Nnstreamer: Efficient and Agile Development of On-Device AI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Selenium Python Bindings Release 2Selenium Python Bindings Release 2 Baiju Muthukadan Sep 03, 2021 Contents 1 Installation 3 1.1 Introduction...............................................3 1.2 Installing Python bindings for Selenium.................................3 1.3 Instructions for Windows users.....................................3 1.4 Installing from Git sources........................................4 1.5 Drivers..................................................4 1.6 Downloading Selenium server......................................4 2 Getting Started 7 2.1 Simple Usage...............................................7 2.2 Example Explained............................................7 2.3 Using Selenium to write tests......................................8 2.4 Walkthrough of the example.......................................9 2.5 Using Selenium with remote WebDriver................................. 10 3 Navigating 13 3.1 Interacting with the page......................................... 13 3.2 Filling in forms.............................................. 14 3.3 Drag and drop.............................................. 15 3.4 Moving between windows and frames.................................. 15 3.5 Popup dialogs.............................................. 16 3.6 Navigation: history and location..................................... 16 3.7 Cookies.................................................. 16 4 Locating Elements 17 4.1 Locating by Id.............................................. 18 4.2 Locating by Name............................................ 18 4.3
- 
												  N $NUM GPUS Python Train.PyNeural Network concurrency Tal Ben-Nun and Torsten Hoefler, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, 2018, Data Parallelism vs Model Parallelism Hardware and Libraries ● It is not only a matter of computational power: ○ CPU (MKL-DNN) ○ GPU (cuDNN) ○ FGPA ○ TPU ● Input/Output matter ○ SSD ○ Parallel file system (if you run parallel algorithm) ● Communication and interconnection too, if you are running in distributed mode ○ MPI ○ gRPC +verbs (RDMA) ○ NCCL Install TensorFlow from Source [~]$ wget https://github.com/.../bazel-0.15.2-installer-linux-x86_64.sh [~]$ ./bazel-0.15.2-installer-linux-x86_64.sh --prefix=... [~]$ wget https://github.com/tensorflow/tensorflow/archive/v1.10.0.tar.gz ... [~]$ python3 -m venv $TF_INSTALL_DIR [~]$ source $TF_INSTALL_DIR/bin/activate [~]$ pip3 install numpy wheel [~]$ ./configure ... [~]$ bazel build --config=mkl/cuda \ //tensorflow/tools/pip_package:build_pip_package [~]$ bazel-bin/tensorflow/tools/pip_package/build_pip_package $WHEELREPO [~]$ pip3 install $WHEELREPO/$WHL --ignore-installed [~]$ pip3 install keras horovod ... Input pipeline If using accelerators like GPU, pipeline tha data load exploiting the CPU with the computation on GPU The tf.data API helps to build flexible and efficient input pipelines Optimizing for CPU ● Built from source with all of the instructions supported by the target CPU and the MKL-DNN option for Intel® CPU. ● Adjust thread pools ○ intra_op_parallelism_threads: Nodes that can use multiple threads to parallelize their execution
- 
												  Blau Mavi Blue4 / 2014 Quartierzeitung für das Untere Kleinbasel Mahalle Gazetesi Aşağ Küçükbasel için www.mozaikzeitung.ch Novine za cˇetvrt donji Mali Bazel Blau Mavi Blue Bilder, Stimmungen, Töned i t Resimler, Farkli sessler, d i Tonlart visions, moods, sounds e ˇ ivotu. Bazelu pricˇa21 o svom Z Foto: Jum Soon Kim Spezial:Jedna Familija u malom HOLZKOMPETENZ BACK INT NACH MASS BAL NCNNCECE Ihre Wunschvorstellung. Unser ALEXANDER-TECHNIK Handwerk. Resultat: Möbel Christina Stahlberger und Holzkonstruktionen, die dipl. Lehrerin für Alexander-Technik SVLAT M_000278 Matthäusstrasse 7, 4057 Basel Sie ein Leben lang begleiten. +41 (0)77 411 99 89 Unsere Spezialgebiete sind [email protected] I www.back-into-balance.com Haus- und Zimmertüren, Schränke, Küchen und Bade- Ed. Borer AG · Schreinerei · Wiesenstrasse 10 · 4057 Basel zimmermöbel sowie Repara- T 061 631 11 15 · F 061 631 11 26 · [email protected] turen und Restaurationen. M_000236 M_000196 Stadtteilsekretariat Kleinbasel M_000028 Darf ich hier Für Fragen, Anliegen und Probleme betreffend: • Wohnlichkeit und Zusammenleben grillieren? • Mitwirkung der Quartierbevölkerung Öffnungszeiten: Mo, Di und Do, 15 – 18.30 h Klybeckstrasse 61, 4057 Basel Tel: 061 681 84 44, Email: [email protected] www.stadtteilsekretariatebasel.ch M_000024 Wir danken unserer Kundschaft Offenburgerstrasse 41, CH-4057 Basel 061 5 54 23 33 Täglich bis 22.00 Uhr geöffnet! Täglich frische Produkte und Bio-Produkte! 365 Tage im Jahr, auch zwischen Weihnacht und Neujahr offen! Lebensmittel- und Getränkemarkt Wir bieten stets beste Qualität und freuen uns auf Ihren Besuch. Gratis-Lieferdienst für ältere Menschen M_000280 Öffnungszeiten: Montag 11.00–22.00 Uhr Dienstag–Sonntag und Feiertage: 8.00–22.00 Uhr Feldbergstrasse 32, 4057 Basel, Telefon 061 693 00 55 M_000006 M_000049 LACHENMEIER.CH SCHREINEREI konstruiert.
- 
												  Installing and Running TensorflowInstalling and Running Tensorflow DOWNLOAD AND INSTALLATION INSTRUCTIONS TensorFlow is now distributed under an Apache v2 open source license on GitHub. STEP 1. INSTALL NVIDIA CUDA To use TensorFlow with NVIDIA GPUs, the first step is to install the CUDA Toolkit. STEP 2. INSTALL NVIDIA CUDNN Once the CUDA Toolkit is installed, download cuDNN v5.1 Library for Linux (note that you will need to register for the Accelerated Computing Developer Program). Once downloaded, uncompress the files and copy them into the CUDA Toolkit directory (assumed here to be in /usr/local/cuda/): $ sudo tar -xvf cudnn-8.0-linux-x64-v5.1-rc.tgz -C /usr/local STEP 3. INSTALL AND UPGRADE PIP TensorFlow itself can be installed using the pip package manager. First, make sure that your system has pip installed and updated: $ sudo apt-get install python-pip python-dev $ pip install --upgrade pip STEP 4. INSTALL BAZEL To build TensorFlow from source, the Bazel build system must first be installed as follows. Full details are available here. $ sudo apt-get install software-properties-common swig $ sudo add-apt-repository ppa:webupd8team/java $ sudo apt-get update $ sudo apt-get install oracle-java8-installer $ echo "deb http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list $ curl https://storage.googleapis.com/bazel-apt/doc/apt-key.pub.gpg | sudo apt-key add - $ sudo apt-get update $ sudo apt-get install bazel STEP 5. INSTALL TENSORFLOW To obtain the best performance with TensorFlow we recommend building it from source. First, clone the TensorFlow source code repository: $ git clone https://github.com/tensorflow/tensorflow $ cd tensorflow $ git reset --hard 70de76e Then run the configure script as follows: $ ./configure Please specify the location of python.
- 
												![Arxiv:1901.04985V1 [Cs.DC] 12 Jan 2019 Computing Power of Embedded Or Edge Devices, Neural Net- Tion, Saving Computing Resources](https://docslib.b-cdn.net/cover/1322/arxiv-1901-04985v1-cs-dc-12-jan-2019-computing-power-of-embedded-or-edge-devices-neural-net-tion-saving-computing-resources-1051322.webp)  Arxiv:1901.04985V1 [Cs.DC] 12 Jan 2019 Computing Power of Embedded Or Edge Devices, Neural Net- Tion, Saving Computing ResourcesNNStreamer: Stream Processing Paradigm for Neural Networks, Toward Efficient Development and Execution of On-Device AI Applications MyungJoo Ham1 Ji Joong Moon1 Geunsik Lim1 Wook Song1 Jaeyun Jung1 Hyoungjoo Ahn1 Sangjung Woo1 Youngchul Cho1 Jinhyuck Park2 Sewon Oh1 Hong-Seok Kim1,3 1Samsung Research, Samsung Electronics 2Biotech Academy, Samsung BioLogics 3Left the affiliation 1,2{myungjoo.ham, jijoong.moon, geunsik.lim, wook16.song, jy1210.jung, hello.ahn, sangjung.woo, rams.cho, jinhyuck83.park, sewon.oh, hongse.kim}@samsung.com Abstract 3. Reduce operating cost by off-loading computation to de- We propose nnstreamer, a software system that handles vices from servers. This cost is often neglected; it is, how- neural networks as filters of stream pipelines, applying the ever, significant if billions of devices are to be deployed. stream processing paradigm to neural network applications. We do not discuss the potential advantage, distributing work- A new trend with the wide-spread of deep neural network loads across edge devices, because it is not in the scope of applications is on-device AI; i.e., processing neural networks this paper, but of future work. directly on mobile devices or edge/IoT devices instead of On-device AI achieves such advantages by processing di- cloud servers. Emerging privacy issues, data transmission rectly in the nodes where data exist so that data transmis- costs, and operational costs signifies the need for on-device sion is reduced and sensitive data are kept inside. However, AI especially when a huge number of devices with real-time on-device AI induces significant challenges. Normally, edge data processing are deployed.
- 
												  Does That Look Right?Gregory Helmstetter Digital Preservation Final Project December 15, 2017 Does That Look Right? Playback Software in Digital Preservation With the ubiquity of digital files persisting throughout every aspect of modern life, from cell phone videos to time-based art to video preservation and archiving, one major question is often asked when playing back a digital file: Does that look right? This is an important question for several reasons. First, this is often the first question conservators, preservationists, or archivists ask when playing back video on any platform, whether it be in digital playback software or on analog machines. Second, as of the writing of this paper, I am frankly still questioning whether or not particular digital videos look the way they were intended to look and still questioning how software plays a role in the presentation of videos. And third, the results of this paper and the informal case study I conducted specifically to test playback software may generate more questions that conservators, et al, should ask when playing back digital files. This paper, therefore, will survey a number of playback software tools that archives rely on in quality control processes (particularly as they pertain to large-scale digital preservation workflows); it will consider the critical role that software plays when displaying digital content for preservation and quality control processes and how software is integrated into these workflows; and it will outline and address issues one might encounter when playing digital video files on different software. The Case Study First it will be beneficial to discuss from where this idea originated.
- 
												  Your Build in a Datacenter Remote Caching and Execution in BazelYour Build in a Datacenter Remote Caching and Execution in Bazel https://bazel.build Bazel bazel.build Bazel in a Nutshell ...think CMake not Jenkins - Multi Language → Java, C/C++, Python, Go, Android, iOS, Docker, etc. - Multi Platform → Windows, macOS, Linux, FreeBSD - Extension Language → Add build rules for any language - Tracks all dependencies → Correctness → Performance - Bazel only rebuilds what is necessary - Perfect incrementality → no more clean builds - Dependency graph → extreme parallelism (and remote execution) Bazel bazel.build Remote Caching …what is it? - Any HTTP/1.1 server with support for PUT and GET is a remote cache - nginx, Apache httpd, etc. - Bazel can store and retrieve build outputs to/from a remote cache - Allows build outputs to be shared by developers and continuous integration (CI) - 50 - 90% build time reduction is the common case Bazel bazel.build Remote Caching …how does it work? - Dependency Graph → Action Graph - What's an action? - Command e.g. /usr/bin/g++ hello_world.cc -o hello_world - Input Files e.g. hello_world.cc - Output Filenames e.g. hello_world - Platform e.g. debian 9.3.0, x86_64, g++ 8.0, etc. - ... - SHA256(action) → Action Key - Bazel can store and retrieve build outputs via their action key Bazel bazel.build Remote Caching ...how to use it? Continuous Integration Read and Write Remote Cache e.g. nginx Read Read Read developer developer developer Bazel bazel.build Remote Execution …because fast - Remember actions? - Bazel can send an action for execution to a remote machine i.e. a datacenter
- 
												  Go Web App ExampleGo Web App Example Titaniferous and nonacademic Marcio smoodges his thetas attuned directs decreasingly. Fustiest Lennie seethe, his Pan-Americanism ballasts flitted gramophonically. Flavourless Elwyn dematerializing her reprobates so forbiddingly that Fonsie witness very sartorially. Ide support for web applications possible through gvm is go app and psych and unlock new subcommand go library in one configuration with embedded interface, take in a similar Basic Role-Based HTTP Authorization in fare with Casbin. Tools and web framework for everything there is big goals. Fully managed environment is go app, i is a serverless: verifying user when i personally use the example, decentralized file called marshalling which are both of. Simple Web Application with light Medium. Go apps into go library for example of examples. Go-bootstrap Generates a gait and allowance Go web project. In go apps have a value of. As of December 1st 2019 Buffalo with all related packages require Go Modules and. Authentication in Golang In building web and mobile. Go web examples or go is made against threats to run the example applying the data from the set the search. Why should be restarted for go app. Worth the go because you know that endpoint is welcome page then we created in addition to get started right of. To go apps and examples with fmt library to ensure a very different cloud network algorithms and go such as simple. This example will set users to map support the apps should be capable of examples covers both directories from the performance and application a form and array using firestore implementation.
- 
												  Practical Mutation Testing at Scale a View from Google1 Practical Mutation Testing at Scale A view from Google Goran Petrovic,´ Marko Ivankovic,´ Gordon Fraser, René Just Abstract—Mutation analysis assesses a test suite’s adequacy by measuring its ability to detect small artificial faults, systematically seeded into the tested program. Mutation analysis is considered one of the strongest test-adequacy criteria. Mutation testing builds on top of mutation analysis and is a testing technique that uses mutants as test goals to create or improve a test suite. Mutation testing has long been considered intractable because the sheer number of mutants that can be created represents an insurmountable problem—both in terms of human and computational effort. This has hindered the adoption of mutation testing as an industry standard. For example, Google has a codebase of two billion lines of code and more than 500,000,000 tests are executed on a daily basis. The traditional approach to mutation testing does not scale to such an environment; even existing solutions to speed up mutation analysis are insufficient to make it computationally feasible at such a scale. To address these challenges, this paper presents a scalable approach to mutation testing based on the following main ideas: (1) Mutation testing is done incrementally, mutating only changed code during code review, rather than the entire code base; (2) Mutants are filtered, removing mutants that are likely to be irrelevant to developers, and limiting the number of mutants per line and per code review process; (3) Mutants are selected based on the historical performance of mutation operators, further eliminating irrelevant mutants and improving mutant quality.
- 
												  2.5 GstreamerVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA SROVNÁNÍ MULTIMEDIÁLNÍCH FRAMEWORKŮ COMPARISON OF MULTIMEDIA FRAMEWORKS BAKALÁŘSKÁ PRÁCE BACHELOR‘S THESIS AUTOR PRÁCE ZDENKO BRANDEJS AUTHOR VEDOUCÍ PRÁCE ING. DAVID BAŘINA SUPERVISOR BRNO 2016 Abstrakt Cílem této práce je vytvořit srovnání nejznámějších multimediálních frameworků podle podporovaných platforem, formátů a využití. Seznámit se s multimediálními frameworky a jejich knihovnami pro práci s multimédii. Konkrétně se jedná o Video for Windows, DirectShow, Media Foundation, FFmpeg, GStreamer, xine a QuickTime. Detailně popsat jak jednotlivé technologie fungují včetně jejich architektury. Vytvoření webového tutoriálu, kde se uplatní teoretické znalosti při tvorbě přehrávačů. Abstract The aim of this work is to create a comparison of the most famous multimedia frameworks according to supported platforms, formats and usage. To familiarize with a multimedia frameworks and their libraries for work with multimedia. Concretely with Video for Windows, DirectShow, Media Foundation, FFmpeg, GStreamer, xine and QuickTime. Describe in detail, how separate technologies work including their architectures. Building web tutorial, where will apply theoretical knowledge during creating players. Klíčová slova Multimédia, framework, Video for Windows, DirectShow, GStreamer, FFmpeg, xine, QuickTime, Media Foundation, srovnání, tutoriál, přehrávač, graf filtrů, řetězení. Keywords Multimedia, framework, Video for Windows, DirectShow, GStreamer, FFmpeg, xine, QuickTime, Media Foundation, comparison, tutorial, player, filter graph, pipeline. Citace BRANDEJS, Zdenko. Srovnání multimediálních frameworků. Brno, 2016. 20 s. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí práce David Bařina. Název bakalářské práce v jazyce práce Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením Ing.
- 
												  Top Functional Programming Languages Based on Sentiment Analysis 2021 11POWERED BY: TOP FUNCTIONAL PROGRAMMING LANGUAGES BASED ON SENTIMENT ANALYSIS 2021 Functional Programming helps companies build software that is scalable, and less prone to bugs, which means that software is more reliable and future-proof. It gives developers the opportunity to write code that is clean, elegant, and powerful. Functional Programming is used in demanding industries like eCommerce or streaming services in companies such as Zalando, Netflix, or Airbnb. Developers that work with Functional Programming languages are among the highest paid in the business. I personally fell in love with Functional Programming in Scala, and that’s why Scalac was born. I wanted to encourage both companies, and developers to expect more from their applications, and Scala was the perfect answer, especially for Big Data, Blockchain, and FinTech solutions. I’m glad that my marketing and tech team picked this topic, to prepare the report that is focused on sentiment - because that is what really drives people. All of us want to build effective applications that will help businesses succeed - but still... We want to have some fun along the way, and I believe that the Functional Programming paradigm gives developers exactly that - fun, and a chance to clearly express themselves solving complex challenges in an elegant code. LUKASZ KUCZERA, CEO AT SCALAC 01 Table of contents Introduction 03 What Is Functional Programming? 04 Big Data and the WHY behind the idea of functional programming. 04 Functional Programming Languages Ranking 05 Methodology 06 Brand24
- 
												  Go for Sres Using PythonGo for SREs Using Python Andrew Hamilton What makes Go fun to work with? Go is expressive, concise, clean, and efficient It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language Relatively new but stable Easy to build CLI tool or API quickly Fast garbage collection https://golang.org/doc/ Hello world // Go #!/usr/bin/env python3 package main # python3 import “fmt” def main(): print(“Hello world”) func main() { fmt.Println(“Hello world”) if __name__ == “__main__”: } main() $ go build hello_world.go $ python3 hello_world.py $ ./hello_world Hello world Hello world $ $ Good default tool chain Formatting (gofmt and go import) [pylint] Testing (go test) [pytest, nose] Race Detection (go build -race) Source Code Checking (go vet and go oracle) Help with refactoring (go refactor) BUT... There’s currently no official debugger Debuggers can be very helpful There are some unofficial debuggers https://github.com/mailgun/godebug Standard library Does most of what you’ll need already Built for concurrency and parallel processing where useful Quick to add and update features (HTTP2 support) but doesn’t break your code Expanding third-party libraries Third-party libraries are just other repositories Easy to build and propagate by pushing to Github or Bitbucket, etc List of dependencies not kept in a separate file but pulled from imports Versioning dependencies is done by vendoring within your project repository No PyPI equivalent Importing import ( “fmt” “net/http” “github.com/ahamilton55/some_lib/helpers”