Insect & Spider Puzzles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Arthropod Groups What Is Entomology?
Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders, -
Key to Common Indoor Spiders Found in Utah
KEY TO COMMON INDOOR SPIDERS FOUND IN UTAH Alan H. Roe Insect Diagnostician Utah Plant Pest Diagnostic Lab November 2005 This key is intended as an identification aid for spider specimens commonly collected from indoor situations in Utah. It is not all-inclusive and will not correctly identify all spiders. However, the key does include groups that comprise about 90% of the specimens that are submitted from household situations in Utah, and about 80% of spiders submitted from all situations. This simplified key is designed for use by persons with a minimal knowledge of spider anatomy. Anatomical characteristics utilized by the key include eye arrangements, the number of claws on the tarsi, the presence or lack of claw tufts, the appearance of the spinnerets, and the arrangement of teeth (if any) on the rear margin of the cheliceral fang furrow. Actual photographs of spider anatomy are utilized to illustrate the various characteristics described in the key. A dissecting microscope (20X minimum power) is recommended to observe the necessary characteristics. One or two pairs of fine forceps and a dissecting pin are useful for manipulating specimens. A silicone-filled dissecting dish and insect pins may also be useful for holding specimens in the required viewing positions. Ethyl alcohol (70%) is recommended for preserving spider specimens. Specimens can be viewed submerged under alcohol or dry, but dry specimens are prone to breakage. Spiders included in this key are identified to the family, genus, or species level. A list of these spiders and their classification level is given in the table below. The actual key follows the table. -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas. -
Segmentation and Tagmosis in Chelicerata
Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa. -
Geological History and Phylogeny of Chelicerata
Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while -
Biolocomotion at the Interface
AR266-FL38-13 ARI 11 November 2005 20:7 Walking on Water: Biolocomotion at the Interface John W.M. Bush and David L. Hu Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email: [email protected], [email protected] Annu. Rev. Fluid Mech. Key Words 2006. 38:339–69 locomotion, surface propulsion, surface tension, insects, spiders, The Annual Review of Fluid Mechanics is online at lizards fluid.annualreviews.org Abstract doi: 10.1146/annurev.fluid. by Yale University SOCIAL SCIENCE LIBRARY on 12/17/05. For personal use only. 38.050304.092157 We consider the hydrodynamics of creatures capable of sustaining themselves on the Annu. Rev. Fluid. Mech. 2006.38:339-369. Downloaded from arjournals.annualreviews.org Copyright c 2006 by water surface by means other than flotation. Particular attention is given to classify- Annual Reviews. All rights ing water walkers according to their principal means of weight support and lateral reserved propulsion. The various propulsion mechanisms are rationalized through consider- 0066-4189/06/0115- ation of energetics, hydrodynamic forces applied, or momentum transferred by the 0339$20.00 driving stroke. We review previous research in this area and suggest directions for future work. Special attention is given to introductory discussions of problems not previously treated in the fluid mechanics literature, with hopes of attracting physi- cists, applied mathematicians, and engineers to this relatively unexplored area of fluid mechanics. 339 AR266-FL38-13 ARI 11 November 2005 20:7 1. INTRODUCTION Walking on water is one of the most striking feats in the natural world. The ability to do so has evolved independently throughout the animal kingdom, among over 1200 species of insects, spiders, birds, fish, reptiles, and mammals (Figure 1). -
Arthropods of Public Health Significance in California
ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA California Department of Public Health Vector Control Technician Certification Training Manual Category C ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA Category C: Arthropods A Training Manual for Vector Control Technician’s Certification Examination Administered by the California Department of Health Services Edited by Richard P. Meyer, Ph.D. and Minoo B. Madon M V C A s s o c i a t i o n of C a l i f o r n i a MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA 660 J Street, Suite 480, Sacramento, CA 95814 Date of Publication - 2002 This is a publication of the MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA For other MVCAC publications or further informaiton, contact: MVCAC 660 J Street, Suite 480 Sacramento, CA 95814 Telephone: (916) 440-0826 Fax: (916) 442-4182 E-Mail: [email protected] Web Site: http://www.mvcac.org Copyright © MVCAC 2002. All rights reserved. ii Arthropods of Public Health Significance CONTENTS PREFACE ........................................................................................................................................ v DIRECTORY OF CONTRIBUTORS.............................................................................................. vii 1 EPIDEMIOLOGY OF VECTOR-BORNE DISEASES ..................................... Bruce F. Eldridge 1 2 FUNDAMENTALS OF ENTOMOLOGY.......................................................... Richard P. Meyer 11 3 COCKROACHES ........................................................................................... -
An Illustrated Key to the Malacostraca (Crustacea) of the Northern Arabian Sea. Part VI: Decapoda Anomura
An illustrated key to the Malacostraca (Crustacea) of the northern Arabian Sea. Part 6: Decapoda anomura Item Type article Authors Kazmi, Q.B.; Siddiqui, F.A. Download date 04/10/2021 12:44:02 Link to Item http://hdl.handle.net/1834/34318 Pakistan Journal of Marine Sciences, Vol. 15(1), 11-79, 2006. AN ILLUSTRATED KEY TO THE MALACOSTRACA (CRUSTACEA) OF THE NORTHERN ARABIAN SEA PART VI: DECAPODA ANOMURA Quddusi B. Kazmi and Feroz A. Siddiqui Marine Reference Collection and Resource Centre, University of Karachi, Karachi-75270, Pakistan. E-mails: [email protected] (QBK); safianadeem200 [email protected] .in (FAS). ABSTRACT: The key deals with the Decapoda, Anomura of the northern Arabian Sea, belonging to 3 superfamilies, 10 families, 32 genera and 104 species. With few exceptions, each species is accompanied by illustrations of taxonomic importance; its first reporter is referenced, supplemented by a subsequent record from the area. Necessary schematic diagrams explaining terminologies are also included. KEY WORDS: Malacostraca, Decapoda, Anomura, Arabian Sea - key. INTRODUCTION The Infraorder Anomura is well represented in Northern Arabian Sea (Paldstan) (see Tirmizi and Kazmi, 1993). Some important investigations and documentations on the diversity of anomurans belonging to families Hippidae, Albuneidae, Lithodidae, Coenobitidae, Paguridae, Parapaguridae, Diogenidae, Porcellanidae, Chirostylidae and Galatheidae are as follows: Alcock, 1905; Henderson, 1893; Miyake, 1953, 1978; Tirmizi, 1964, 1966; Lewinsohn, 1969; Mustaquim, 1972; Haig, 1966, 1974; Tirmizi and Siddiqui, 1981, 1982; Tirmizi, et al., 1982, 1989; Hogarth, 1988; Tirmizi and Javed, 1993; and Siddiqui and Kazmi, 2003, however these informations are scattered and fragmentary. In 1983 McLaughlin suppressed the old superfamily Coenobitoidea and combined it with the superfamily Paguroidea and placed all hermit crab families under the superfamily Paguroidea. -
Attaching Mechanisms and Strategies Inspired by the Spiders'
Attaching mechanisms and strategies inspired by the spiders’ leg Final Report Authors: Alessandro Gasparetto, Renato Vidoni with the cooperation of Vanni Zanotto and Eugenio Brusa Affiliation: Department of Electrical, Mechanical and Management Engineering of the University of Udine (Italy) ESA Researcher: Tobias Seidl Date: January 2008 Contacts: Alessandro Gasparetto Tel: +39 0432 558257 Fax: +39 0432 558251 e-mail: [email protected] Renato Vidoni Tel: +39 0432 558281 Fax: +39 0432 558251 e-mail: [email protected] Tobias Seidl Tel: +31(0)715653872 Fax: +31(0)715658018 e-mail: [email protected], [email protected] Ariadna ID: 06/6201 Study Duration: 6 months Available on the ACT website http://www.esa.int/act Contract Number: 20272/07/NL/HE ESA - UNIUD Spider CONTENTS Contents 1 Introduction 3 2 Overview of the project 4 3 Phase 1: Survey 5 3.1 The spider characteristics and behavior (biological aspect) . 5 3.1.1 Spider anatomy . 5 3.2 Research on attaching mechanisms and experimental evidences . 6 3.2.1 Introduction ........................... 6 3.2.2 Tarsal structure and hierarchy of the attaching elements . 7 3.2.3 Experimental evidence. Results: Scanning Electron Microscopy 8 3.2.4 Experimental evidence. Results: Atomic Force Measurement 11 3.2.5 Climbing mechanisms used by gecko lizards . 13 3.2.6 Attachment devices . 16 3.3 Analysis of self cleaning properties . 18 3.4 Adhesive mechanisms . 22 3.4.1 Van der Waals Forces . 22 3.4.2 Capillaryforces.......................... 22 3.5 Studies and materials for mimicking the attachment elements . 24 3.5.1 Fibers from polymers using pouring forms . -
Solifugids (Arachnida, Solifugae) Use Adhesive Organs on Their Pedipalps for Prey Capture
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 2011 A sticky situation: Solifugids (Arachnida, Solifugae) use adhesive organs on their pedipalps for prey capture Rodrigo H. Willemart University of Nebraska-Lincoln, [email protected] Roger D. Santer University of Nebraska-Lincoln, [email protected] Andrew J. Spence Royal Veterinary College, University of London, [email protected] Eileen Hebets University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscihebets Part of the Behavior and Ethology Commons Willemart, Rodrigo H.; Santer, Roger D.; Spence, Andrew J.; and Hebets, Eileen, "A sticky situation: Solifugids (Arachnida, Solifugae) use adhesive organs on their pedipalps for prey capture" (2011). Eileen Hebets Publications. 39. https://digitalcommons.unl.edu/bioscihebets/39 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Journal of Ethology 29 (2011), pp. 177–180; doi: 10.1007/s10164-010-0222-4 Copyright © 2010 Japan Ethological Society and Springer. Used by permission. Submitted February 23, 2010; accepted May 17, 2010; published online June 12, 2010 Supplementary material for this article is included following the “References.” A sticky situation: Solifugids (Arachnida, Solifugae) use adhesive organs on their pedipalps for prey capture Rodrigo H. Willemart,1 Roger D. Santer,1 Andrew J. Spence,2 and Eileen A. Hebets 1 1. School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA 2. -
Spider Activity Pack Kerry Wixted Wildlife and Heritage Service
Spider Activity Pack Kerry Wixted Wildlife and Heritage Service 1 Do You Like Spiders? Yes No Explain why you do or do not like spiders: 2 Know/Wonder/ Learned: Spiders Fill out the chart below on what you know about spiders, what you wonder about them, and then read about spiders. Write what you have learned. KNOW WONDER LEARNED 3 Spider Facts • Spiders are arachnids. • Spiders have 8 legs and 2 body parts. • Over 290 species of spiders are found in Maryland. • Spider webs are made of silk. • Not all spiders build webs. • Baby spiders are called spiderlings. • The largest spider in the world is the Goliath Bird-eating Tarantula. • Jumping spiders “sing” and “dance” to attract mates. 4 Label the Parts of a Spider Eyes Legs Feelers Abdomen Head Spinnerets 5 Spider Anatomy Snacks Learn about the parts of a spider and have fun, too! Grab cookies or crackers in two different sizes. Make the small size the “head” and the large size the “abdomen”. Use pretzel sticks or candy to add the legs. Decorate with cream cheese, frosting, or other supplies. Enjoy! 6 Cool Spider Spotlight The black and yellow garden spider (aka argiope) is common in Maryland. The female is large and builds a web with a zig- zag in the middle. Her head is silver, and her abdomen is yellow and black. She can eat wasps and hornets. 7 Spider vs. Insect Venn Diagram Read up on spiders and insects. What are some ways they are similar? How are they different? Add these comparisons to the diagram below: Spider Insect Both Types of Webs Did you know? Different species of spiders make different types of webs.