Pathology/Biology __ 2018

Total Page:16

File Type:pdf, Size:1020Kb

Pathology/Biology __ 2018 Pathology/Biology __ 2018 H1 A Rare Presentation of Alexander Disease Edana D. Stroberg, DO*, Office of the Chief Medical Examiner, 901 N Stonewall Avenue, Oklahoma City, OK 73117; Kenneth D. Hutchins, MD, Miami-Dade County, Medical Examiner Department, Number One on Bob Hope Road, Miami, FL 33136; and E.O. Lew, MD, Miami-Dade County, Medical Examiner Department, Number One on Bob Hope Road, Miami, FL 33136-1133 After attending this presentation, attendees will better understand Alexander disease, a rare leukodystrophy, and its presentation. This presentation will impact the forensic science community by increasing attendees’ understanding of Alexander disease and the importance of a thorough neuropathologic evaluation in cases of anoxic encephalopathy. Introduction: Alexander disease is an extremely rare, usually progressive and fatal, neurological disorder.1 Initially, it was detected most often during infancy or early childhood, but as better diagnostic tools have become available, it has been found to occur with similar frequency at all stages of life.1 Approximately 95% of Alexander disease cases are caused by mutations in a gene named GFAP for a structural protein called glial fibrillary acidic protein that is found exclusively in astrocytes in the central nervous system.1 Alexander disease has been estimated to occur at a frequency of approximately one in one million births.1 There are three forms of Alexander disease: infantile, juvenile, and adult. Juvenile Alexander disease is characterized by difficulty in talking and swallowing and the inability to cough.2 There can also be weakness and spasticity of the extremities, particularly the legs.2 Unlike the infantile form of the disease, mental ability and head size may be normal.2 Survival can extend several years following the onset of symptoms, with occasional longer survival into middle age.2 The course of the disease may involve signs of swallowing or speech difficulty, vomiting, ataxia, and/or spasticity and kyphoscoliosis can occur.2 The most striking neuropathological feature is the diffuse presence of eosinophilic fibrinoid bodies in the cytoplasm of fibrillary astrocytes. Material and Methods: The decedent was a 14-year-old girl with a history of narcolepsy, sleep apnea, and scoliosis. Eighteen months prior to her death, the decedent and several others were playing in a backyard pool. When the decedent did not resurface, one of the children notified the supervising adult, who pulled her out of the pool. She was transported to a local hospital and recovered; however, she began to display signs of global developmental delay with onset of impulse control issues, anxiety, depression, self-mutilating behaviors, dysphagia with bouts of aspiration pneumonia, and ataxia. Two weeks prior to her death, she was hospitalized for self-mutilation and her condition progressed to her refusing to eat, talk, or get out of bed. She was also found to be bradycardic and hypothermic. She became unresponsive and was found to have worsening cerebral edema with cerebellar tonsillar herniation. Results: At autopsy, she was found to have cerebral edema and scoliosis of the thoracic spine. Neuropathologic consultation revealed a non- perfused, respirator-type, macerated brain and spinal cord with diffuse collections of eosinophilic fibrinoid bodies (Rosenthal fibers) in all sections. Conclusion: The decedent experienced a near-drowning episode and was diagnosed with anoxic encephalopathy when she was 12 years old. Afterward, she experienced a myriad of psychiatric and neurologic issues that were determined to be sequelae of anoxic encephalopathy. A Magnetic Resonance Imaging (MRI) of her brain revealed atrophy of the cervical spinal cord and periventricular white matter changes, which can be seen in both Alexander disease and anoxic encephalopathy. She became unresponsive in the hospital and care was withdrawn after the girl had been on a respirator for multiple days. At autopsy, she had a non-perfused, macerated brain and spinal cord, which is a known complication of being on a respirator. Her brain and spinal cord were submitted for neuropathologic evaluation, which revealed Alexander disease. The decedent experienced onset of the disease at approximately 12 years of age, which unfortunately coincided with a near-drowning event with resultant anoxic encephalopathy, thus confounding her clinical course. This case highlights the importance of performing a thorough neuropathologic evaluation when necessary, even when it is presumed to be of little informative value because of autolytic changes in the brain. Reference(s): 1. Goldman, James E. Alexander Disease. NORD (National Organization for Rare Disorders). n.d. Web. 14, June 2017. 2. Alexander Disease. United Leukodystrophy Foundation. n.d. Web. 14 June 2017. Alexander, Leukodystrophy, Anoxic Copyright 2018 by the AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by the AAFS. ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ *Presenting Author - 657 - Pathology/Biology __ 2018 H2 Adrenal Gland Changes in Relation to the Cause of Death Cristina Mondello, MD*, Department BIOMORF, University of Messina, via Consolare Valeria, 1, Messina 98123, ITALY; Elvira Ventura Spagnolo, MD*, University of Palermo, Via Del Vespro, 129, Palermo 90127, ITALY; Letteria Minutoli, MD, University of Messina, Via Consolare Valeria, 1, Messina 98125, ITALY; Domenico Puzzolo, MD, University of Messina, Via Consolare Valeria, 1, Messina 98125, ITALY; Vincenzo Macaione, MD, University of Messina, Via Consolare Valeria, 1, Messina 98125, ITALY; Consuelo Malta, BS, University of Messina, Via Consolare Valeria, 1, Messina 98125, ITALY; Mariagrazia Rinaldi, BS, University of Messina, Via Consolare Valeria, 1, Messina 98125, ITALY; and Antonio Micali, MD, University of Messina, Via Consolare Valeria, 1, Messina 98125, ITALY After attending this presentation, attendees will understand the importance of improving knowledge regarding adrenal gland involvement in response to stress related to the death process and their changes in relation to cause of death. This presentation will impact the forensic science community by highlighting: (1) whether the adrenal gland is undergoing structural and/or molecular changes in relation to different causes of death; (2) if these changes have significant differences; and, (3) if it is possible to create a timeline of the death process resulting in more or less prolonged pain. The adrenal response to stress occurs in a syndrome that reflects activation of the sympathoadrenal system and the Hypothalamic-Pituitary- Adrenocortical (HPA) axis, and a “stress syndrome” maintains homeostasis in emergencies, such as “fight or flight” situations. One of the principal tissues involved in the stress response is the adrenal gland; in fact, there is clear evidence of fasciculata activation with the release of cortisol and the release of adrenaline from the medulla. The literature suggests that the biochemical analyses of catecholamines may be useful markers for investigating various stress responses in the process of death involving bleeding, burns, cold exposure, physical hyperactivity, or drug abuse; this is possible when these markers can be used in combination with other chemical and immunohistochemical markers; however, in postmortem investigation, catecholamines have been considered rather unstable markers for investigating the cause or process of death due to pain, terminal medical care, and postmortem interference.1 This study sought an adrenal tissue marker that was involved in the stress response process with special reference to activated/stimulated receptors by the activation of the sympatho-adrenal system and HPA. The β2-AR (adrenergic receptor) was chosen because stress promotes the release of epinephrine, a catecholamine stress hormone that binds to β(2)-adrenergic receptors (β(2)ARs) with high affinity. Cases with several causes of death were selected in order to conduct an immunohistochemical analysis by the β2-AR antibody. Several causes of death were drowning, sudden cardiac death, sepsis, hanging, strangulation, traffic accident, and fire. This study revealed a different expression of β2-AR immunopositivity in relation to the cause of death; highlighted was the fact that the positive staining varied both for localization (fasciculate and/or glomerulosa and/or reticularis zone and/or medulla) and quantity. The results were then analyzed in relation to factors such as sex, age, and timing of the death process. Reference(s): 1. Zhu B.L., Ishikawa T., Michiue T., Li D.R., Zhao D., Quan L., Oritani S., Bessho Y., Maeda H. Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int. 2007;173(2-3):122-9. Adrenal Gland, Medicolegal Autopsy, Immunohistochemistry Copyright 2018 by the AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by the AAFS. ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ *Presenting Author
Recommended publications
  • Genomic Stability and Genetic Defense Systems in Dolosigranulum Pigrum A
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440249; this version posted April 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic Stability and Genetic Defense Systems in Dolosigranulum pigrum a 2 Candidate Beneficial Bacterium from the Human Microbiome 3 4 Stephany Flores Ramosa, Silvio D. Bruggera,b,c, Isabel Fernandez Escapaa,c,d, Chelsey A. 5 Skeetea, Sean L. Cottona, Sara M. Eslamia, Wei Gaoa,c, Lindsey Bomara,c, Tommy H. 6 Trand, Dakota S. Jonese, Samuel Minote, Richard J. Robertsf, Christopher D. 7 Johnstona,c,e#, Katherine P. Lemona,d,g,h# 8 9 aThe Forsyth Institute (Microbiology), Cambridge, MA, USA 10 bDepartment of Infectious Diseases and Hospital Epidemiology, University Hospital 11 Zurich, University of Zurich, Zurich, Switzerland 12 cDepartment of Oral Medicine, Infection and Immunity, Harvard School of Dental 13 Medicine, Boston, MA, USA 14 dAlkek Center for Metagenomics & Microbiome Research, Department of Molecular 15 Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA 16 eVaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 17 Seattle, WA, USA 18 fNew England Biolabs, Ipswich, MA, USA 19 gDivision of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 20 Boston, MA, USA 21 hSection of Infectious Diseases, Texas Children’s Hospital, Department of Pediatrics, 22 Baylor College of Medicine, Houston, Texas, USA 23 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440249; this version posted April 18, 2021.
    [Show full text]
  • The Microbiome of Otitis Media with Effusion and the Influence of Alloiococcus Otitidis on Haemophilus Influenzae in Polymicrobial Biofilm
    The microbiome of otitis media with effusion and the influence of Alloiococcus otitidis on Haemophilus influenzae in polymicrobial biofilm Chun L Chan Bachelor of Radiography and Medical Imaging (Honours) Bachelor of Medicine, Bachelor of Surgery Department of Otolaryngology, Head and Neck Surgery University of Adelaide, Adelaide, Australia Submitted for the title of Doctor of Philosophy November 2016 C L Chan i This thesis is dedicated to those who have sacrificed the most during my scientific endeavours My amazing family Flora, Aidan and Benjamin C L Chan ii Table of Contents TABLE OF CONTENTS .............................................................................................................................. III THESIS DECLARATION ............................................................................................................................. VII ACKNOWLEDGEMENTS ........................................................................................................................... VIII THESIS SUMMARY ................................................................................................................................... X PUBLICATIONS ARISING FROM THIS THESIS .................................................................................................. XII PRESENTATIONS ARISING FROM THIS THESIS ............................................................................................... XIII ABBREVIATIONS ...................................................................................................................................
    [Show full text]
  • Reviewing the Pathogenic Potential of the Otitis-Associated Bacteria Alloiococcus Otitidis and Turicella Otitidis
    REVIEW published: 14 February 2020 doi: 10.3389/fcimb.2020.00051 Reviewing the Pathogenic Potential of the Otitis-Associated Bacteria Alloiococcus otitidis and Turicella otitidis Rachael Lappan 1,2, Sarra E. Jamieson 3 and Christopher S. Peacock 1,3* 1 The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia, 2 Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia, 3 Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia Alloiococcus otitidis and Turicella otitidis are common bacteria of the human ear. They have frequently been isolated from the middle ear of children with otitis media (OM), though their potential role in this disease remains unclear and confounded due to their presence as commensal inhabitants of the external auditory canal. In this review, we summarize the current literature on these organisms with an emphasis on their role in Edited by: OM. Much of the literature focuses on the presence and abundance of these organisms, Regie Santos-Cortez, and little work has been done to explore their activity in the middle ear. We find there University of Colorado, United States is currently insufficient evidence available to determine whether these organisms are Reviewed by: Kevin Mason, pathogens, commensals or contribute indirectly to the pathogenesis of OM. However, The Ohio State University, building on the knowledge currently available, we suggest future approaches aimed at United States providing stronger evidence to determine whether A. otitidis and T. otitidis are involved in Joshua Chang Mell, Drexel University, United States the pathogenesis of OM.
    [Show full text]
  • List of Abstracts from ISOM 2019
    Contents Title: Creating an Otitis Media Research Network in Aboriginal Medical Services in Australia …………………………………………………………………………………………………12 Authors: L. Campbell1, S. Tyson2, R. Murray3, N. O'Connor3, S. Hussey4, N. Peter5, P. Abbott6 ................................................................................................................................................ 12 Title: Nasopharyngeal Microbiome Analysis in Healthy and Otitis-Prone Children: Focus on History of Spontaneous Tympanic Membrane Perforation ...................................................... 13 Authors: P. Marchisio1, F. Folino1, M. Fattizzo1, C. Tafuro2, L. Ruggiero1, M. Gaffuri3, S. Torretta3, S. Aliberti2 ................................................................................................................ 13 Title: Tubomanometry may describe Passive Properties of Eustachian Tubes in Ears with Intact Tympanic Membranes ................................................................................................... 15 Authors: A. Y. Lim1, M. S. Teixiera1, J. D. Swarts1, C. M. Alper1,2 .......................................... 15 Title: Management of acute respiratory tract infections including acute otitis media in Danish general practice…… ................................................................................................................ 16 Authors: J. Lous1, J. K. Olsen1, J. Lykkegaard1, M. P. Hansen1, F. B. Waldorff1, M. K. Andersen1 ...............................................................................................................................
    [Show full text]
  • Novel Interventions for Reducing Pathogen Attachment And
    NOVEL INTERVENTIONS FOR REDUCING PATHOGEN ATTACHMENT AND GROWTH ON FRESH PRODUCE A Dissertation by KEILA LIZTH PEREZ-LEWIS Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, T. Matthew Taylor Committee Members, Alejandro Castillo Luis Cisneros-Zevallos Mustafa Akbulut Head of Department, Boon Chew December 2015 Major Subject: Food Science and Technology Copyright 2015 Keila Lizth Perez-Lewis ABSTRACT The objectives of this research were to 1) identify the native microbiota on surfaces of fresh fruit and leafy greens; 2) identify microorganisms antagonistic towards Salmonella enterica Typhimurium LT2 and Escherichia coli O157:H7 ATCC 700728 both in vitro and on produce surfaces; and 3) evaluate the ability of antimicrobial- bearing nano-encapsulates to prevent pathogen attachment and growth on produce surfaces. Produce (cantaloupe, tomato, endive, and spinach) was sampled from two farms for each produce type (n=30). Aerobic bacteria, lactic acid bacteria (LAB), yeasts/molds, enterococci, and coliforms were enumerated using appropriate media. For each sample, 4-12 isolated colonies from each medium were submitted to biochemical identification. Antagonism of recovered isolates against pathogens was determined using the Agar Spot method. Produce was spot-inoculated with a suspension of bacteria showing in-vitro antagonistic activity against S. enterica Typhimurium LT2 and E. coli O157:H7 then stored at 25°C for 24 h. Each sample was spot-inoculated with a suspension including both pathogens and stored at 25°C. At 0, 6, 12, and 24 h of storage, loose and strong attachment of pathogens on the surface was determined.
    [Show full text]
  • Alloiococcus Otitidis Is Present in Ear Discharge from Indigenous Children with Acute Otitis Media, Potentially As a Secondary Middle Ear Pathogen
    Culture-independent analysis of the bacteriology associated with acute otitis media in Indigenous Australian children. Robyn Marsh BAppSc (MLS), MSc Thesis submitted for the degree of Doctor of Philosophy December 2011 Child Health Division Menzies School of Health Research Charles Darwin University Darwin, Australia ii Declaration I hereby declare that the work herein, now submitted as a thesis for the degree of Doctor of Philosophy of the Charles Darwin University, is the result of my own investigations, and all references to the ideas and work of other researchers have been specifically acknowledged. I hereby certify that the work embodied in this thesis has not already been accepted in substance for any degree, and is not being currently submitted in candidature for any other degree. Robyn Marsh December 2011 iii Abstract Otitis media is endemic in many remote Indigenous Australian communities. Children in remote communities develop otitis media in the first weeks of life and are at high-risk of progression to chronic suppurative otitis media (CSOM). Current therapeutic and preventive interventions are of limited benefit. This thesis presents a culture-independent analysis of the bacteriology associated with acute otitis media in Indigenous children from the Northern Territory. The objective of the study was to use culture-independent methods to better understand the bacteriology underlying acute otitis media in this population. Principle findings from the study are as follows: 1. Nasopharyngeal total or pathogenic bacterial loads are unsuitable as prognostic indicators of clinical antibiotic treatment outcomes in Indigenous children with acute otitis media. 2. Alloiococcus otitidis is present in ear discharge from Indigenous children with acute otitis media, potentially as a secondary middle ear pathogen.
    [Show full text]
  • Middle Ear Microbiome Differences in Indigenous Filipinos with Chronic Otitis Media Due to a Duplication in the A2ML1 Gene Regie Lyn P
    Santos-Cortez et al. Infectious Diseases of Poverty (2016) 5:97 DOI 10.1186/s40249-016-0189-7 SHORT REPORT Open Access Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene Regie Lyn P. Santos-Cortez1,9*, Diane S. Hutchinson2, Nadim J. Ajami2, Ma. Rina T. Reyes-Quintos3,4, Ma. Leah C. Tantoco3, Patrick John Labra4, Sheryl Mae Lagrana3, Melquiadesa Pedro3,ErasmoGonzalod.V.Llanes3,4, Teresa Luisa Gloria-Cruz3,4, Abner L. Chan3,4,EvaMariaCutiongco-delaPaz5,6, John W. Belmont7,10, Tasnee Chonmaitree8, Generoso T. Abes3,4, Joseph F. Petrosino2, Suzanne M. Leal1 and Charlotte M. Chiong3,4 Abstract Background: Previously rare A2ML1 variants were identified to confer otitis media susceptibility in an indigenous Filipino community and in otitis-prone US children. The goal of this study is to describe differences in the middle ear microbiome between carriers and non-carriers of an A2ML1 duplication variant that increases risk for chronic otitis media among indigenous Filipinos with poor health care access. Methods: Ear swabs were obtained from 16 indigenous Filipino individuals with chronic otitis media, of whom 11 carry the A2ML1 duplication variant. Ear swabs were submitted for 16S rRNA gene sequencing. Results: Genotype-based differences in microbial richness, structure, and composition were identified, but were not statistically significant. Taxonomic analysis revealed that the relative abundance of the phyla Fusobacteria and Bacteroidetes, and genus Fusobacterium were nominally increased in carriers compared to non-carriers, but were non-significant after correction for multiple testing. We also detected rare bacteria including Oligella that was reported only once in the middle ear.
    [Show full text]
  • Dairybiota Final Draft.Pdf
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title Dairybiota: analysing the microbiota of the dairy chain using next generation sequencing Author(s) Doyle, Conor J. Publication date 2017 Original citation Doyle, C. 2017. Dairybiota: analysing the microbiota of the dairy chain using next generation sequencing. PhD Thesis, University College Cork. Type of publication Doctoral thesis Rights © 2017, Conor Doyle. http://creativecommons.org/licenses/by-nc-nd/3.0/ Embargo information No embargo required Item downloaded http://hdl.handle.net/10468/5524 from Downloaded on 2021-10-05T14:38:06Z Dairybiota: analysing the microbiota of the dairy chain using next generation sequencing A thesis presented to the National University of Ireland for the degree of Doctor of Philosophy By Conor Doyle B.Sc Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland 2017 Research supervisors: Dr. Paul Cotter and Professor Paul O’Toole i “And all this science, I don’t understand. It’s just my job five days a week” Rocket man “No number of sightings of white swans can prove the theory that all swans are white. The sighting of just one black one may disprove it.” Karl Popper ii Table of Contents Declaration .........................................................................................................................................x Abstract ..............................................................................................................................................xi
    [Show full text]
  • 1 Dolosigranulum Pigrum Cooperation and Competition in Human Nasal Microbiota
    bioRxiv preprint doi: https://doi.org/10.1101/678698; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Dolosigranulum pigrum cooperation and competition in human nasal microbiota 2 Silvio D. Brugger1, 2, 3, 8*, Sara M. Eslami2,8, Melinda M. Pettigrew4,8, Isabel F. Escapa2,3, Matthew 3 M. Henke5, Yong Kong6 and Katherine P. Lemon2,7,9* 4 1Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 5 University of Zurich, Zurich, Switzerland, CH-8006 6 2The Forsyth Institute (Microbiology), Cambridge, MA, USA, 02142 7 3Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 8 Boston, MA, USA, 02115 9 4Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, 10 CT, USA, 06510 11 5 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 12 Boston, MA, USA, 02115 13 6Department of Molecular Biophysics and Biochemistry and W.M. Keck Foundation 14 Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA, 06519 15 7Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, 16 MA, USA, 02115 17 8These authors contributed equally 18 9Lead Contact 19 *Correspondence: [email protected] and [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/678698; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • API & ID32 Identification Databases Booklet
    API® & ID 32 Identifi cation databases API® & ID 32 Identifi cation databases API® & ID 32 Identifi cation databases INTRODUCTION The API®, ID 32 and rapid ID 32 database update takes into account: • the evolution of international taxonomy • the description of the new bacterial species, • newly acquired bacteriology data (new profi les for bacterial strains which have an impact on performance data) As a result of the update, the APIWEB™ software version has changed from version 1.3.0 to version 1.3.1 The API and ID 32 databases have again been updated Twenty-two of the twenty-three identi cation databases have been revised, taking account the biochemical pro les of over 56,277 strains. Today, 697 species of bacteria and yeasts can be identi ed, including 14 new species and 50 that have been assigned new names. 1 WHAT’S CHANGED IN THE DATABASES? The changes made can be broken down as follows: A number of new species have been added to the database (including both entirely new species and others added on the basis of new results). Certain bacterial species have been deleted due to more stringent criteria. Certain rare species which are not sufficiently studied have been removed from the database. The names of certain species have been changed to follow modifications in the bacterial taxonomy as officially described in the International Journal of Systematic and Evolutionary Microbiology. Notes have been revised to reflect the changes in names and the species added and deleted. Percentages and performances have been altered to reflect variations observed in the profiles analyzed as the database was revised.
    [Show full text]
  • C G M 2 0 1 8 [0 4 on D Er Z O E K S R a Pp O
    Update of the bacterial the of bacterial Update intaxonomy the classification lists of COGEM CGM 2018 - 04 ONDERZOEKSRAPPORT report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly.
    [Show full text]
  • Dairy Microbiology: a Practical Approach
    Dairy Microbiology Dairy Microbiology Dairy Microbiology Dairy Microbiology The objective of this book is to provide a scientific ThebackgroundThe objective objectiveThe objectiveto of dairy ofthis this microbiologyofbook bookthis isbook isto to providebyis provide re-examiningto provide a ascientific scientific a scientificthe backgroundbasicbackground conceptsbackground to todairy ofdairy generalto microbiology dairymicrobiology microbiologyfood microbiologyby by re-examining re-examining by re-examining and thethe the the Dairy basicmicrobiologybasic concepts basicconcepts conceptsof of rawofgeneral general milkof general foodwhile food microbiology foodmicrobiologyoffering microbiology a andpractical and the andthe the DairyDairyDairy microbiologyapproachmicrobiologymicrobiology to of the ofraw followingraw ofmilk rawmilk while aspects:milkwhile offeringwhile offering well-known offering a apractical practicala andpractical approachnewfoundapproachapproach topathogens tothe the tofollowing followingthe that following areaspects: aspects:of majoraspects: well-known well-knownconcern well-known toand theand and newfounddairy industry.newfound pathogens pathogens that are that of majorare of concernmajor concern to the to the Microbiology newfound pathogens that are of major concern to the dairy industry. Microbiology dairydairy industry. industry. MicrobiologyMicrobiology Topics addressed include Cronobactersakazakii and its A Practical Topics addressed include Cronobactersakazakii and its TopicsimportanceTopics addressed addressed
    [Show full text]