Function and Substrates of the Alzheimer´S Disease Protease BACE1

Total Page:16

File Type:pdf, Size:1020Kb

Function and Substrates of the Alzheimer´S Disease Protease BACE1 Fakultät für Medizin der Technischen Universität München Function and substrates of the Alzheimer´s disease protease BACE1 Jasenka Rudan Njavro Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Thomas Misgeld Prüfende/-r der Dissertation: 1. Prof. Dr. Stefan Lichtenthaler 2. Prof. Dr. Wolfgang Wurst Die Dissertation wurde am 12.04.2019 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 08.10.2019 angenommen. TABLE OF CONTENT ABSTRACT ........................................................................................................................................................... 3 ZUSAMMENFASSUNG ...................................................................................................................................... 4 LIST OF ABBREVIATIONS ............................................................................................................................... 5 1. INTRODUCTION ........................................................................................................................................ 7 1.1. History of Alzheimer´s disease .............................................................................................................. 7 1.2. Epidemiology of Alzheimer´s disease ................................................................................................... 7 1.3. Pathology of the disease ........................................................................................................................ 7 1.4. Familial and sporadic Alzheimer´s disease............................................................................................ 8 1.5. The amyloid hypothesis of Alzheimer´s disease ................................................................................... 9 1.6. Amyloid precursor protein (APP) and its processing .......................................................................... 11 1.7. The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) .................................................... 12 1.8. BACE1 cellular localization and trafficking........................................................................................ 14 1.9. BACE1 deficient mice ......................................................................................................................... 14 1.10. BACE1 substrates and functions ......................................................................................................... 14 1.11. BACE1 as a drug target in Alzheimer´s disease .................................................................................. 16 1.12. The Seizure protein family .................................................................................................................. 19 1.13. Seizure protein family as the main BACE1 substrates ........................................................................ 20 2. AIM OF THE WORK ................................................................................................................................ 22 3. MATERIAL AND METHODS ................................................................................................................. 23 3.1. Material................................................................................................................................................ 23 3.1.1. General reagents and chemicals .................................................................................................. 23 3.1.2. Primers ........................................................................................................................................ 25 3.1.3. Buffers ........................................................................................................................................ 26 3.1.4. Kits .............................................................................................................................................. 27 3.1.5. Equipment ................................................................................................................................... 27 3.2. DNA methods ...................................................................................................................................... 28 3.2.1. Polymerase Chain Reaction (PCR) ............................................................................................. 28 3.2.2. Cloning of DNA constructs ........................................................................................................ 28 3.2.3. Gibson assembly ......................................................................................................................... 30 3.2.4. Transformation of competent E. coli bacteria ............................................................................. 30 3.2.5. Mini preps – preparation of DNA for construct screening .......................................................... 30 3.2.6. Midi preps – preparation of DNA for transfection ...................................................................... 30 3.2.7. Sequencing of cloned DNA constucts ........................................................................................ 31 3.2.8. DNA isolation ............................................................................................................................. 31 3.2.9. Genotyping ................................................................................................................................. 31 3.3. Cell culture methods ............................................................................................................................ 33 3.3.1. Cell culture .................................................................................................................................. 33 3.3.2. Cell lines ..................................................................................................................................... 33 3.3.3. Cryopreservation ......................................................................................................................... 33 3.3.4. Transient transfection.................................................................................................................. 33 3.3.5. Lentivirus production .................................................................................................................. 33 3.3.6. Stable cell line production .......................................................................................................... 34 3.3.7. Primary cortical neurons isolation and culture ............................................................................ 35 3.3.8. Compound treatment ................................................................................................................... 35 3.4. Protein analysis methods ..................................................................................................................... 35 3.4.1. Cell lysis ..................................................................................................................................... 35 3.4.2. Protein quantification .................................................................................................................. 36 3.4.3. Concanavalin A enrichment ........................................................................................................ 36 3.4.4. Co-immunoprecipitation ............................................................................................................. 36 1 3.4.5. Mouse brain fractionation: membrane and soluble fraction ........................................................ 37 3.4.6. Crude membrane preparation ...................................................................................................... 37 3.4.7. Surface Spanning Protein Enrichment with Click Sugars – SUSPECS ...................................... 37 3.4.8. Western blot analysis .................................................................................................................. 38 3.4.9. Quantification and statistical analysis ......................................................................................... 40 3.4.10. Brain slice preparation ................................................................................................................ 40 3.4.11. Immunostaining of brain sections ............................................................................................... 40 3.4.12. Sample preparation for mass spectrometric measurement .......................................................... 40 3.4.13. LC-MS/MS analysis ................................................................................................................... 41 3.4.14. LC-MS/MS data analysis and statistical evaluation .................................................................... 42 3.5. Animal work ........................................................................................................................................ 42 3.5.1. Mouse lines ................................................................................................................................. 42 3.5.2. Behavioural testing ....................................................................................................................
Recommended publications
  • Higd1a Is a Positive Regulator of Cytochrome C Oxidase
    Higd1a is a positive regulator of cytochrome c oxidase Takaharu Hayashia,b, Yoshihiro Asanoa,b,1, Yasunori Shintania, Hiroshi Aoyamac, Hidetaka Kiokab, Osamu Tsukamotoa, Masahide Hikitad, Kyoko Shinzawa-Itohd, Kazuaki Takafujie, Shuichiro Higoa,b, Hisakazu Katoa, Satoru Yamazakif, Ken Matsuokab, Atsushi Nakanog, Hiroshi Asanumah, Masanori Asakurag, Tetsuo Minaminob, Yu-ichi Gotoi, Takashi Ogurad, Masafumi Kitakazeg, Issei Komuroj, Yasushi Sakatab, Tomitake Tsukiharad,k, Shinya Yoshikawad, and Seiji Takashimaa,k,1 Departments of aMedical Biochemistry and bCardiovascular Medicine, eCenter for Research Education, and cGraduate School of Pharmaceutical Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; dDepartment of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigohri, Akoh, Hyogo 678-1297, Japan; kCore Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan; Departments of fCell Biology and gClinical Research and Development, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; hDepartment of Cardiovascular Science and Technology, Kyoto Prefectural University School of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; iDepartment of Child Neurology, National Center Hospital of Neurology and Psychiatry, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan; and jDepartment of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8656, Japan Edited by Gottfried Schatz, University of Basel, Reinach, Switzerland, and approved December 16, 2014 (received for review October 15, 2014) Cytochrome c oxidase (CcO) is the only enzyme that uses oxygen as we recently revealed (8). Because CcO is the only enzyme in to produce a proton gradient for ATP production during mitochon- the body that can use oxygen for energy transduction, it has been drial oxidative phosphorylation.
    [Show full text]
  • 5850.Full.Pdf
    Soluble NSF Attachment Protein Receptors (SNAREs) in RBL-2H3 Mast Cells: Functional Role of Syntaxin 4 in Exocytosis and Identification of a Vesicle-Associated This information is current as Membrane Protein 8-Containing Secretory of September 25, 2021. Compartment Fabienne Paumet, Joëlle Le Mao, Sophie Martin, Thierry Galli, Bernard David, Ulrich Blank and Michèle Roa Downloaded from J Immunol 2000; 164:5850-5857; ; doi: 10.4049/jimmunol.164.11.5850 http://www.jimmunol.org/content/164/11/5850 http://www.jimmunol.org/ References This article cites 60 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/164/11/5850.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Soluble NSF Attachment Protein Receptors (SNAREs) in RBL-2H3 Mast Cells: Functional Role of Syntaxin 4 in Exocytosis and Identification of a Vesicle-Associated Membrane Protein 8-Containing Secretory Compartment1 Fabienne Paumet,* Joe¨lle Le Mao,* Sophie Martin,* Thierry Galli,† Bernard David,* Ulrich Blank,* and Miche`le Roa2* Mast cells upon stimulation through high affinity IgE receptors massively release inflammatory mediators by the fusion of spe- cialized secretory granules (related to lysosomes) with the plasma membrane.
    [Show full text]
  • The Genetic Architecture of Hearing Impairment in Mice: Evidence for Frequency Specific 2 Genetic Determinants
    G3: Genes|Genomes|Genetics Early Online, published on September 4, 2015 as doi:10.1534/g3.115.021592 1 The genetic architecture of hearing impairment in mice: evidence for frequency specific 2 genetic determinants. 3 4 Amanda L. Crow1, Jeffrey Ohmen2, Juemei Wang3, Joel Lavinsky3, Jaana Hartiala1, Qingzhong 5 Li4, Xin Li5, Pezhman Salehide 3, Eleazar Eskin6, Calvin Pan7, Aldons J. Lusis7, Hooman 6 Allayee1, Rick A. Friedman3 7 8 1Department of Preventive Medicine and Institute for Genetic Medicine, Keck School of 9 Medicine, University of Southern California, Los Angeles, CA 90033 10 2House Ear Institute, Los Angeles, CA 90057 11 3Department of Otolaryngology and Zilkha Neurogenetic Institute, Keck School of Medicine, 12 University of Southern California, Los Angeles, CA, 90033 13 4Department of Otolaryngology - Head and Neck Surgery, Eye & ENT Hospital of Fudan 14 University, Shanghai 200031, China 15 5Clinical Laboratory Department, First Affiliated Hospital of Nanchang University, Nanchang, 16 Jiangxi Province 330006, China 17 6Department of Computer Science and Inter-Departmental Program in Bioinformatics, 18 University of California, Los Angeles, Los Angeles, CA 90095 19 7Departments of Human Genetics, Medicine, and Microbiology, Immunology, and Molecular 20 Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 21 © The Author(s) 2013. Published by the Genetics Society of America. 1 Short Title 2 Genetics of Hearing in Mice 3 4 Keywords 5 Genome-wide association study (GWAS), Hybrid Mouse Diversity Panel (HMDP), genetics, 6 genomics, ABR, hearing, cochlear function 7 8 9 Corresponding Author: 10 Rick A. Friedman 11 USC Keck School of Medicine 12 Zilkha Neurogenetic Institute 13 1501 San Pablo Street (ZNI 231) 14 Los Angeles, CA 90033 15 Tel: (323) 442-4843 16 Fax: (323) 442-2059 17 Email: [email protected] 18 19 1 Abstract 2 Genome-wide association studies (GWAS) have been successfully applied in humans for 3 the study of many complex phenotypes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Autophagy Suppresses Ras-Driven Epithelial Tumourigenesis by Limiting the Accumulation of Reactive Oxygen Species
    OPEN Oncogene (2017) 36, 5576–5592 www.nature.com/onc ORIGINAL ARTICLE Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue. J Manent1,2,3,4,5,12, S Banerjee2,3,4,5, R de Matos Simoes6, T Zoranovic7,13, C Mitsiades6, JM Penninger7, KJ Simpson4,5, PO Humbert3,5,8,9,10 and HE Richardson1,2,5,8,11 Activation of Ras signalling occurs in ~ 30% of human cancers; however, activated Ras alone is not sufficient for tumourigenesis. In a screen for tumour suppressors that cooperate with oncogenic Ras (RasV12)inDrosophila, we identified genes involved in the autophagy pathway. Bioinformatic analysis of human tumours revealed that several core autophagy genes, including GABARAP, correlate with oncogenic KRAS mutations and poor prognosis in human pancreatic cancer, supporting a potential tumour- suppressive effect of the pathway in Ras-driven human cancers. In Drosophila, we demonstrate that blocking autophagy at any step of the pathway enhances RasV12-driven epithelial tissue overgrowth via the accumulation of reactive oxygen species and activation of the Jun kinase stress response pathway. Blocking autophagy in RasV12 clones also results in non-cell-autonomous effects with autophagy, cell proliferation and caspase activation induced in adjacent wild-type cells. Our study has implications for understanding the interplay between perturbations in Ras signalling and autophagy in tumourigenesis,
    [Show full text]
  • Selective Expression of a SNARE-Cleaving Protease in Peripheral Sensory Neurons Attenuates Pain-Related Gene Transcription and Neuropeptide Release
    International Journal of Molecular Sciences Article Selective Expression of a SNARE-Cleaving Protease in Peripheral Sensory Neurons Attenuates Pain-Related Gene Transcription and Neuropeptide Release Wanzhi Wang 1, Miaomiao Kong 1, Yu Dou 1, Shanghai Xue 1, Yang Liu 1, Yinghao Zhang 1, Weiwei Chen 1, Yanqing Li 1, Xiaolong Dai 1, Jianghui Meng 1,2,* and Jiafu Wang 1,2,* 1 School of Life Sciences, Henan University, Kaifeng 475001, China; [email protected] (W.W.); [email protected] (M.K.); [email protected] (Y.D.); [email protected] (S.X.); [email protected] (Y.L.); [email protected] (Y.Z.); [email protected] (W.C.); [email protected] (Y.L.); [email protected] (X.D.) 2 School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland * Correspondence: [email protected] (J.M.); [email protected] (J.W.) Abstract: Chronic pain is a leading health and socioeconomic problem and an unmet need exists for long-lasting analgesics. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are required for neuropeptide release and noxious signal transducer surface trafficking, thus, selective expression of the SNARE-cleaving light-chain protease of botulinum neurotoxin A (LCA) in peripheral sensory neurons could alleviate chronic pain. However, a safety concern to Citation: Wang, W.; Kong, M.; this approach is the lack of a sensory neuronal promoter to prevent the expression of LCA in the Dou, Y.; Xue, S.; Liu, Y.; Zhang, Y.; central nervous system. Towards this, we exploit the unique characteristics of Pirt (phosphoinositide- Chen, W.; Li, Y.; Dai, X.; Meng, J.; et al.
    [Show full text]
  • Widespread Sequence Variations in VAMP1 Across Vertebrates Suggest a Potential Selective Pressure from Botulinum Neurotoxins
    Widespread Sequence Variations in VAMP1 across Vertebrates Suggest a Potential Selective Pressure from Botulinum Neurotoxins The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Peng, L., M. Adler, A. Demogines, A. Borrell, H. Liu, L. Tao, W. H. Tepp, et al. 2014. “Widespread Sequence Variations in VAMP1 across Vertebrates Suggest a Potential Selective Pressure from Botulinum Neurotoxins.” PLoS Pathogens 10 (7): e1004177. doi:10.1371/journal.ppat.1004177. http://dx.doi.org/10.1371/ journal.ppat.1004177. Published Version doi:10.1371/journal.ppat.1004177 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12717507 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Widespread Sequence Variations in VAMP1 across Vertebrates Suggest a Potential Selective Pressure from Botulinum Neurotoxins Lisheng Peng1, Michael Adler2*, Ann Demogines3, Andrew Borrell2, Huisheng Liu4, Liang Tao1, William H. Tepp5, Su-Chun Zhang4, Eric A. Johnson5, Sara L. Sawyer3*, Min Dong1* 1 Department of Microbiology and Immunobiology, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America, 2 Neurobehavioral Toxicology Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen
    [Show full text]
  • May Help Explain Expression of Multiple Genes in Alzheimer's
    Journal of Systems and Integrative Neuroscience Research Article ISSN: 2059-9781 Micro RNA’s (miRNA’s) may help explain expression of multiple genes in Alzheimer’s Frontal Cortex James P Bennett* and Paula M Keeney Neurodegeneration Therapeutics, Inc., 3050A Berkmar Drive, Charlottesville, VA 22901, USA Abstract MicroRNA’s (miRNA’s) are non-coding RNA’s that can regulate gene expression. miRNA’s are small (~22 nt) and can bind by complementation to mRNA’s resulting in direct degradation and/or interference with translation. We used paired-end RNAseq and small RNAseq to examine expression of mRNA’s and miRNA’s, respectively, in total RNA’s isolated from frontal cortex of Alzheimer’s disease (AD) and control (CTL) subjects. mRNA’s were aligned to the hg38 human genome using Tophat2/Bowtie2 and relative expression levels determined by Cufflinks as FPKM (fragments per kilobase of exon per million mapped reads). miRNA’s were aligned to the hg19 human genome and quantitated as number of mature known miRNA reads with miRDeep*. Using a false-discovery rate (FDR) of 10% (FDR ≤ 0.10) applied to 11,794 genes with FPKM > 2.0, we identified 55 genes upregulated in AD and 191 genes downregulated in AD. The top 145 miRNA’s with the highest mean expression were mostly under-expressed in AD (132/145 miRNAs had AD/CTL < 1.0)). AD samples had increased coefficients of variation for miRNA and mRNA expression, implying greater heterogeneity. miRTAR analysis showed that 32 (58%) of the mRNA genes upregulated in AD could be controlled by one or more of 60 miRNA’s under-expressed >1.5-fold in AD (AD/CTL < 0.67).
    [Show full text]
  • 1 1 Structural Basis of Mitochondrial Dysfunction in Response to 2
    1 2 Structural Basis of Mitochondrial Dysfunction in Response to 3 Cytochrome c Phosphorylation at position 48 4 5 Blas Moreno-Beltrán1,*, Alejandra Guerra-Castellano1,*, Antonio Díaz-Quintana1, 6 Rebecca Del Conte2, Sofía M. García-Mauriño1, Sofía Díaz-Moreno3, Katiuska 7 González-Arzola1, Carlos Santos-Ocaña4, Adrián Velázquez-Campoy5, Miguel A. De la 8 Rosa1, Paola Turano2 & Irene Díaz-Moreno1,# 9 10 1Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla – CSIC, Avda. 11 Américo Vespucio 49, 41092 Seville (Spain). 12 2Magnetic Resonance Center (CERM) – Department of Chemistry, University of 13 Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence (Italy). 14 3Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, 15 Oxfordshire OX11 0DE (United Kingdom). 16 4Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide – CSIC, and 17 CIBERER Instituto de Salud Carlos III, Carretera de Utrera km. 1, 41013 Seville (Spain). 18 5Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI- 19 IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza (Spain). 20 21 * These authors contribute equally to this work. 22 23 # Correspondence should be addressed to I. D.-M. ([email protected]) 24 Telephone number: +34 954489513; Fax number: +34 954460065 25 1 26 ABSTRACT 27 Regulation of mitochondrial activity allows cells to adapt to changing conditions and to 28 control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies, 29 such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at 30 tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis 31 remain unknown.
    [Show full text]
  • HIGD2A Is Required for Assembly of the COX3 Module of Human Mitochondrial Complex IV
    bioRxiv preprint doi: https://doi.org/10.1101/787721; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV Daniella H. Hock1, Boris Reljic1, Ching-Seng Ang2, Hayley S. Mountford3,4,†, Alison G. Compton3,4, Michael T. Ryan5, David R. Thorburn3,4,6 and David A. Stroud*,1 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 3052 Victoria, Australia 2Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia 3Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia 4Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia 5Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia 6Mitochondrial Laboratory, Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia †Present address: Department of Biological and Medical Sciences, Faculty of Health Sciences, Oxford Brookes University, Oxford OX3 0BP, UK *Correspondence to David A. Stroud Department of Biochemistry and Molecular Biology Bio21 Molecular Science & Biotechnology Institute and The University of Melbourne 30 Flemington Road, Parkville VIC 3052 Australia Email: [email protected] Telephone: +61 3 83447316 Running title: HIGD2A is critical in assembly of human complex IV 1 bioRxiv preprint doi: https://doi.org/10.1101/787721; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptJAMA Psychiatry Author Manuscript. Author Author Manuscript manuscript; available in PMC 2015 August 03. Published in final edited form as: JAMA Psychiatry. 2014 June ; 71(6): 657–664. doi:10.1001/jamapsychiatry.2014.176. Identification of Pathways for Bipolar Disorder A Meta-analysis John I. Nurnberger Jr, MD, PhD, Daniel L. Koller, PhD, Jeesun Jung, PhD, Howard J. Edenberg, PhD, Tatiana Foroud, PhD, Ilaria Guella, PhD, Marquis P. Vawter, PhD, and John R. Kelsoe, MD for the Psychiatric Genomics Consortium Bipolar Group Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Nurnberger, Koller, Edenberg, Foroud); Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis (Nurnberger, Foroud); Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism Intramural Research Program, Bethesda, Maryland (Jung); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (Edenberg); Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine (Guella, Vawter); Department of Psychiatry, School of Medicine, Corresponding Author: John I. Nurnberger Jr, MD, PhD, Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Dr, Indianapolis, IN 46202 ([email protected]). Author Contributions: Drs Koller and Vawter had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Nurnberger, Koller, Edenberg, Vawter. Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: Nurnberger, Koller, Jung, Vawter.
    [Show full text]