Simple Strategies to Improve Bioprocess Pure Culture Processing

Total Page:16

File Type:pdf, Size:1020Kb

Simple Strategies to Improve Bioprocess Pure Culture Processing Reprinted from PHARMACEUTICAL ENGINEERING® The Official Magazine of ISPE May/June 2010, Vol. 30 No. 3 Pure Culture Bioprocessing www.ISPE.org ©Copyright ISPE 2010 This article presents Simple Strategies to Improve strategies to improve Bioprocess Pure Culture Processing bioreactions by reducing contaminations by Michael Hines, Chris Holmes, and Ryan Schad by adventitious agents. ioreaction and fermentation processes of traditional bioprocess reactors and fermenta- of all scales – from 100,000 liter vessels tion processes. They are targeted squarely for to small development reactors – require the practitioner in their simplicity, and based pure culture for their successful, pro- on many years of managing pure culture opera- Bductive operation. In this article the term “pure tions at many scales. The focus of this article culture” and “pure culture capability” will be is on preventing bacterial contaminations in used instead of “sterile” or “sterility assurance” traditional fermentation systems; much of the to acknowledge that bioreactions are, by nature, material applies to protection of any bioreactor the process of growing large populations of systems from any adventitious agent. It is up to helpful microorganisms or cells as opposed to you to understand your system and process and the more unwanted varieties. Contamination to appropriately apply the principles outlined in by adventitious agents costs time, money, and order to meet the requirements of your process lost productivity; moreover, contaminants and and business. Higher potential risk from longer their sources can be very difficult to locate and growth times, longer inoculum trains, and lack eliminate. of selective agents (e.g., antibiotics) can be offset Many elements of pure culture bioprocess through the use of disposables, newer equip- design and operation are straightforward, often ment, and more stringent environmental and even a matter of common sense. Most modern raw material controls. facilities have pure culture capability built into The focus of this work is divided into four their design, including latest technology and basic sections: 1. design aspects for sterile op- control systems, and correct operating proce- erations; 2. common contamination root causes; dures to ensure sterility is achieved and pure 3. troubleshooting FG events; and 4. applying culture maintained. However, these controls will rigorous microbiology to better understand become less effective over time, due to deterio- and improve pure culture. Additionally, several ration, obsolescence, loss of experience, process examples and case studies are included to il- changes, and personnel turnover. Sometimes, lustrate and emphasize concepts. many years of solid performance can lead to a false sense of stability, which leads to com- Facility Design and placence (or a lack of attention to pure culture Sterilization Best Practices capability requirements) inevitably followed by The scope of this article is for scientists and one or more Foreign Growth (FG) episodes. engineers supporting existing bioreactor Ultimately, a process with robust pure culture processes. However, a short survey of current capability is the goal of both technical sup- sterile design best practices will be helpful to port staff as well as management. It is clearly improve or troubleshoot your axenic process. beneficial to proactively manage pure culture It is fundamental to realize that prevention of design, capability, and practices before problems FG is the most important factor to long-term occur rather than create unintentional sterility successful pure culture performance. experts out of your support staff as they struggle with root cause investigations instead of more Sterilize in Place (SIP) System Design productive efforts. Considerations for Sterile Operations Contained below are a number of strategies, Design for optimal sterilization is covered in illustrative case studies, and techniques to help many texts and articles.1,2 Main points are es- maintain or improve pure culture capabilities sentially as follows: MAY/JUNE 2010 PHARMACEUTICAL ENGINEERING 1 Pure Culture Bioprocessing Pure Culture Bioprocessing • Using steam, quick heat up of all points in the sterile bound- Air Removal – air must be completely displaced by saturated valves, care must be taken to control steam temperature, flow, Setup: Microbial fermentor experienced sporadic foreign growths, especially ary to 121.1°C (121.1°C is the United States Pharmacopeia steam for sterilization to be effective. Air must be either pulled common during periods of high tank volume or “foam outs.” Extensive and differential pressure across the diaphragms in order to (USP) standard sterilization temperature with a minimum by vacuum or displaced effectively by the steam itself. Typi- investigation into source of contamination did not reveal any sterile boundary prolong service. Use of condensate seals as opposed to steam moist heat sterilization requirement of 15 minutes.)3 cally, air is discharged through a sterilizing filter. flaws except a very minor one: the insulation around the top of the Vapor seals also can prolong valve elastomer life. Liquid Separator (VLS) had been removed for repair work some time before, • free drainage of condensate and was not replaced. • easy displacement of air Cold Spots – temperature measurement must include the Trade-Off between In-Line and Off-Line Monitoring Devices Resolution: Replacing the insulation decreased the frequency of foreign • replace collapsing steam with sterile air (collapsing steam coldest spot in the system to ensure that all points are held growth events, but did not eliminate them. Further investigation revealed – in some cases, the number of required in-line monitoring creates vacuum, which must be avoided at all costs) above sterilization temperatures. Redundant temperature that the VLS had a stationary Clean-In-Place (CIP) spray ring with spray devices can be reduced by using external lab sampling or in- measurement is essential to verify sterilization temperatures holes drilled on the side of the ring, not the bottom, so that the cleaning direct relationships between key operating parameters. The solution was ejected horizontally outward from the spray ring instead of These, and other factors to consider are described below: are maintained. vertically downward. appropriate number and location of analytical instruments and in-process checks must be reconciled against: 1. capital Consequently, the Sterile Boundary – process piping connected to sterilized Equipment Drains – all areas in process equipment must spray ring was not free and operating cost constraints; and 2. pure culture concerns, equipment must be sterilized up to and through the closest be totally drainable. Ideally, all equipment surfaces should draining and always due to the fact that an increasing number of instrument ports valve which isolates the sterile from the non-sterile system. drain toward one common bottom outlet (each drain point had a heel of water raises FG risk to the bioreactor. lying stagnant within, Another way to isolate the sterile system is through an ap- is a potential cold spot). A steam trap should be installed to where environmental propriate 0.2 micron-rated sterilizing grade filter. Other sterile remove condensate in this outlet. bacteria could gain a Dead Legs – the piping configuration of the sterile system is boundaries include vessel walls themselves, mechanical seals foothold between runs. one of the most critical attributes that contributes to main- Sterilization process in (subject to pressure gradient), feed nozzles, internal cooling Setup: During an investigation of a recurring Foreign Growth (FG) the upper portion of the taining a system free of FG. Avoiding so called “dead legs” is coils, rupture discs, sterilizing filters, steam traps, exhaust contamination series on a large microbial fermentor, experienced operators VLS was adequate for crucial. Basically, a dead leg is defined as a one-way system, noted that the equipment SIP dynamics had shifted in the past few weeks. lines, and o-rings (elastomers) on instrument ports. See a surface sterilization, typically on the end or a branch of a piping distribution sys- Specifically, the system was reaching correct sterilization temperatures, but was not as more detailed discussion of the sterile boundary, located in but was at a higher pressure in order to meet the required temperature. effective in sterilizing tem, which results in a process hold-up area that is difficult the next section on contamination root causes. Additionally, FG contamination events were intermittent and also seemed to the heel of water to clean and sterilize. The ASME BPE standard suggests that correlate with high level or “foam out” events in the system. when the insulation Figure 2. Schematic sketch of an internal bioprocessing systems, such as fermentation, along with other was removed and was CIP spray ring with no drain hole. Disposables – disposable bioreactors and attachments are Resolution: Detailed investigation found that a routine automation change bioprocesses, should be designed with a target L/D ratio of 2:1. on some unrelated control parameters inadvertently and subtly altered occasionally ineffective gaining in popularity because they can reduce risk of cross- sterilization logic. The SIP logic change resulted in a minor delay in the even with the insulation in place. When the process broth or foam refluxed to L is defined as the length of the dead leg extension
Recommended publications
  • Rapid Detection of Bacteria and Viruses in Bioprocess Samples: Justification, Regulation, Requirements and Technologies — How Can Industry Achieve Broad Adoption?
    RAPID DETECTION OF BACTERIA AND VIRUSES IN BIOPROCESS SAMPLES: JUSTIFICATION, REGULATION, REQUIREMENTS AND TECHNOLOGIES — HOW CAN INDUSTRY ACHIEVE BROAD ADOPTION? CONNECT COLLABORATE ACCELERATE TM 1 Contents 1.0 Executive summary .......................................................................................................................................................................... 6 2.0 Introduction ....................................................................................................................................................................................... 8 3.0 Current practices ............................................................................................................................................................................10 3.1 Sterility testing ............................................................................................................................................................................. 10 3.2 Mycoplasma testing .................................................................................................................................................................... 11 3.3 Virus testing .................................................................................................................................................................................. 13 4.0 Drivers for change ...........................................................................................................................................................................15
    [Show full text]
  • CUSTOMIZED Pressure Relief Products 7-8803-7 WORLDWIDE SERVICE
    CUSTOMIZED Pressure Relief Products 7-8803-7 WORLDWIDE SERVICE Solutions...for tough Working With Specialized The Role of Pressure Relief Problems Technologies...Like Yours Rupture Discs Whether it's from the standard Solving pressure relief problems Rupture discs are non-reclosing product line -- or a custom-designed for you is the special role played by pressure relief devices which open within rupture disc for a one-of-a-kind application C.D.C.'s Product Development Group milliseconds when system pressure -- Continental Disc Corporation has built a and the Special Products Group. reaches its specific burst rating. 30-year reputation for solving the toughest This pool of product development They are designed to relieve either pressure relief problems. expertise has been retrofitting C.D.C. positive or negative conditions at a For OEM's. Defense Industries. designs into clients' systems for a specified set pressure and in some Space exploration program. Aircraft and quarter of a century. They are engineers applications, additionally withstand aerospace manufacturers. The chemical who are at home with special or exotic vacuum or backpressure. Rupture discs and petrochemical industries. Food materials, ultrahigh or ultralow burst may also be designed to provide dual processors. The electronics industry. pressures, as well as state-of-the-art pro- relief (positive or negative) within the And countless more. cessing and testing requirements. same rupture disc. Whether your needs are for A rupture disc opens (relieves) Problem Solving quantities of one, one thousand, or within milliseconds. This instantaneous more, Continental Disc is ready to solve and unrestricted relief capacity allows Continental Disc Corporation's your pressure relief problems.
    [Show full text]
  • Dual-Action Valve Product Sheet
    Dual-Action Valve Full-opening downhole test valve APPLICATIONS The dual-action valve (DAV) is a full-opening ■ Reservoir testing downhole test valve. It is run in the closed ■ Downhole testing position, opened by annulus overpressure (rupture disc), and then reclosed by a second ■ Completion operations annulus overpressure (rupture disc). The ■ Deviated and deepwater wells operator mandrels are balanced to ID pres- ■ HPHT wells sure. A two-way ratchet is used to prevent the operator mandrel from shifting, except BENEFITS in response to annulus overpressure. ■ Minimizes operating time by using Ball valve rupture disc operations When the first disc is ruptured, hydrostatic pressure is applied to an operator area, which FEATURES opens the ball valve. The ball stays in the open Operator mandrel ■ Rupture-disc-operated tester valve position until the second disc is ruptured. Rup- ■ Fullbore when opened turing this disc applies hydrostatic pressure to Low-value rupture disc a greater operator area, which permanently recloses the ball valve. High-value rupture disc Replacing the DAV ball valve with the alterna- tive ball valve enables running the DAV open, Collet closed, and then permanently reopened. The DAV-K is part of the new-generation hostile K-string developed for ultrahigh-pressure wells with bottomhole pressures up to 30,000 psi. Seal options used in the tool make it suitable for both standard and ultrahigh-temperature environments, as well as hostile drilling and completion fluids. Dual-action valve. Specifications Model DAV-E DAV-FAA/FAB DAV-K Max. OD, in [mm] 5 [127] 5 [127] 5 [127] Tool ID, in [mm] 2.25 [57] 2.25 [57] 2.25 [57] Pressure ratings Max.
    [Show full text]
  • Optimizing Eukaryotic Cell Hosts for Protein Production Through Systems Biotechnology and Genomescale Modeling
    Biotechnology Biotechnol. J. 2015, 10, 939–949 DOI 10.1002/biot.201400647 Journal www.biotechnology-journal.com Review Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling Jahir M. Gutierrez1,2 and Nathan E. Lewis2,3 1 Department of Bioengineering, University of California, San Diego, CA, USA 2 Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego School of Medicine, San Diego, CA, USA 3 Department of Pediatrics, University of California, San Diego, CA, USA Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable Received 26 FEB 2015 hosts for the production of many recombinant proteins. With the advent of genomic resources, Revised 26 APR 2015 one can now leverage genome-scale computational modeling of cellular pathways to rationally Accepted 03 JUN 2015 engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemi- cal reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engi- neering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come.
    [Show full text]
  • Getting the Most out of Your Rupture Disc
    March 2009 www.che.com Feature Report Part 2 Getting the Most Out of Your Rupture Disc For optimum rupture-disc performance, pay attention to installation, operation and maintenance Dean Miller Fike Corp. upture disc devices provide over- Liquid service pressure protection for a variety Liquid-full systems cre- of storage and process vessels ate a number of process- FIGURE 1. This viscous-tee holder design con- Rand equipment. The objective of ing challenges, many of tinually wipes the disc surface, preventing prod- the rupture disc is to maintain a leak- which apply to rupture uct buildup tight seal and be a passive bystander discs. Pressure spikes and until called upon to relieve excess pres- water hammer generated sure. While this is generally the case, by rapid opening or closing there are times when rupture disc of valves somewhere in the process fre- using pressure accumulators to absorb performance can be adversely affected quently do affect the rupture disc. The the unavoidable pressure spikes. through various installation, operation typical rupture disc begins to respond Common indications that you have and maintenance practices. to pressure in excess of the burst pres- a water hammer or another pressure This article reviews some of these sure in less than 1 millisecond. This spike problem include the following: practices, real-life observed conse- means that a short-duration pressure • The rupture disc appears to burst at quences, and corrective or preventative spike that is not detectable by normal a pressure lower than the marked measures that can improve rupture disc process instrumentation can and will burst pressure performance.
    [Show full text]
  • FIU-DOM-01 Revision-1 12/2019 10
    FIU-DOM-01 Revision -1 12/2019 1 11200 SW 8th Street, Miami Florida, 33199 http://www.fiu.edu TABLE of CONTENTS Section 1.00 GENERAL POLICY 6 1.10 Diving Standards 6 1.20 Operational Control 7 1.30 Consequence of Violation of Regulations by divers 9 1.40 Job Safety Analysis 9 1.50 Dive Team Briefing 10 1.60 Record Maintenance 10 Section 2.00 MEDICAL STANDARDS 11 2.10 Medical Requirements 11 2.20 Frequency of Medical Evaluations 11 2.30 Information Provided Examining Physician 11 2.40 Content of Medical Evaluations 11 2.50 Conditions Which May Disqualify Candidates from Diving (Adapted from Bove, 1998) 11 2.60 Laboratory Requirements for Diving Medical Evaluation and Intervals 12 2.70 Physician's Written Report 13 Section 3.00 ENTRY-LEVEL REQUIRMENTS 14 3.10 General Policy 14 Section 4.00 DIVER QUALIFICATION 14 4.10 Prerequisites 14 4.20 Training 15 4.30 FIU Working Diver Qualification 18 4.40 External (Non-FIU Employee) Diver Qualifications 18 4.50 Depth Certifications 22 4.60 Continuation of FIU Working Diver Certification 22 4.70 Revocation of Certification or Designation 23 4.80 Requalification After Revocation of Diving Privileges 23 4.90 Guest Diver 23 Section 5.00 DIVING REGULATIONS FOR SCUBA (OPEN CIRCUIT, COMPRESSED AIR) 24 5.10 Introduction 24 5.20 Pre-Dive Procedures 24 5.30 Diving Procedures 25 5.40 Post-Dive Procedures 30 5.50 Emergency Procedures 30 5.60 Flying After Diving or Ascending to Altitude (Over 1000 feet) 30 5.70 Record Keeping Requirements 30 FIU-DOM-01 Revision-1 12/2019 2 Section 6.00 SCUBA DIVING EQUIPMENT 32
    [Show full text]
  • A Survey of Selected Topics Relevant to Bioprocess Engineering
    NAT L INST. OF STAND & TECH R.I.C. I nil nil nil II mill nil II mill III III II A111D3 m74Eb United States Department of Commerce Nisr National Institute of Standards and Tectinology NIST PUBLICATIONS NIST Technical Note 1276 A Survey of Selected Topics Relevant to Bloprocess Engineering J. 6. Hubbard, E. J. Clark, and J. M. H. Levelt Sengers QC 100 .U5753 //1276 1990 C.2 NATIONAL msnrUTE OF STANDARDS & TECHNOLOGY Reeearch Informatioii Center GsBtheraburg, MD 20899 DATE DUE Demco, Inc. 38-293 mo NIST Technical Note 1276 A Survey of Selected Topics Relevant to Bioprocess Engineering J. B. Hubbard E. J. Clark J. M. H. Levelt Sengers Thermophysics Division Natic»ial Institute of Standards and Technology Gaithersburg, MD 20899 May 1990 % U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1 990 of Documents Technical Note 1276 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Tech. Note 1276 88 pages (May 1990) CODEN: NTNOEF ABSTRACT The following is a collection of reports on topics considered important and generic in biotechnology and bioprocess engineering: (1) Isoelectric points of proteins; (2) Solubility and mass transfer of oxygen in bioreactors; (3) Solubility and mass transfer of carbon dioxide in bioreactors. These reports arose from a survey of the past and current biotechnology literature with special effort given to a critique of data measurement quality. The format is as follows.
    [Show full text]
  • Crosby Pressure Relief Valve Engineering Handbook
    Crosby Valve Inc. Technical Document No. TP-V300 Effective: May 1997 An FMC Corporation subsidiary Crosby® Pressure Relief Valve Engineering Handbook COV/CON.PM6 1 9/22/97, 7:56 AM Notes: COV/CON.PM6 2 9/22/97, 7:56 AM CROSBY® Pressure Relief Valve ENGINEERING HANDBOOK CONTENTS Chapter 1 Introduction to Crosby Engineering Handbook Chapter 2 Fundamentals of Pressure Relief Valve Design Chapter 3 Terminology Chapter 4 Codes and Standards - Summary Chapter 5 Valve Sizing and Selection - U.S.C.S.* Units Chapter 6 Valve Sizing and Selection - Metric Units Chapter 7 Engineering Support Information Appendix ASME Section VIII, Division 1, 1992 Edition Exerpts Other Information Ordering Information Pressure Relief Valve Specification Sheet Warning: The information contained in this handbook is for informational purposes only. See also Crosby's computer sizing program, CROSBY-SIZE. The actual selection of valves and valve products is dependent upon numerous factors and should be made only after consultation with applicable Crosby personnel. Crosby assumes no responsibility for the actual selection of such products and hereby expressly disclaims liability for any and all claims and damages which may result from the use or application of this information or from any consultation with Crosby personnel. *United States Customary System COV/CON.PM6 3 9/22/97, 7:57 AM Crosby® Engineering Handbook Technical Publication No. TP-V300 Chapter I Introduction The Crosby® Pressure Relief Valve Engineering Hand- Crosby pressure relief valves are manufactured in ac- book contains important technical information relating cordance with a controlled Quality Assurance Program to pressure relief valves. which meets or exceeds ASME Code Quality Control Program requirements.
    [Show full text]
  • Product Manual
    Product Manual Perma-Cyl® MicroBulk Storage Systems 230/265/300/450/700/1000/1500/2000/3000 Designed and Built by: Chart Inc. 1300 Airport Dr. Ball Ground, GA 30107 USA (800) 400-4683 Part Number 10961999 Rev. E © 2015 Chart Inc. Product Manual - Perma-Cyl® MicroBulk Storage Systems iii Contents Revision Log v Preface . .1 General 1 Product Benefits 1 Product Advantages 1 Product Manual 1 Terms 2 Acronyms / Abbreviations 2 Safety . .3 . General 3 Safety Bulletin 3 Oxygen Deficient Atmospheres 4 Oxygen Cleaning 4 Oxygen Enriched Atmospheres 5 Nitrogen and Argon 5 Carbon Dioxide 5 Introduction/Operation . .7 General 7 Initial Inspection 7 Primary Plumbing Circuits 7 Fill 7 Pressure Build 8 Economizer 8 Liquid Use 8 Gas Use 9 Safety Circuit 10 Vent/Full Trycock 10 Other Piping Circuits and Components 10 Phase Lines and Liquid Level Gauges 10 Four-Way Valve 10 Pressure Gauge 10 2000 and 3000 VHP Operation 10 2000 and 3000 VHP Primary Plumbing Circuits 10 Installation . 13 Installation Common Codes and Standards 13 Conducting a Site Evaluation 13 Installation Tools and Supplies 13 Supplies 13 Tools 13 Additional Required Supplies 13 Indoor Installations 14 Internally Sited / Filled Indoors / Pipe Out Safeties 14 Wall Box 14 Installation of Hoses and Lines 15 General 15 Line Connection to Fill Box Panel 15 Bolting to Floor 16 Outdoor Installations 17 Externally Sited / Gas Use Indoors 17 Outdoor Installation Schematic 17 iv Table of Contents Product Manual - Perma-Cyl® MicroBulk Storage Systems First Fill/Purge Procedure, ASME: 18 Purging the Tank Prior to Filling 18 First Fill Procedure 18 Filling the Tank After the Cool Down Process is Complete 18 Filling Procedures, DOT: 19 Filling Weight Tables 19 Troubleshooting .
    [Show full text]
  • OSH-Standards-2020-Edition.Pdf
    OCCUPATIONAL SAFETY AND HEALTH STANDARDS (As Amended, 1989) Department of Labor and Employment Philippines Reprinted with permission from the BUREAU OF WORKING CONDITIONS DEPARTMENT OF LABOR AND EMPLOYMENT Intramuros, Manila Published and printed by the OCCUPATIONAL SAFETY AND HEALTH CENTER DEPARTMENT OF LABOR AND EMPLOYMENT North Avenue corner Agham Road, Diliman, Quezon City February 2005-May 2019 FOREWORD The Occupational Safety and Health Standards was formulated in 1978 in compliance with the constitutional mandate to safeguard the worker’s social and economic well-being as well as his physical safety and health. Adopted through the tested democratic machinery of tripartism, the 1978 Standards is considered as a landmark in Philippine labor and social legislation. The advent of industrialization and the continuing introduction of technological innovations in our country today have, however, correspondingly increased the number and types of occupational hazards that our workers are exposed to. Viewed against this backdrop, it became imperative that the Standards be revised to make it truly responsive to the workers’ needs. Joint efforts exerted by the Bureau of Working Conditions, the ILO Manila Office and the tripartite sectors bore fruit in August 1989 when the revisions were finally approved by the Secretary of Labor and Employment pursuant to his authority under Article 162 of the Labor Code of the Philippines. With the latest improvements in the Standards, all establishments covered will now be provided with a better tool for promoting and maintaining a safe and conducive working environment. I therefore urge all sectors concerned-whether they be in labor, management, government or the academe-to extend their full support to achieve the noble objectives of the Occupational Safety and Health Standards.
    [Show full text]
  • Tech Sem. Manual
    ANDERSON GREENWOOD CROSBY • TECHNICAL SEMINAR MANUAL Technical Seminar Manual Contents Section I - Terminology . 1 Section II - PRV Design . 3 Section III - ASME Code . 19 Section IV - DOT Code . 25 Section V - Sizing . 29 Section VI - Installation . 45 Section VII - Valve Types . 55 Section VIII - PRV Document Index . 57 Section IV - Back Pressure . 59 Section X - Flow Factor . 63 Section XI - Flow Losses . 67 © 2001 Tyco Valves & Controls i ANDERSON GREENWOOD CROSBY • TECHNICAL SEMINAR MANUAL Section I Terminology B. Curtain Area: The area of the cylindrical or conical dis- charge opening between the seating surfaces above the Reference on definitions is API RP 520, Part I, Sixth nozzle seat created by the lift of the disc. Edition (March 1993). C. Equivalent Flow Area: A computed area of a pressure relief valve, based on recognized flow formulas, equal to 1.0 Pressure Relief Devices the effective discharge area. A. Pressure Relief Device: A device actuated by inlet stat- D. Nozzle Area: The cross-sectional flow area of a nozzle ic pressure and designed to open during an emergency at the minimum nozzle diameter. or abnormal conditions to prevent a rise of internal fluid pressure in excess of a specified value. The device may E. Huddling Chamber: An annular pressure chamber in a also be designed to prevent excessive internal vacuum. pressure relief valve located beyond the seat for the pur- The device may be a pressure relief valve, a non-reclos- pose of generating a rapid opening. ing pressure relief device, or a vacuum relief valve. F. Inlet Size: The nominal pipe size (NPS) of the valve at B.
    [Show full text]
  • Advanced Certificate in Biopharmaceutical Manufacturing
    Advanced Certificate in Biopharmaceutical Manufacturing 2-Week Training Cohort: December 17-21, 2018 and January 7-11, 2019 The Advanced Certificate in Biopharmaceutical Manufacturing immerses participants in a rigorous digital and hands‐on training program, comprised of more than 100 hours of cGMP‐ and regulatory‐ based curricula. Subject matter includes aseptic microbial and mammalian cell processing using fixed and single‐use fermentation and purification systems, regulatory compliance, quality assurance and control, process and environmental monitoring, and proper documentation and laboratory practices. Students will complete 5 self‐paced online courses, then participate in 2 weeks of hands‐on training at NCTM. Participants will receive 10.0 continuing education units and a certificate of completion. Specific learning objectives include: • Scientific concepts and techniques that form the groundwork for developing products and manufacturing them in the biotherapeutics industry • Equipment, procedures, and preparation of the materials involved in upstream and downstream processes for manufacturing biologics • Bioreactor and fermenter operations, centrifugation methods and preparation, cell lysis techniques and equipment, and filtration, chromatography skid and column preparation • Optimization of cell processing and expansion • Software tutorials and analytics used to evaluate upstream and downstream production • Principles of aseptic techniques, sterilization, and environmental monitoring • Hazards, risk mitigation, and worker and environmental safety • Process documentation: laboratory notebooks, logbooks, and batch production records • Standard operating procedures, regulations/regulating agencies, quality assurance and control *Class size is limited to the first 10 paid registrants. Program fees of $4,995/person are subsidized by grant funding through the NATIONAL INSTITUTE FOR INNOVATION IN MANUFACTURING BIOPHARMACEUTICALS; however, a registration fee of $500 must be paid upon application.
    [Show full text]