(Pro)Insulin Correlates with Prevention of Apoptosis

Total Page:16

File Type:pdf, Size:1020Kb

(Pro)Insulin Correlates with Prevention of Apoptosis Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9950–9955, August 1998 Developmental Biology Modulation of the chaperone heat shock cognate 70 by embryonic (pro)insulin correlates with prevention of apoptosis ENRIQUE J. DE LA ROSA*, ELENA VEGA-NU´NEZ˜ *, AIXA V. MORALES*†,JOSE´ SERNA,EVA RUBIO, AND FLORA DE PABLO‡ Department of Cell and Developmental Biology, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cientı´ficas, Vela´zquez144, E-28006 Madrid, Spain Communicated by William H. Daughaday, University of California, Irvine, CA, June 25, 1998 (received for review February 18, 1998) ABSTRACT Insights have emerged concerning insulin (13, 14), the physiological survival effect of (pro)insulin has function during development, from the finding that apoptosis received less attention. during chicken embryo neurulation is prevented by prepan- Molecular chaperones assist folding, translocation, and as- creatic (pro)insulin. While characterizing the molecules in- sembly of newly synthesized proteins (reviewed in refs. 15 and volved in this survival effect of insulin, we found insulin- 16) and also protect the cell from heat shock and other dependent regulation of the molecular chaperone heat shock physiological or environmental stresses, increasing cell sur- cognate 70 kDa (Hsc70), whose cloning in chicken is reported vival after stress (17, 18). The specific mechanisms involved in here. This chaperone, generally considered constitutively ex- the cell survival effect of some chaperones have nonetheless pressed, showed regulation of its mRNA and protein levels in been approached only recently (19–21). How extracellular unstressed embryos during early development. More impor- survival factors might modulate these chaperones and whether tant, Hsc70 levels were found to depend on endogenous these molecules mediate the factors’ antiapoptotic function (pro)insulin, as shown by using antisense oligodeoxynucleoti- have not been elucidated. des against (pro)insulin mRNA in cultured neurulating em- We have reported recently that a putative chicken heat bryos. Further, in the cultured embryos, apoptosis affected shock cognate (Hsc)70, a noninducible member of the heat mainly cells with the lowest level of Hsc70, as shown by shock 70-kDa protein family, is the antigen recognized by the simultaneous Hsc70 immunostaining and terminal de- monoclonal antibody PM1 (22, 23). The PM1-positive cells in oxynucleotidyltransferase-mediated UTP nick end labeling. the chicken embryonic retina in culture depend on exogenous These results argue in favor of Hsc70 involvement, modulated insulin and IGF-1 (24). Because insulin prevents apoptosis and by embryonic (pro)insulin, in the prevention of apoptosis maintains the PM1yHsc70-expressing cells, we have begun to during early development and suggest a role for a molecular explore a possible relationship between these phenomena that chaperone in normal embryogenesis. could prove to be part of the apoptosis prevention mechanism by embryonic (pro)insulin. We report here the isolation and Programmed cell death, a process recognized increasingly in characterization of the chicken hsc70 cDNA and its mRNA development (1), and the factors modulating survivalydeath of and protein expression from gastrulation to early organogen- embryonic cells are characterized poorly in the critical periods of esis. As hypothesized, endogenous (pro)insulin maintained gastrulation and neurulation. Apoptosis, as well as other devel- embryonic Hsc70 protein levels, and the apoptosis induced by opmental processes, is likely to be regulated by a complex, growth factor deprivation, which is attenuated by insulin, was changing combination of growth factors (2, 3). Some of these prevalent in cells with low Hsc70 levels. factors are well known for their actions in adult organisms, as is the case with the pancreatic hormone insulin. Preproinsulin EXPERIMENTAL PROCEDURES mRNA is also expressed in the early prepancreatic embryo, even Chicken Embryos and Treatments in Culture. before insulin-like growth factor I (IGF-I), at least in chicken (4, Fertilized 5) and Xenopus (6). The widespread distribution of preproinsulin White Leghorn eggs (Granja Rodrı´guez-Serrano, Salamanca, mRNA during gastrulation and neurulation, as well as the similar Spain) were incubated at 38.4°C, 60–90% relative humidity. The embryos were staged according to Hamburger and Ham- broad distribution of the insulin receptor mRNA (5) and protein ilton (25). Embryos at 1.5 days of development (E1.5) were (7), potentially implicates (pro)insulin in the regulation of cellular cultured in chemically defined medium as described (4, 26). events in early development. Indeed, we demonstrated previously Where indicated, embryos were treated with purified chicken that insulin is an autocrineyparacrine survival signal (5). Inter- insulin (Litron Lab, Rochester, NY), recombinant human ference with embryonic (pro)insulin and insulin receptor expres- insulin (a kind gift from Eli Lilly), or 12.5 nmol of the indicated sion using antisense oligodeoxynucleotides (ODNs) thus in- ODN as described (see refs. 5 and 26 for extensive details and creased apoptosis, both in culture and in ovo (5), supporting the controls). All ODNs were synthesized as phosphorothioate involvement of insulin signaling in the regulation of programmed derivatives by Oligos Etc. (Wilsonville, OR). Sequences were cell death. In addition, exogenous insulin suppresses apoptosis of ASA, 59-GAGAGCCATGATGAG-39; ASB, 59-GCTCGA- chicken embryo lens cells (8) and maintains the survival of CATCCCGTC-39; RAN, 59-TAACGGTAACGGAGG-39; migratory neural crest precursors (9), among other effects on neural cells (reviewed in ref. 10). Although another member of this family, IGF-I, is widely recognized as a survival factor for Abbreviations: Hsc70, heat shock cognate, 70 kDa; IGF, insulin-like many cell types (10–12), and its possible mechanism of action growth factor; ODN, oligodeoxynucleotide; En, embryonic day n; y TUNEL, terminal deoxynucleotidyltransferase-mediated UTP nick through the pI3 kinase Akt pathway is beginning to be elucidated end labeling. Data deposition: The sequences reported in this paper have been The publication costs of this article were defrayed in part by page charge deposited in the GenBank database (accession no. AJ004940). *E.J.d.l.R., E.V.-N., and A.V.M. contributed equally to this work. payment. This article must therefore be hereby marked ‘‘advertisement’’ in †Present address: Developmental Genetics Laboratory, ICRF, Lon- accordance with 18 U.S.C. §1734 solely to indicate this fact. don, UK. © 1998 by The National Academy of Sciences 0027-8424y98y959950-6$2.00y0 ‡To whom reprint requests should be addressed. e-mail: cibfp1f@ PNAS is available online at www.pnas.org. fresno.csic.es. 9950 Downloaded by guest on October 1, 2021 Developmental Biology: de la Rosa et al. Proc. Natl. Acad. Sci. USA 95 (1998) 9951 SS, 59-CTCATCATGGCTCTC-39; ASIGF-I 59-TTTTTC- ma) in glycerol:PBS (9:1). Pyknotic nuclei were observed CATTGCTTC-39). The inhibitors Ac-YVAD-CHO (for under epifluorescence illumination in a Zeiss Axioscop. caspase 1) and Ac-DEVD-CHO (for caspase 3) or a control Terminal Deoxynucleotidyltransferase-Mediated UTP Nick peptide inhibitor, Ac-LLR-CHO (leupeptin), were also used End Labeling (TUNEL) and Hsc70 Staining and Flow Cytom- (Bachem). The inhibitors were added to the agarose under the etry. Cultured embryos were processed as above. Aliquots of embryo and to the medium at the indicated concentrations. the cell suspension, typically 50,000 cells, were stained with rat After 5 h, a second dose was added to the medium. mAb anti-Hsc70 (1.7 mgyml) or with Igs as negative control, Reverse Transcription PCR Cloning, cDNA Library Screen- followed by biotinylated goat anti-mouse Ig (1y200 dilution, ing and Sequence Analysis. Total RNA was extracted from the Amersham) and then with Cy2-streptavidin (1y200 dilution, brain of embryos at 4.5 days of development (E4.5) by the Amersham). Fragmented DNA was stained by the TUNEL RNAzol method (Biotecx Laboratories Inc., Houston). The method in the same cell suspensions and was permeated with RNA was reverse-transcribed using the First-Strand cDNA 0.6% (wtyvol) Triton X-100 in 23 SSPE. Samples were Synthesis Kit (Pharmacia), with the antisense primer 59- incubated1hat37°C with 50 ml of a solution containing GGIGGIGAIGA(CyT)TT(CyT)GA(CyT)AA-39. The re- biotin-16-dUTP and terminal-deoxynucleotidyl-transferase, as verse transcription product was subjected to PCR amplifica- indicated by the manufacturer (Boehringer Mannheim). The tion using 10 mM Tris, 50 mM KCl, 200 mM each dNTP, 1 mM reaction was terminated by a 2-h incubation in 23 SSPE at MgCl2, 0.5 nM antisense primer, and 0.5 nM sense primer 65°C. The end-labeling with biotin-16-dUTP was visualized 59-CCICCIACIA(AyG)IACIAT(AyG)TC(AyG)TG-39; with Cy3-streptavidin (1y100, Amersham). Flow cytometry primers were derived from the known peptides sequence (23). data collection and multiparameter analysis were done in an The 309-bp amplified product was sequenced automatically by EPICS XL Coulter Cytometer, as described (28). the dideoxynucleotide method (Perkin–Elmer) and cloned into a pGEM-T (Promega) vector. The sequence was com- RESULTS pared by using the GCG software package and showed the highest identity with the human hsc70 gene. This fragment was Cloning of Chicken hsc70 cDNA. The biochemical data labeled with digoxigenin-dUTP (Boehringer Mannheim) by indicating that the antigen recognized by mAb
Recommended publications
  • Gastrulation
    Embryology of the spine and spinal cord Andrea Rossi, MD Neuroradiology Unit Istituto Giannina Gaslini Hospital Genoa, Italy [email protected] LEARNING OBJECTIVES: LEARNING OBJECTIVES: 1) To understand the basics of spinal 1) To understand the basics of spinal cord development cord development 2) To understand the general rules of the 2) To understand the general rules of the development of the spine development of the spine 3) To understand the peculiar variations 3) To understand the peculiar variations to the normal spine plan that occur at to the normal spine plan that occur at the CVJ the CVJ Summary of week 1 Week 2-3 GASTRULATION "It is not birth, marriage, or death, but gastrulation, which is truly the most important time in your life." Lewis Wolpert (1986) Gastrulation Conversion of the embryonic disk from a bilaminar to a trilaminar arrangement and establishment of the notochord The three primary germ layers are established The basic body plan is established, including the physical construction of the rudimentary primary body axes As a result of the movements of gastrulation, cells are brought into new positions, allowing them to interact with cells that were initially not near them. This paves the way for inductive interactions, which are the hallmark of neurulation and organogenesis Day 16 H E Day 15 Dorsal view of a 0.4 mm embryo BILAMINAR DISK CRANIAL Epiblast faces the amniotic sac node Hypoblast Primitive pit (primitive endoderm) faces the yolk sac Primitive streak CAUDAL Prospective notochordal cells Dias Dias During
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Human Anatomy Bio 11 Embryology “Chapter 3”
    Human Anatomy Bio 11 Embryology “chapter 3” Stages of development 1. “Pre-” really early embryonic period: fertilization (egg + sperm) forms the zygote gastrulation [~ first 3 weeks] 2. Embryonic period: neurulation organ formation [~ weeks 3-8] 3. Fetal period: growth and maturation [week 8 – birth ~ 40 weeks] Human life cycle MEIOSIS • compare to mitosis • disjunction & non-disjunction – aneuploidy e.g. Down syndrome = trisomy 21 • visit http://www.ivc.edu/faculty/kschmeidler/Pages /sc-mitosis-meiosis.pdf • and/or http://www.ivc.edu/faculty/kschmeidler/Pages /HumGen/mit-meiosis.pdf GAMETOGENESIS We will discuss, a bit, at the end of the semester. For now, suffice to say that mature males produce sperm and mature females produce ova (ovum; egg) all of which are gametes Gametes are haploid which means that each gamete contains half the full portion of DNA, compared to somatic cells = all the rest of our cells Fertilization restores the diploid state. Early embryonic stages blastocyst (blastula) 6 days of human embryo development http://www.sisuhospital.org/FET.php human early embryo development https://opentextbc.ca/anatomyandphysiology/chapter/28- 2-embryonic-development/ https://embryology.med.unsw.edu.au/embryology/images/thumb/d/dd/Model_human_blastocyst_development.jpg/600px-Model_human_blastocyst_development.jpg Good Sites To Visit • Schmeidler: http://www.ivc.edu/faculty/kschmeidler/Pages /sc_EMBRY-DEV.pdf • https://embryology.med.unsw.edu.au/embryol ogy/index.php/Week_1 • https://opentextbc.ca/anatomyandphysiology/c hapter/28-2-embryonic-development/
    [Show full text]
  • Wnt-3A Regulates Somite and Tailbud Formation in the Mouse Embryo
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Wnt-3a regulates somite and tailbud formation in the mouse embryo Shinji Takada/ Kevin L. Stark,^ Martin J. Shea,^ Galya Vassileva, Jill A. McMahon/ and Andrew P. McMahon* Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110 USA Amphibian studies have implicated Wnt signaling in the regulation of mesoderm formation, although direct evidence is lacking. We have characterized the expression of 12 mammalian Wnt-genes, identifying three that are expressed during gastrulation. Only one of these, Wnt-3a, is expressed extensively in cells fated to give rise to embryonic mesoderm, at egg cylinder stages. A likely null allele of Wnt-3a was generated by gene targeting. All Wiit-3fl~/Wnt-3a~ embryos lack caudal somites, have a disrupted notochord, and fail to form a tailbud. Thus, Wnt-Sa may regulate dorsal (somitic) mesoderm fate and is required, by late primitive steak stages, for generation of all new embryonic mesoderm. Wnt-3a is also expressed in the dorsal CNS. Mutant embryos show CNS dysmorphology and ectopic expression of a dorsal CNS marker. We suggest that dysmorphology is secondary to the mesodermal and axial defects and that dorsal patterning of the CNS may be regulated by inductive signals arising from surface ectoderm. [Key Words: Wnt; gastrulation; mesoderm formation; somite; tailbud; gene targeting] Received November 9, 1993; revised version accepted December 8, 1993. Cell-cell interaction plays an important role in the de­ ton 1992) receptors. Interestingly, mesoderm induction velopment of all organisms. In the vertebrate, consider­ by FGFs and TGF-p-related factors is qualitatively differ­ able progress has been made in recent years in identify­ ent.
    [Show full text]
  • Programmed Cell Death During Xenopus Development
    DEVELOPMENTAL BIOLOGY 203, 36–48 (1998) ARTICLE NO. DB989028 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Programmed Cell Death during Xenopus provided by Elsevier - Publisher Connector Development: A Spatio-temporal Analysis Carmel Hensey and Jean Gautier1 Department of Genetics and Development and Department of Dermatology, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, New York, New York 10032 Programmed cell death (PCD) is an integral part of many developmental processes. In vertebrates little is yet known on the patterns of PCD and its role during the early phases of development, when embryonic tissue layers migrate and pattern formation takes place. We describe the spatio-temporal patterns of cell death during early Xenopus development, from fertilization to the tadpole stage (stage 35/36). Cell death was analyzed by a whole-mount in situ DNA end-labeling technique (the TUNEL protocol), as well as by serial sections of paraffin-embedded TUNEL-stained embryos. The first cell death was detected during gastrulation, and as development progressed followed highly dynamic and reproducible patterns, strongly suggesting it is an important component of development at these stages. The detection of PCD during neural induction, neural plate patterning, and later during the development of the nervous system highlights the role of PCD throughout neurogenesis. Additionally, high levels of cell death were detected in the developing tail and sensory organs. This is the first detailed description of PCD throughout early development of a vertebrate, and provides the basis for further studies on its role in the patterning and morphogenesis of the embryo.
    [Show full text]
  • Early Embryonic Development Till Gastrulation (Humans)
    Gargi College Subject: Comparative Anatomy and Developmental Biology Class: Life Sciences 2 SEM Teacher: Dr Swati Bajaj Date: 17/3/2020 Time: 2:00 pm to 3:00 pm EARLY EMBRYONIC DEVELOPMENT TILL GASTRULATION (HUMANS) CLEAVAGE: Cleavage in mammalian eggs are among the slowest in the animal kingdom, taking place some 12-24 hours apart. The first cleavage occurs along the journey of the embryo from oviduct toward the uterus. Several features distinguish mammalian cleavage: 1. Rotational cleavage: the first cleavage is normal meridional division; however, in the second cleavage, one of the two blastomeres divides meridionally and the other divides equatorially. 2. Mammalian blastomeres do not all divide at the same time. Thus the embryo frequently contains odd numbers of cells. 3. The mammalian genome is activated during early cleavage and zygotically transcribed proteins are necessary for cleavage and development. (In humans, the zygotic genes are activated around 8 cell stage) 4. Compaction: Until the eight-cell stage, they form a loosely arranged clump. Following the third cleavage, cell adhesion proteins such as E-cadherin become expressed, and the blastomeres huddle together and form a compact ball of cells. Blatocyst: The descendents of the large group of external cells of Morula become trophoblast (trophoblast produce no embryonic structure but rather form tissues of chorion, extraembryonic membrane and portion of placenta) whereas the small group internal cells give rise to Inner Cell mass (ICM), (which will give rise to embryo proper). During the process of cavitation, the trophoblast cells secrete fluid into the Morula to create blastocoel. As the blastocoel expands, the inner cell mass become positioned on one side of the ring of trophoblast cells, resulting in the distinctive mammalian blastocyst.
    [Show full text]
  • Development and Control of Tissue Separation at Gastrulation in Xenopus
    Developmental Biology 224, 428–439 (2000) doi:10.1006/dbio.2000.9794, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE Development and Control of Tissue Separation provided by Elsevier - Publisher Connector at Gastrulation in Xenopus Stephan Wacker,* Kristina Grimm,* Thomas Joos,†,1 and Rudolf Winklbauer*,†,2 *Universita¨t zu Ko¨ln, Zoologisches Institut, Weyertal 119, 50931 Ko¨ln, Germany; and †Max-Planck-Institut fu¨r Entwicklungsbiologie, Abt. Zellbiologie/V, Spemannstrasse 35, 72076 Tu¨bingen, Germany During Xenopus gastrulation, the internalizing mesendodermal cell mass is brought into contact with the multilayered blastocoel roof. The two tissues do not fuse, but remain separated by the cleft of Brachet. This maintenance of a stable interface is a precondition for the movement of the two tissues past each other. We show that separation behavior, i.e., the property of internalized cells to remain on the surface of the blastocoel roof substratum, spreads before and during gastrulation from the vegetal endoderm into the anterior and eventually the posterior mesoderm, roughly in parallel to internalization movement. Correspondingly, the blastocoel roof develops differential repulsion behavior, i.e., the ability to specifically repell cells showing separation behavior. From the effects of overexpressing wild-type or dominant negative XB/U or EP/C cadherins we conclude that separation behavior may require modulation of cadherin function. Further, we show that the paired-class homeodomain transcription factors Mix.1 and gsc are involved in the control of separation behavior in the anterior mesoderm. We present evidence that in this function, Mix.1 and gsc may cooperate to repress transcription.
    [Show full text]
  • Cell Death in the Avian Blastoderm: Resistance to Stress- Induced Apoptosis and Expression of Anti-Apoptotic Genes
    Cell Death and Differentiation (1998) 5, 529 ± 538 1998 Stockton Press All rights reserved 13509047/98 $12.00 http://www.stockton-press.co.uk/cdd Cell death in the avian blastoderm: resistance to stress- induced apoptosis and expression of anti-apoptotic genes Stephen E. Bloom1,2, Donna E. Muscarella1, Mitchell Y. Lee1 in cleavage stages and subsequent extensive cell migration in and Melissa Rachlinski1 the formation of the initial and primitive streaks (Romanoff, 1960; Eyal-Giladi and Kochav, 1976). Cell death has been 1 Department of Microbiology and Immunology, Cornell University, Ithaca, New shown to occur in regions of gastrulating embryos (Jacobson, York 14853, USA 1938; Glucksmann, 1951; Sanders et al., 1997a,b). However, 2 corresponding author: tel: 607-253-4041; fax: 607-253-3384; it is unclear whether programmed cell death (PCD) occurs, or email: [email protected] is required, at stages preceding gastrulation. In fact, classical reviews of early development in the avian embryo do not mention cell deaths in connection with cleavage division Received 13.11.97; revised 21.1.98; accepted 4.3.98 stages, in the formation of epiblast and hypoblast layers of the Edited by C.J. Thiele blastoderm, or in the establishment of polarity in embryos (Romanoff, 1960, 1972; Eyal-Giladi and Kochav, 1976). Abstract An early suggestion of cell death by an apoptotic mode in the blastoderm was provided in the ultrastructural study We investigated the expression of an apoptotic cell death of unincubated and grastrulating chick embryos (Bellairs, program in blastodermal cells prior to gastrulation and the 1961). This work revealed `chromatic patches' near the susceptibility of these cells to stress-induced cell death.
    [Show full text]
  • Gastrulation : Current Concepts and Implications for Spinal Malformations
    Review Article J Korean Neurosurg Soc 64 (3) : 329-339, 2021 https://doi.org/10.3340/jkns.2020.0125 pISSN 2005-3711 eISSN 1598-7876 Gastrulation : Current Concepts and Implications for Spinal Malformations Dominic Nolan Paul Thompson Department of Paediatric Neurosurgery, Great Ormond Street Hospital for Children NHS Trust, London, UK It has been recognised for over a century that the events of gastrulation are fundamental in determining, not only the development of the neuraxis but the organisation of the entire primitive embryo. Until recently our understanding of gastrulation was based on detailed histological analysis in animal models and relatively rare human tissue preparations from aborted fetuses. Such studies resulted in a model of gastrulation that neurosurgeons have subsequently used as a means of trying to explain some of the congenital anomalies of caudal spinal cord and vertebral development that present in paediatric neurosurgical practice. Recent advances in developmental biology, in particular cellular biology and molecular genetics have offered new insights into very early development. Understanding the processes that underlie cellular interactions, gene expression and activation/inhibition of signalling pathways has changed the way embryologists view gastrulation and this has led to a shift in emphasis from the ‘descriptive and morphological’ to the ‘mechanistic and functional’. Unfortunately, thus far it has proved difficult to translate this improved knowledge of normal development, typically derived from non-human models, into an understanding of the mechanisms underlying human malformations such as the spinal dysraphisms and anomalies of caudal development. A paediatric neurosurgeons perspective of current concepts in gastrulation is presented along with a critical review of the current hypotheses of human malformations that have been attributed to disorders of this stage of embryogenesis.
    [Show full text]
  • Primary Embryonic Germ Layers
    Animals Primary embryonic germ layers • Triploblastic: three germ layers Triploblastic gastrulation forms – Ectoderm: develops into epidermal & neural tissues three germ layers – Endoderm: develops into gut & accessory organs – Mesoderm — displaces blastocoel: develops into muscle, ECTODERM MESODERM ENDODERM endoskeleton, & connective tissues • Epidermis of skin and its • Notochord • Epithelial lining of derivatives (including sweat • Endoskeletal system digestive tract glands, hair follicles) • Muscular system • Epithelial lining of • Epithelial lining of mouth • Muscular layer of respiratory system and rectum stomach, intestine, etc. • Lining of urethra, urinary • Sense receptors in • Excretory system bladder, and reproductive epidermis • Circulatory and lymphatic system • Cornea and lens of eye systems • Liver • Nervous system • Reproductive system • Pancreas Archenteron • Adrenal medulla (except germ cells) • Thymus • Tooth enamel • Dermis of skin • Thyroid and parathyroid • Epithelium or pineal and • Lining of body cavity glands pituitary glands • Adrenal cortex Figure 47.16 Mesoderm Blastopore Figure 32.9b Figure 40.5 Figure 40.5 Epithelial Tissue Connective Tissue • Continuous sheet or layers of cells Loose connective tissue Blood Collagenous Plasma with direct cell-cell junctions fiber Whit e • All three germ m blood Apical µ cells 55 layers start as surface m µ epithelia, Basal Red blood 120 Cartilage so epithelial surface Elastic cells Stratified fiber tissues may squamous Fibrous connective tissue Chondrocytes epithelium derive
    [Show full text]
  • Ectoderm: Neurulation, Neural Tube, Neural Crest
    4. ECTODERM: NEURULATION, NEURAL TUBE, NEURAL CREST Dr. Taube P. Rothman P&S 12-520 [email protected] 212-305-7930 Recommended Reading: Larsen Human Embryology, 3rd Edition, pp. 85-102, 126-130 Summary: In this lecture, we will first consider the induction of the neural plate and the formation of the neural tube, the rudiment of the central nervous system (CNS). The anterior portion of the neural tube gives rise to the brain, the more caudal portion gives rise to the spinal cord. We will see how the requisite numbers of neural progenitors are generated in the CNS and when these cells become post mitotic. The molecular signals required for their survival and further development will also be discussed. We will then turn our attention to the neural crest, a transient structure that develops at the site where the neural tube and future epidermis meet. After delaminating from the neuraxis, the crest cells migrate via specific pathways to distant targets in an embryo where they express appropriate target-related phenotypes. The progressive restriction of the developmental potential of crest-derived cells will then be considered. Additional topics include formation of the fundamental subdivisions of the CNS and PNS, as well as molecular factors that regulate neural induction and regional distinctions in the nervous system. Learning Objectives: At the conclusion of the lecture you should be able to: 1. Discuss the tissue, cellular, and molecular basis for neural induction and neural tube formation. Be able to provide some examples of neural tube defects caused by perturbation of neural tube closure.
    [Show full text]
  • Mesoderm Patterning and Somite Formation During Node Regression: Differential Effects of Chordin and Noggin
    Mechanisms of Development 85 (1999) 85±96 Mesoderm patterning and somite formation during node regression: differential effects of chordin and noggin Andrea Streit, Claudio D. Stern* Department of Genetics and Development, Columbia University, 701 West 168th Street #1602, New York, NY 10032, USA Received 1 March 1999; received in revised form 8 April 1999; accepted 8 April 1999 Abstract In Xenopus, one of the properties de®ning Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and ®nd that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs.
    [Show full text]