Enrichment and Identification of Methylation at the Proteome Level

Total Page:16

File Type:pdf, Size:1020Kb

Enrichment and Identification of Methylation at the Proteome Level Enrichment and Identification of Methylation at the Proteome Level Alexandra Star A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Degree of Master of Science in Biochemistry Department of Biochemistry, Microbiology, and Immunology Faculty of Medicine University of Ottawa ©Alexandra Star, Ottawa, Canada, 2016 ABSTRACT Methylation is a post-translational modification which occurs on lysine and arginine residues. Methylation is difficult to detect due to its low abundance and lack of charge. Our laboratory previously developed a novel enrichment approach, ProMENADe, for lysine and arginine methylation in the human embryonic kidney (HEK) 293T cell line which is coupled with mass spectrometry. Simplifying a lysate with subcellular fractionation prior to enrichment increased the identification of methylation sites by 39.5% while using multiple proteases for digestion increased identification by 27%. Combining these methods yielded a 47.2% increase. Analysis at the 1% methylation level FDR filtered for C-terminal methylation identified 169 sites and further analysis revealed 74 of these sites overlap with the PhosphoSite database. This ProMENADe enrichment strategy yielded 95 novel methylation sites to the field and can be a key tool in the field of methylation allowing for the enrichment and identification of methylated proteins. ii ACKNOWLEDGEMENTS I would like to thank Dr. Daniel Figeys for giving me the opportunity to study under his guidance and the guidance of Dr. Jean-François Couture. Over the past two years I have learned about proteomics, mass spectrometry, and the difficulties in studying post- translational modifications like methylation. Dr. Figeys gave me the opportunity to be independent, and for that I am grateful. I would also like to acknowledge my thesis advisory committee members Dr. Alexandre Blais and Dr. Jocelyn Côté for their guidance and re-direction in my project. I would also like to thank Deeptee Seebun for training me in the lab. I would like to acknowledge Dr. Janice Mayne for motivating and supporting me throughout my masters and for meeting with me weekly to discuss experiment ideas and working tirelessly to edit all of my TAC reports, presentations and my thesis itself. I am grateful to Dr. Zhibin Ning whose method has made my project possible and for all of his discussion and scientific advice. Although we work differently, he has helped me change the way I approach problems and has challenged me throughout my learning process. Lastly I would like to thank Dr. Sylvain Lanouette for the many discussions in regards to methylation and SMYD2, and for the guidance in writing my thesis I would also like to thank my lab mates Deeptee Seebun, Shelley Deeke, Dr. Amanda Starr, Myriam Cramet, Kiara Chu, Dr. Bo Xu, Dr. Zhibin Ning, Dr. Janice Mayne, Dr. Kerwin Chiang, Dr. Rui Chen, Dr. Xu Zhang, and Jasmine Moore for all the motivation, scientific discussion, and friendship over the course of my two years in the lab. I would also like to thank Ngoc Vuong for his friendship and support during my undergraduate thesis at Health Canada, and the mentorship of Dr. Renaud Vincent which has inspired me to pursue the path of scientific research. Finally, I would like to thank my friends, family and Matt. Their support and encouragement helped me get through the joys and the hardships both in life and during the course of my studies. iii STATEMENT OF CONTRIBUTION All experiments were conducted by Alexandra Star (AS). Experimental design was conducted by Daniel Figeys (DF), Janice Mayne (JM) and Zhibin Ning (ZN) and AS. Data analysis was conducted by AS with the advice and mentoring of ZN. iv TABLE OF CONTENTS ABSTRACT .......................................................................................................................................... ii ACKNOWLEDGEMENTS .................................................................................................................. iii STATEMENT OF CONTRIBUTION ................................................................................................. iv ABBREVIATIONS ............................................................................................................................ viii LIST OF FIGURES .............................................................................................................................. xi LIST OF TABLES ............................................................................................................................... xii LIST OF APPENDICES ..................................................................................................................... xii 1. INTRODUCTION ............................................................................................................................. 1 I. Proteomics and Post-Translational Modifications.......................................................................... 1 II. Protein Methylation ...................................................................................................................... 2 i. Arginine Methylation ................................................................................................................. 3 ii. Lysine Methylation .................................................................................................................... 4 III. Biological Roles of Protein Methylation ..................................................................................... 7 i. Protein Methylation in Transcriptional Regulation .................................................................... 7 ii. Methylation in mRNA splicing ................................................................................................. 9 iii. Effect of Methylation on Protein Stability ............................................................................. 10 IV. Protein Methylation in Disease ................................................................................................. 11 i. Cancer ....................................................................................................................................... 11 ii. Embryo Development .............................................................................................................. 12 iii. Methylation in Vaccination .................................................................................................... 13 iv. Cardiovascular Disease ........................................................................................................... 14 v. Spinal Muscular Atrophy ......................................................................................................... 14 V. Current Approaches to Studying Methylation ............................................................................ 15 i. Low-Throughput Targeted Approaches ................................................................................... 15 ii. High-Throughput Enrichment-Based Screening ..................................................................... 15 iii. Methyl-Lysine Binding Domains to Enrich for Methylated Proteins .................................... 16 iv. Pan-Methyl Antibodies to Enrich for Methylated Peptides .................................................... 16 v. Derivatization Coupled with Affinity Enrichment .................................................................. 17 vi. Click Chemistry to Determine Methyltransferase Targets ..................................................... 17 vii. Predictive Modeling of Methylation Sites ............................................................................. 18 VI. Novel Approach to Enrich for Methylated Peptides ................................................................. 18 VII. Rationale .................................................................................................................................. 20 v VIII. Statement of Hypothesis and Objectives ................................................................................ 21 i. Hypothesis ................................................................................................................................ 21 ii. Objectives ................................................................................................................................ 21 2. MATERIALS AND METHODS .................................................................................................... 26 I. Cell Culture .................................................................................................................................. 26 II. Heavy-Methionine Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) ............ 26 III. Cell Lysis ................................................................................................................................... 27 IV. Subcellular Fractionation........................................................................................................... 27 V. Immunoblotting .......................................................................................................................... 28 VI. Proteomics Sample Preparation ................................................................................................. 29 i. Protein Precipitation ................................................................................................................. 29 ii. In-solution Protein Digestion .................................................................................................
Recommended publications
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • GEMIN8 Antibody (C-Term) Blocking Peptide Synthetic Peptide Catalog # Bp17974b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 GEMIN8 Antibody (C-term) Blocking Peptide Synthetic peptide Catalog # BP17974b Specification GEMIN8 Antibody (C-term) Blocking GEMIN8 Antibody (C-term) Blocking Peptide - Peptide - Background Product Information The protein encoded by this gene is part of Primary Accession Q9NWZ8 the SMNcomplex, which is necessary for spliceosomal snRNP assembly in thecytoplasm and pre-mRNA splicing in the nucleus. The GEMIN8 Antibody (C-term) Blocking Peptide - Additional Information encoded proteinbinds to both SMN1 and the GEMIN6/GEMIN7 heterodimer, mediatingtheir interaction. This protein is found in nuclear Gene ID 54960 Gemini of Cajalbodies (gems) and in the cytoplasm. Three transcript variantsencoding Other Names the same protein have been found for this Gem-associated protein 8, Gemin-8, Protein gene. [providedby RefSeq]. FAM51A1, GEMIN8, FAM51A1 GEMIN8 Antibody (C-term) Blocking Format Peptides are lyophilized in a solid powder Peptide - References format. Peptides can be reconstituted in solution using the appropriate buffer as Carissimi, C., et al. J. Biol. Chem. needed. 281(48):37009-37016(2006)Carissimi, C., et al. J. Biol. Chem. 281(12):8126-8134(2006) Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. Precautions This product is for research use only. Not for use in diagnostic or therapeutic procedures. GEMIN8 Antibody (C-term) Blocking Peptide - Protein Information Name GEMIN8 Synonyms FAM51A1 Function The SMN complex plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome.
    [Show full text]
  • Reprogramming of Trna Modifications Controls the Oxidative Stress Response by Codon-Biased Translation of Proteins
    Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chan, Clement T.Y. et al. “Reprogramming of tRNA Modifications Controls the Oxidative Stress Response by Codon-biased Translation of Proteins.” Nature Communications 3 (2012): 937. As Published http://dx.doi.org/10.1038/ncomms1938 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/76775 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins Clement T.Y. Chan,1,2 Yan Ling Joy Pang,1 Wenjun Deng,1 I. Ramesh Babu,1 Madhu Dyavaiah,3 Thomas J. Begley3 and Peter C. Dedon1,4* 1Department of Biological Engineering, 2Department of Chemistry and 4Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; 3College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203 * Corresponding author: PCD, Department of Biological Engineering, NE47-277, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; tel 617-253-8017; fax 617-324-7554; email [email protected] 2 ABSTRACT Selective translation of survival proteins is an important facet of cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA.
    [Show full text]
  • Protein Name Accession Number Molecular Weight Myovi-GTD
    MyoVI-GTD MyoVI-GTD MyoVa-MGT MyoVa-MGT Molecular Spectral Unique Spectral Unique Protein Name Accession Number Weight Counts Peptides Counts Peptides Dync1h1 Cytoplasmic dynein 1 heavy chain 1 IPI00119876 532 kDa 310 121 515 182 Spna2 Spectrin alpha 2 IPI00757353 285 kDa 853 170 597 149 Myo5a 215 kDa protein IPI00875222 215 kDa 162 47 874 109 AU042671 hypothetical protein LOC269700 isoform 1 IPI00762814 453 kDa 2 2 231 104 Spnb2 Isoform 1 of Spectrin beta chain, brain 1 IPI00319830 274 kDa 505 122 347 100 Dmxl2 Isoform 1 of DmX-like protein 2 IPI00853932 338 kDa 63 38 251 100 Cltc Clathrin heavy chain 1 IPI00169916 (+1) 192 kDa 1994 138 565 90 Mtap2 12 days embryo spinal cord cDNA, RIKEN full-length enriched library, clone:C530026F16 product:microtubule-associated protein 2, full insert sequenceIPI00894724 199 kDa 229 82 258 74 Mtap1a Isoform 1 of Microtubule-associated protein 1A IPI00408909 (+1) 300 kDa 310 86 214 74 Itpr1 Isoform 4 of Inositol 1,4,5-trisphosphate receptor type 1 IPI00230019 (+3) 311 kDa 37 18 155 73 Huwe1 HECT, UBA and WWE domain containing 1 IPI00463909 (+1) 483 kDa 5 5 91 69 Fasn Fatty acid synthase IPI00113223 272 kDa 24 17 140 68 Usp9x Ubiquitin carboxyl-terminal hydrolase IPI00798468 291 kDa 68 45 98 65 Lrp1 Prolow-density lipoprotein receptor-related protein 1 precursor IPI00119063 505 kDa 92 53 109 62 Myh10 Myosin-10 IPI00515398 (+1) 229 kDa 65 40 98 59 Mical1 NEDD9-interacting protein with calponin homology and LIM domains IPI00116371 117 kDa 2 2 203 57 Plec1 Isoform PLEC-1I of Plectin-1 IPI00229509 (+10)
    [Show full text]
  • Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins
    Technical note Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins: A Study for Peptidyl-Prolyl cis/trans Isomerases (PPIase) Andrzej Galat Retired from: Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA-Université Paris-Saclay, France; [email protected]; Tel.: +33-0164465072 Received: 21 December 2018; Accepted: 21 January 2019; Published: 11 February 2019 Abstract: In this technical note, we describe analyses of more than 15,000 sequences of FK506- binding proteins (FKBP) and cyclophilins, also known as peptidyl-prolyl cis/trans isomerases (PPIases). We have developed a novel way of displaying relative changes of amino acid (AA)- residues at a given sequence position by using heat-maps. This type of representation allows simultaneous estimation of conservation level in a given sequence position in the entire group of functionally-related paralogues (multigene family of proteins). We have also proposed that at least two FKBPs, namely FKBP36, encoded by the Fkbp6 gene and FKBP51, encoded by the Fkbp5 gene, can form dimers bound via a disulfide bridge in the nucleus. This type of dimer may have some crucial function in the regulation of some nuclear complexes at different stages of the cell cycle. Keywords: FKBP; cyclophilin; PPIase; heat-map; immunophilin 1 Introduction About 30 years ago, an exciting adventure began in finding some correlations between pharmacological activities of macrocyclic hydrophobic drugs, namely the cyclic peptide cyclosporine A (CsA), and two macrolides, namely FK506 and rapamycin, which have profound and clinically useful immunosuppressive effects, especially in organ transplantations and in combating some immune disorders.
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Sequences, Annotation and Single Nucleotide Polymorphism of The
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 6-2008 Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki National Cancer Institute at Frederick James C. Mullikin National Human Genome Research Institute Thomas W. Beck National Cancer Institute at Frederick Robert M. Stephens National Cancer Institute at Frederick Stephen J. O'Brien National Cancer Institute at Frederick, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Genetics and Genomics Commons, and the Zoology Commons NSUWorks Citation Yuhki, Naoya; James C. Mullikin; Thomas W. Beck; Robert M. Stephens; and Stephen J. O'Brien. 2008. "Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat." PLoS ONE 7, (3 e2674): 1-17. https://nsuworks.nova.edu/cnso_bio_facarticles/773 This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki1*, James C. Mullikin2, Thomas Beck3, Robert Stephens4, Stephen J. O’Brien1 1 Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland,
    [Show full text]
  • Differential Proteomic Analysis of the Pancreas of Diabetic Db/Db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus
    Int. J. Mol. Sci. 2014, 15, 9579-9593; doi:10.3390/ijms15069579 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Differential Proteomic Analysis of the Pancreas of Diabetic db/db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus Victoriano Pérez-Vázquez 1,*, Juan M. Guzmán-Flores 1, Daniela Mares-Álvarez 1, Magdalena Hernández-Ortiz 2, Maciste H. Macías-Cervantes 1, Joel Ramírez-Emiliano 1 and Sergio Encarnación-Guevara 2 1 Depto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico; E-Mails: [email protected] (J.M.G.-F.); [email protected] (D.M.-A.); [email protected] (M.H.M.-C.); [email protected] (J.R.-E.) 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; E-Mails: [email protected] (M.H.-O.); [email protected] (S.E.-G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-477-7143-812; Fax: +52-477-7167-623. Received: 4 April 2014; in revised form: 14 May 2014 / Accepted: 19 May 2014 / Published: 30 May 2014 Abstract: Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins.
    [Show full text]
  • Α Are Regulated by Heat Shock Protein 90
    The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90- α Tomoh Matsumiya, Tadaatsu Imaizumi, Hidemi Yoshida, Kei Satoh, Matthew K. Topham and Diana M. Stafforini This information is current as of October 2, 2021. J Immunol 2009; 182:2717-2725; ; doi: 10.4049/jimmunol.0802933 http://www.jimmunol.org/content/182/5/2717 Downloaded from References This article cites 44 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/182/5/2717.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90-␣1 Tomoh Matsumiya,*‡ Tadaatsu Imaizumi,‡ Hidemi Yoshida,‡ Kei Satoh,‡ Matthew K. Topham,*† and Diana M. Stafforini2*† Retinoic acid-inducible gene I (RIG-I) is an intracellular pattern recognition receptor that plays important roles during innate immune responses to viral dsRNAs.
    [Show full text]
  • ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed
    ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed Probe Sets in Livers of GK Rats. A. Immune/Inflammatory (67 probe sets, 63 genes) Age Strain Probe ID Gene Name Symbol Accession Gene Function 5 WKY 1398390_at small inducible cytokine B13 precursor Cxcl13 AA892854 chemokine activity; lymph node development 5 WKY 1389581_at interleukin 33 Il33 BF390510 cytokine activity 5 WKY *1373970_at interleukin 33 Il33 AI716248 cytokine activity 5 WKY 1369171_at macrophage stimulating 1 (hepatocyte growth factor-like) Mst1; E2F2 NM_024352 serine-throenine kinase; tumor suppression 5 WKY 1388071_x_at major histocompatability antigen Mhc M24024 antigen processing and presentation 5 WKY 1385465_at sialic acid binding Ig-like lectin 5 Siglec5 BG379188 sialic acid-recognizing receptor 5 WKY 1393108_at major histocompatability antigen Mhc BM387813 antigen processing and presentation 5 WKY 1388202_at major histocompatability antigen Mhc BI395698 antigen processing and presentation 5 WKY 1371171_at major histocompatability antigen Mhc M10094 antigen processing and presentation 5 WKY 1370382_at major histocompatability antigen Mhc BI279526 antigen processing and presentation 5 WKY 1371033_at major histocompatability antigen Mhc AI715202 antigen processing and presentation 5 WKY 1383991_at leucine rich repeat containing 8 family, member E Lrrc8e BE096426 proliferation and activation of lymphocytes and monocytes. 5 WKY 1383046_at complement component factor H Cfh; Fh AA957258 regulation of complement cascade 4 WKY 1369522_a_at CD244 natural killer
    [Show full text]