can obtain all the information obtainable for the given initial conditions by observing one single collision. In quantum mechanics this is no longer the case. When the laws of quantum mechanics apply, one has to observe many identically prepared collisions to obtain the complete information. In the main part of this thesis we will describe measurements, where we observed many collisions under well defined initial conditions for one special collision system: the LI+-He system. There are various ways the collision process can be observed, yielding information in varying degrees of detail. Van Eck and Kistemaker (1962) measured for the Li -He system the total scattering cross section by determining the probabilities for scattering the projectiles out of the beam by the target atoms. In this way information is obtained, which can be interpreted in terms of - 1 - theoretical models that contain only little details on the physical quantities governing well defined collision events. More detailed information can be gained by measuring the cross section, differential in one of the quantities, determining the initial conditions. Such measurements were performed for the Li -He system by Lorents and Conklin (1972) and Francois et al (1972), who measured the cross section differential in the scattering angle of the projectile. This more detailed information puts a more stringent test on theoretical models used. Another piece of information can be gained by observing the "particles", emitted by the system as a result of the collision, such as electrons and photons. In the case of photons these experiments were performed by Tsurubuchi and Iwai (1981) and in the case of electrons by Thielmann (1974), Yagishita et al (1980) and Zwakhals et al (1982). Because "particles" can only be emitted, if sufficient excitation occurs during the collision, these experiments yield only information on inelastic collisions. If one only detects either scattered projectiles or emitted "particles", information on the respective "other part" of the collision process is not obtained. Therefore these measurements are called incomplete measurements. To put it in terms of quantum mechanics, the system can not be described by a wave function, but one has to apply the density matrix formulation for its description. If one performs ab initio calculations for a certain system, one essentially calculates, in some approximation, the evolution of the corresponding wave function during the collision. To compare these calculations with incomplete experiments, one has to average the wave function over all unobserved quantities. It is obvious that this does not lead to a very direct test of the theoretical methods used. The situation can be improved, if one measures both, the scattered projectile and the "particle" emitted in the same scattering event. For certain collision systems, and under certain experimental conditions, such a measurement can be regarded as a "complete experiment". Complete in the sense, that the maximum - 2 - information obtainable according to the quantum mechanics Is In fact obtained. Such experiments became feasible with the introduction of coincidence techniques, which have been applied to the Li -He system only recently. Andersen et al (1985) measured coincidences between scattered projectiles and photons. This yields information on collisions, in which one electron is excited. In this thesis we will describe measurements, in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. Together with the results of Andersen et al, our results form a complete experimental investigation of excitation mechanisms in the keV-region for the Li+- He collision system. In order to show, what can be learned from coincidence experiments, a detailed theoretical analysis thereof is given in chapter 2. The transition amplitudes are introduced, which contain all the information, which can be obtained from a collision. These amplitudes are related to quantities, which enbody more physical significance for a collision process, such as the angular momentum transferred from the projectile to the target or the alignment of the excited state after the collision. The corresponding relations are derived. Furthermore it is shown, what kind of information is lost, when one confines oneself to detect only the electrons. In chapter 3 the experimental set-up is shown. After an overview of the components, generally used in collision physics (ion source, detectors), the coincidence technique is discussed in detail.
Recommended publications
  • Simplified Hartree-Fock Computations on Second-Row Atoms
    Simplified Hartree-Fock Computations on Second-Row Atoms S. M. Blinder Wolfram Research, Inc. Champaign, IL 61820, USA May 18, 2021 Modern computational quantum chemistry has developed to a large extent beginning with applications of the Hartree-Fock method to atoms and molecules[1]. Density-functional methods have now largely supplanted conventional Hartree-Fock computations in current applications of computational chemistry. Still, from a pedagogical point of view, an un- derstanding of the original methods remains a necessary preliminary. However, since more elaborate Hartree-Fock computations are now no longer needed, it will suffice to consider a computationally simplified application of the method[2]. Accordingly, we will represent the many-electron wavefunction by a single closed-shell Slater determinant and use basis functions which are simple Slater-type orbitals. This is in contrast to the more elaborate Hartree-Fock computations, which might use multi-determinant wavefunctions and double- zeta basis functions. All of the symbolic and numerical operations were carried out using Mathematica. We consider Hartree-Fock computations on the ground states of the second-row atoms He through Ne, Z = 2 to 10, using the simplest set of orthonormalized 1s, 2s and 2p orbital functions: s α3=2 3β5 α + β = p e−αr; = 1 − r e−βr; 1s π 2s π(α2 − αβ + β2) 3 5=2 γ −γr 2pfx;y;zg = p re fsin θ cos φ, sin θ sin φ, cos θg: (1) arXiv:2105.07018v1 [quant-ph] 14 May 2021 π An orbital function multiplied by a spin function α or β is known as a spinorbital, a product of the form ( α φ(x) = (r) : (2) β 1 A simple representation of a many-electron atom is given by a Slater determinant con- structed from N occupied spin-orbitals: φa(1) φb(1) : : : φn(1) 1 φa(2) φb(2) : : : φn(2) Ψ(1;:::;N) = p ; (3) .
    [Show full text]
  • A Self-Interaction-Free Local Hybrid Functional: Accurate Binding
    A self-interaction-free local hybrid functional: accurate binding energies vis-`a-vis accurate ionization potentials from Kohn-Sham eigenvalues Tobias Schmidt,1, ∗ Eli Kraisler,2, ∗ Adi Makmal,2, † Leeor Kronik,2 and Stephan K¨ummel1 1Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany 2Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100,Israel (Dated: September 12, 2018) We present and test a new approximation for the exchange-correlation (xc) energy of Kohn- Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc energy density. It contains one parameter that is not determined ab initio. We investigate whether it is possible to construct a functional that yields accurate binding energies and affords other advantages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set of atoms and small molecules show that within our local-hybrid form accurate binding energies can be achieved by proper optimization of the free parameter in our functional, along with an improvement in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence of the latter to experimental ionization potentials is not yet satisfactory, and if we choose to optimize their prediction, a rather different value of the functional’s parameter is obtained. We put this finding in a larger context by discussing similar observations for other functionals and possible directions for further functional development that our findings suggest.
    [Show full text]
  • Account 0103 - 5053 $6.00+0.00Ac Carbocations on Zeolites
    J. Braz. Chem. Soc., Vol. 22, No. 7, 1197-1205, 2011. Printed in Brazil - ©2011 Sociedade Brasileira de Química Account 0103 - 5053 $6.00+0.00Ac Carbocations on Zeolites. Quo Vadis? Claudio J. A. Mota* and Nilton Rosenbach Jr.# Instituto de Química and INCT de Energia e Ambiente, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT Bloco A, 21941-909 Rio de Janeiro-RJ, Brazil A natureza dos carbocátions adsorvidos na superfície da zeólita é discutida neste artigo, destacando estudos experimentais e teóricos. A adsorção de halogenetos de alquila sobre zeólitas trocadas com metais tem sido usada para estudar o equilíbrio entre alcóxidos, que são espécies covalentes, e carbocátions, que têm natureza iônica. Cálculos teóricos indicam que os carbocátions são mínimos (intermediários) na superfície de energia potencial e estabilizados por ligações hidrogênio com os átomos de oxigênio da estrutura zeolítica. Os resultados indicam que zeólitas se comportam como solventes sólidos, estabilizando a formação de espécies iônicas. The nature of carbocations on the zeolite surface is discussed in this account, highlighting experimental and theoretical studies. The adsorption of alkylhalides over metal-exchanged zeolites has been used to study the equilibrium between covalent alkoxides and ionic carbocations. Theoretical calculations indicated that the carbocations are minima (intermediates) on the potential energy surface and stabilized by hydrogen bonds with the framework oxygen atoms. The results indicate that zeolites behave like solid solvents, stabilizing the formation of ionic species. Keywords: zeolites, carbocations, alkoxides, catalysis, acidity 1. Introduction Thus, NH4Y can be prepared by exchange of the NaY with ammonium salt solutions. An acidic material can Zeolites are crystalline aluminosilicates with pores of be obtained by calcination of the ammonium-exchanged molecular dimensions.
    [Show full text]
  • ACF NATIONALS 2018 ROUND 1 PRELIMS 1 Packet by OXFORD + DUKE
    ACF NATIONALS 2018 ROUND 1 PRELIMS 1 packet by OXFORD + DUKE authors Oxford: Daoud Jackson, George Charlson, Jacob Robertson, Freddy Potts, Chris Stern Duke: Ryan Humphrey, Gabe Guedes, Lucian Li, Annabelle Yang ACF Nationals 2018 | Packet: Oxford + Duke | Page 1 Editors: Jordan Brownstein, Andrew Hart, Stephen Liu, Aaron Rosenberg, Andrew Wang, Ryan Westbrook Tossups 1. ARCIMBOLDO (ar-chim-BOL-do) and the auto-rickshaw platform process data from this technique. The sphere-of- influence algorithm for this technique helps differentiate solvents and the target molecule, and like the free lunch algorithm, is found in the SHELXE (“shell X-E”) package. Data from this technique can be more easily processed by repeating data collection after either using a laser to induce radiation damage in the sample, or soaking the sample in a heavy metal compound. This is the most prominent technique for which Rigaku produces instruments, including the MiniFlex. MAD, SAD, and isomorphous replacement are methods used in this technique to solve the phase problem. The systematic absences from this technique are used to help find the space group of the analyte, which must be determined in order to solve the final structure. For 10 points, name this technique that uses Bragg’s law to determine the structure of a crystal. ANSWER: x-ray diffraction [accept x-ray crystallography or XRD] 2. Five years after this man’s death, his diaries were collected by the manager of the Pomeranian Mortgage Bank, including correspondences produced while he lived with his former lieutenant Wilhelm Junker. This man’s peaceful meeting with Omukama Kabalega (oh-moo-KAH-mah kah-bah-LEH-gah) is commemorated by a cone-shaped structure at the Mparo Royal Tombs.
    [Show full text]
  • Core Electron Binding Energies in Heavy Atoms
    l~m;~, Vol. 21, No. 2, August 1983, pp. 103-110. © Printed in India. Core electron binding energies in heavy atoms M P DAS Department of Physics, Sambalpur University,Jyoti Vihar, Sambalpur 768 017, India MS received 8 October 1982; revised 26 April 1983 Abstract. Inner shell binding of electrons in heavy atoms is studied through the relativistic density functional theory in which many electron interactions are treated in a local density approximation. By using this theory and the A scF procedure binding energies of several core electrons of mercury atom are calculatedin the frozen and relaxed configurations. The results are compared with those carried out by the non-local Dirac-Fock Scheme. K-shellbinding energies of several closed shell atoms are calculated by using the Kolm-Shamand the relativisticexchange potentials. The results are discussed and the discrepancies in our local densityresults, when compared with experimental values, may be attributed to the non-localityand to the many-body effects. Keywords. Atomic structure; binding ener~; relaxed orbitals; density functional; Breit interaction. 1. Introduction Calculations on the electronic structure of heavy atoms based on the relativistic theory, such as multi-oonfigurational Dirac-Fock (MeDF) method (Desolaux 1980) are in reasonably good agreement with experimental findings. This theory employs one- electron Dirao Hamiltonian that contains the kinematics of the electrons and their interactions with the classical nuclear field. The electron-electron interaction is then added in two parts. The first part is treated in ~e Hartree-Fock sense by applying variational principle to a many-electron wavefunction as an antisymmctric product of one-electron orbitals.
    [Show full text]
  • New Method for Measuring Angle-Resolved Phases in Photoemission
    PHYSICAL REVIEW X 10, 031070 (2020) New Method for Measuring Angle-Resolved Phases in Photoemission Daehyun You ,1 Kiyoshi Ueda,1,* Elena V. Gryzlova ,2 Alexei N. Grum-Grzhimailo ,2 Maria M. Popova ,2,3 Ekaterina I. Staroselskaya,3 Oyunbileg Tugs,4 Yuki Orimo ,4 Takeshi Sato ,4,5,6 Kenichi L. Ishikawa ,4,5,6 Paolo Antonio Carpeggiani ,7 Tamás Csizmadia,8 Miklós Füle,8 Giuseppe Sansone ,9 Praveen Kumar Maroju,9 Alessandro D’Elia ,10,11 Tommaso Mazza,12 Michael Meyer ,12 Carlo Callegari ,13 Michele Di Fraia,13 Oksana Plekan ,13 Robert Richter,13 Luca Giannessi,13,14 Enrico Allaria,13 Giovanni De Ninno,13,15 Mauro Trovò,13 ‡ Laura Badano,13 Bruno Diviacco ,13 Giulio Gaio,13 David Gauthier,13, Najmeh Mirian,13 Giuseppe Penco,13 † Primož Rebernik Ribič ,13,15 Simone Spampinati,13 Carlo Spezzani,13 and Kevin C. Prince 13,16, 1Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan 2Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia 3Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 4Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 5Photon Science Center, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 6Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 7Institut für Photonik, Technische
    [Show full text]
  • Approximate Molecular Electronic Structure Methods
    APPROXIMATE MOLECULAR ELECTRONIC STRUCTURE METHODS By CHARLES ALBERT TAYLOR, JR. A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1990 To my grandparents, Carrie B. and W. D. Owens ACKNOWLEDGMENTS It would be impossible to adequately acknowledge all of those who have contributed in one way or another to my “graduate school experience.” However, there are a few who have played such a pivotal role that I feel it appropriate to take this opportunity to thank them: • Dr. Michael Zemer for his enthusiasm despite my more than occasional lack thereof. • Dr. Yngve Ohm whose strong leadership and standards of excellence make QTP a truly unique environment for students, postdocs, and faculty alike. • Dr. Jack Sabin for coming to the rescue and providing me a workplace in which to finish this dissertation. I will miss your bookshelves which I hope are back in order before you read this. • Dr. William Weltner who provided encouragement and seemed to have confidence in me, even when I did not. • Joanne Bratcher for taking care of her boys and keeping things running smoothly at QTP-not to mention Sanibel. Of course, I cannot overlook those friends and colleagues with whom I shared much over the past years: • Alan Salter, the conservative conscience of the clubhouse and a good friend. • Bill Parkinson, the liberal conscience of the clubhouse who, along with his family, Bonnie, Ryan, Danny, and Casey; helped me keep things in perspective and could always be counted on for a good laugh.
    [Show full text]
  • 2 Variational Wave Functions for Molecules and Solids
    2 Variational Wave Functions for Molecules and Solids W.M.C. Foulkes Department of Physics Imperial College London Contents 1 Introduction 2 2 Slater determinants 4 3 The Hartree-Fock approximation 11 4 Configuration expansions 14 5 Slater-Jastrow wave functions 21 6 Beyond Slater determinants 27 E. Pavarini and E. Koch (eds.) Topology, Entanglement, and Strong Correlations Modeling and Simulation Vol. 10 Forschungszentrum Julich,¨ 2020, ISBN 978-3-95806-466-9 http://www.cond-mat.de/events/correl20 2.2 W.M.C. Foulkes 1 Introduction Chemists and condensed matter physicists are lucky to have a reliable “grand unified theory” — the many-electron Schrodinger¨ equation — capable of describing almost every phenomenon we encounter. If only we were able to solve it! Finding the exact solution is believed to be “NP hard” in general [1], implying that the computational cost almost certainly scales exponentially with N. Until we have access to a working quantum computer, the best we can do is seek good approximate solutions computable at a cost that rises less than exponentially with system size. Another problem is that our approximate solutions have to be surprisingly accurate to be useful. The energy scale of room-temperature phenomena is kBT ≈ 0.025 eV per electron, and the en- ergy differences between competing solid phases can be as small as 0.01 eV per atom [2]. Quan- tum chemists say that 1 kcal mol−1 (≈ 0.043 eV) is “chemical accuracy” and that methods with errors much larger than this are not good enough to provide quantitative predictions of room temperature chemistry.
    [Show full text]
  • Fundamental Harmonic Power Laws Relating the Frequency Equivalents of the Electron, Bohr Radius, Rydberg Constant with the Fine Structure, Planck’S Constant, 2 and Π
    Journal of Modern Physics, 2016, 7, 1801-1810 http://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Fundamental Harmonic Power Laws Relating the Frequency Equivalents of the Electron, Bohr Radius, Rydberg Constant with the Fine Structure, Planck’s Constant, 2 and π Donald William Chakeres Department of Radiology, The Ohio State University, Columbus, OH, USA How to cite this paper: Chakeres, D.W. Abstract (2016) Fundamental Harmonic Power Laws − Relating the Frequency Equivalents of the We evaluate three of the quantum constants of hydrogen, the electron, e , the Bohr Electron, Bohr Radius, Rydberg Constant radius, a0, and the Rydberg constants, R∞, as natural unit frequency equivalents, v. with the Fine Structure, Planck’s Constant, This is equivalent to Planck’s constant, h, the speed of light, c, and the electron 2 and π. Journal of Modern Physics, 7, charge, e, all scaled to 1 similar in concept to the Hartree atomic, and Planck units. 1801-1810. http://dx.doi.org/10.4236/jmp.2016.713160 These frequency ratios are analyzed as fundamental coupling constants. We recog- 2 nize that the ratio of the product of 8π , the ve− times the vR divided by va0 squared Received: August 3, 2016 equals 1. This is a power law defining Planck’s constant in a dimensionless domain as Accepted: September 27, 2016 1. We also find that all of the possible dimensionless and dimensioned ratios corres- Published: September 30, 2016 pond to other constants or classic relationships, and are systematically inter-related Copyright © 2016 by author and by multiple power laws to the fine structure constant, α; and the geometric factors 2, Scientific Research Publishing Inc.
    [Show full text]
  • F& Y^Co 5-É< COMMISSARIAT a L'energie ATOMIQUE
    F& y^co 5-é< COMMISSARIAT A L'ENERGIE ATOMIQUE CENTRE D'ETUDES NUCLEAIRES DE SACLAY CEA-CONF - - 8026 Service de Documentation F91191 GIF SUR YVETTE CEDEX L5 TIME DEPENDINT DENSITY FUNCTIONAL THEORY OF LIGHT ABSORPTION IN DENSE PLASMS APPLICATION TO IRON-PLASMA GRIMALDI, P.; GRIMALDI-LECOURT, A.; DHARMA-WARDANAf MWC. CEA Centre de Limeil Communication presentee à : 5. Topical conference on atonic procette* in high teeperature piateat Pacific Grove, CA (USA) 25-28 Feb 1985 Time dependent density functional theory of light absorption In dense plasmas: application to iron-plasma François Grimaidi and Annette Griraaldi-Lecourt Centre d'Etudes de Limell-Valenton B.P. 27, Villeneuve-St-Georges, France and M.W.C. Dharma-wardana Division of Microstructural Sciences National Research Council, Ottawa, Canada (Telephone: 613-993-9334) Abstract The objective of this paper is to present a simple time-dependent calculation of the light absorption cross section for a strongly coupled partially degenerate plasma so as to transcend the usual single-particle picture. This Is achieved within the density functional theory (DFT) of plasmas by generalizing the method given by Zangwill and Soven for atomic calculations at zero temperature. The essential feature of the time dependent DFT is the correct treatment of the relaxation of the system under the external field. Exploratory calculations for an Fe-plasma at 100 eV show new features in the absorption cross section which are absent in the usual single particle theory. These arise from inter-shell correlations, channel mixing and self-energy effects. These many-body effects introduce significant modifications to the radiative properties of plasmas and are shown to be efficiently calculable by time dependent density functional theory (TD-DFT).
    [Show full text]
  • Intoduction to the CASINO Code
    the united nations educational, scientific abdus salam and cultural organization international centre for theoretical physics international atomic energy agency SMR 1595 - 3 _______________________________________________________ Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12 - 23 January 2004 _______________________________________________________ COMPUTER LABORATORY SESSION Introduction to the CASINO code Mike TOWLER and Neil DRUMMOND TCM Group, Cavendish Laboratory, Cambridge University Cambridge CB3 OHE, U.K. These are preliminary lecture notes, intended only for distribution to participants. strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - [email protected] - www.ictp.trieste.it Introduction to the CASINO code: computer laboratory session Mike Towler and Neil Drummond Friday 16 January, 2004 Welcome to CASINO! In this worksheet, we demonstrate how to use the CASINO code by leading the user through some simple examples. It is hoped that by the end of the session, users will be sufficiently familiar with the basic input variables to carry out the following for both molecules and solids: Hartree-Fock VMC calculations; Jastrow factor optimisations using variance minimisation; and DMC calculations. Users should also know how to perform reblocking analysis of the data and be aware of the casinohelp utility. Activity 1: A simple Hartree-Fock VMC calculation Let’s begin by calculating the Hartree-Fock energy of a hydrogen atom using VMC. This activity should take about 20 minutes. • Go to the directory ∼/CASINO/examples/atom/hydrogen and list its contents. There should be a gwfn.data file holding the orbitals generated by a GAUSSIAN94 calculation1 and a CASINO input file. No pseudopotential file is supplied, so CASINO will assume you wish to do an all- electron calculation.
    [Show full text]
  • 1 I. Units and Conversions 1 A. Atomic Units 1 B. Energy Conversions 2 II
    1 CONTENTS I. Units and Conversions 1 A. Atomic Units 1 B. Energy Conversions 2 II. Approximation Methods 2 A. Semiclassical quantization 2 B. Time-independent perturbation theory 4 C. Linear variational method 7 D. Orthogonalization 11 1. Gram-Schmidt orthogonalization 11 2. Diagonalization of the overlap matrix 12 E. MacDonald’s Theorem 14 F. DVR method for bound state energies 16 References 21 I. UNITS AND CONVERSIONS A. Atomic Units Throughout these notes we shall use the so-called Hartree atomic units in which mass is reckoned in units of the electron mass (m = 9.1093826 10−31 kg) and distance in terms e × of the Bohr radius (a =5.299175 10−2 nm). In this system of units the numerical values 0 × of the following four fundamental physical constants are unity by definition: Electron mass m • e Elementary charge e • reduced Planck’s constant ~ • Coulomb’s constant 1/4πǫ • 0 The replacement of these constants by unity will greatly simplify the notation. 2 It is easiest to work problems entirely in atomic units, and then convert at the end to SI units, using Length (Bohr radius) 1a =5.299175 10−2 nm = 0.5291775 A˚ • 0 × Energy (Hartree) 1E =4.35974417 10−18 J • h × B. Energy Conversions Atomic (Hartree) units of energy are commonly used by theoreticians to quantify elec- tronic energy levels in atoms and molecules. From an experimental viewpoint, energy levels are often given in terms of electron volts (eV), wavenumber units, or kilocalories/mole (kcal/mol). From Planck’s relation hc E = hν = λ The relation between the Joule and the kilocalorie is 1kcal = 4.184 kJ Thus, 1 kcal/mole is one kilocalorie per mole of atoms, or 4.184 103 J divided by Avogadro’s × number (6.022 1023) = 6.9479 10−21 J/molecule.
    [Show full text]