What Is Radiation and Where Does It Come From?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
小型飛翔体/海外 [Format 2] Technical Catalog Category
小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history. -
G20070354/G20070331 Fact Sheet, Biological Effects of Radiation
Fact Sheet 11 Ofice of Public Affairs Telephone: 301/415-8200 E-mail : opa @nrc.g ov I Biological Effects of Radiation Background Radiation is all around us. It is naturally present in our environment and has been since the birth of this planet. Consequently, life has evolved in an environment which has significant levels of ionizing radiation. It comes from outer space (cosmic), the ground (terrestrial), and even from within our own bodies. It is present in the air we breathe, the food we eat, the water we drink, and in the construction materials used to build our homes. Certain foods such as bananas and brazil nuts naturally contain higher levels of radiation than other foods. Brick and stone homes have higher natural radiation levels than homes made of other building materials such as wood. Our nation's Capitol, which is largely constructed of granite, contains higher levels of natural radiation than most homes. Levels of natural or background radiation can vary greatly from one location to the next. For example, people residing in Colorado are exposed to more natural radiation than residents of the east or west coast because Colorado has more cosmic radiation at a higher altitude and more terrestrial radiation from soils enriched in naturally occurring uranium. Furthermore, a lot of our natural exposure is due to radon, a gas from the earth's crust that is present in the air we breathe. The average annual radiation exposure from natural sources to an individual in the United States is about 300 millirem (3 millisieverts)*. Radon gas accounts for two-thirds of this exposure, while cosmic, terrestrial, and internal radiation account for the remainder. -
How Do Radioactive Materials Move Through the Environment to People?
5. How Do Radioactive Materials Move Through the Environment to People? aturally occurring radioactive materials Radionuclides can be removed from the air in Nare present in our environment and in several ways. Particles settle out of the our bodies. We are, therefore, continuously atmosphere if air currents cannot keep them exposed to radiation from radioactive atoms suspended. Rain or snow can also remove (radionuclides). Radionuclides released to them. the environment as a result of human When these particles are removed from the activities add to that exposure. atmosphere, they may land in water, on soil, or Radiation is energy emitted when a on the surfaces of living and non-living things. radionuclide decays. It can affect living tissue The particles may return to the atmosphere by only when the energy is absorbed in that resuspension, which occurs when wind or tissue. Radionuclides can be hazardous to some other natural or human activity living tissue when they are inside an organism generates clouds of dust containing radionu- where radiation released can be immediately clides. absorbed. They may also be hazardous when they are outside of the organism but close ➤ Water enough for some radiation to be absorbed by Radionuclides can come into contact with the tissue. water in several ways. They may be deposited Radionuclides move through the environ- from the air (as described above). They may ment and into the body through many also be released to the water from the ground different pathways. Understanding these through erosion, seepage, or human activities pathways makes it possible to take actions to such as mining or release of radioactive block or avoid exposure to radiation. -
Radiation Basics
Environmental Impact Statement for Remediation of Area IV \'- f Susana Field Laboratory .A . &at is radiation? Ra - -.. - -. - - . known as ionizing radiatios bScause it can produce charged.. particles (ions)..- in matter. .-- . 'I" . .. .. .. .- . - .- . -- . .-- - .. What is radioactivity? Radioactivity is produced by the process of radioactive atmi trying to become stable. Radiation is emitted in the process. In the United State! Radioactive radioactivity is measured in units of curies. Smaller fractions of the curie are the millicurie (111,000 curie), the microcurie (111,000,000 curie), and the picocurie (1/1,000,000 microcurie). Particle What is radioactive material? Radioactive material is any material containing unstable atoms that emit radiation. What are the four basic types of ionizing radiation? Aluminum Leadl Paper foil Concrete Adphaparticles-Alpha particles consist of two protons and two neutrons. They can travel only a few centimeters in air and can be stopped easily by a sheet of paper or by the skin's surface. Betaparticles-Beta articles are smaller and lighter than alpha particles and have the mass of a single electron. A high-energy beta particle can travel a few meters in the air. Beta particles can pass through a sheet of paper, but may be stopped by a thin sheet of aluminum foil or glass. Gamma rays-Gamma rays (and x-rays), unlike alpha or beta particles, are waves of pure energy. Gamma radiation is very penetrating and can travel several hundred feet in air. Gamma radiation requires a thick wall of concrete, lead, or steel to stop it. Neutrons-A neutron is an atomic particle that has about one-quarter the weight of an alpha particle. -
Radionuclides (Including Radon, Radium and Uranium)
Radionuclides (including Radon, Radium and Uranium) Hazard Summary Uranium, radium, and radon are naturally occurring radionuclides found in the environment. No information is available on the acute (short-term) noncancer effects of the radionuclides in humans. Animal studies have reported inflammatory reactions in the nasal passages and kidney damage from acute inhalation exposure to uranium. Chronic (long-term) inhalation exposure to uranium and radon in humans has been linked to respiratory effects, such as chronic lung disease, while radium exposure has resulted in acute leukopenia, anemia, necrosis of the jaw, and other effects. Cancer is the major effect of concern from the radionuclides. Radium, via oral exposure, is known to cause bone, head, and nasal passage tumors in humans, and radon, via inhalation exposure, causes lung cancer in humans. Uranium may cause lung cancer and tumors of the lymphatic and hematopoietic tissues. EPA has not classified uranium, radon or radium for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (5), which contains information on oral chronic toxicity and the RfD for uranium, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profiles for Uranium, Radium, and Radon. (1) Uses Uranium is used in nuclear power plants and nuclear weapons. Very small amounts are used in photography for toning, in the leather and wood industries for stains and dyes, and in the silk and wood industries. (2) Radium is used as a radiation source for treating neoplastic diseases, as a radon source, in radiography of metals, and as a neutron source for research. -
6.2.43A Radiation-Dominated Model of the Universe
6 BIG BANG COSMOLOGY – THE EVOLVING UNIVERSE 6.2.43A radiation-dominated model of the Universe R We have just seen that in the early Universe, the dominant energy density is that due to the radiation within the Universe. The Friedmann equation that was described in Chapter 5 (Box 5.4) can be solved for such conditions and the way in which the scale factor varies with time for such a model is shown in Figure 6.7. One important feature of such a model is that the scale factor varies in the following way: R(t) ∝ t1/2 (6.17) 0 t −4 Because the energy density of radiation is dominant for times when R(t)/R(t0) < 10 , all cosmological models which start at t = 0 with R(0) = 0, will go through a phase Figure 6.73The evolution of the that is well described by this radiation-dominated model. Thus we are in the rather scale factor with time in a remarkable position that regardless of which type of cosmological model best cosmological model in which the dominant contribution to the describes the Universe at the present, we can be reasonably confident that we energy density arises from the know how the scale factor varied with time in the first few tens of thousands of radiation within the Universe years of the big bang. (i.e. during the radiation-dominated However, the temperature of the background radiation varies with scale factor era). according to T(t) ∝ 1/R(t) (Equation 6.6). It follows that during the radiation- dominated era the temperature of the background radiation varies with time according to T(t) ∝ t −1/2 (6.18) This describes how temperature changes with time in an expanding universe where the energy density of radiation is the dominant component. -
PE1128 Radiation Exposure in Medical Imaging
Radiation Exposure in Medical Imaging This handout answers questions about radiation exposure and what Seattle Children’s Hospital is doing to keep your child safe. Medical imaging uses machines and techniques to provide valuable information about your child’s health. It plays an important role in helping your doctor make the correct diagnosis. Some of these machines use radiation to get these images. We are all exposed to small amounts of radiation in normal daily life from soil, rocks, air, water and even some of the foods we eat. This is called background radiation. The amount of background radiation that you are exposed to depends on where you live and varies throughout the country. The average person in the United States receives about 3 milli-Sieverts (mSv) per year from background radiation. A mSv is a unit of measurement for radiation, like an inch is a unit of length. Which medical MRI and ultrasound do not use ionizing (high-energy) radiation to make imaging exams images. MRI uses magnets and radio waves, and ultrasound uses sound waves. use radiation? Diagnostic An X-ray is a form of energy that can pass through your child’s bones and Radiography tissues to create an image. The image created is called a radiograph, sometimes referred to as an “X-ray.” X-rays are used to detect and diagnose conditions in the body. CT scan A CT (computed tomography) scan, sometimes called a “CAT scan,” uses X-rays, special equipment, and computers to make pictures that provide a multidimensional view of a body part. -
General Terms for Radiation Studies: Dose Reconstruction Epidemiology Risk Assessment 1999
General Terms for Radiation Studies: Dose Reconstruction Epidemiology Risk Assessment 1999 Absorbed dose (A measure of potential damage to tissue): The Bias In epidemiology, this term does not refer to an opinion or amount of energy deposited by ionizing radiation in a unit mass point of view. Bias is the result of some systematic flaw in the of tissue. Expressed in units of joule per kilogram (J/kg), which design of a study, the collection of data, or in the analysis of is given the special name Agray@ (Gy). The traditional unit of data. Bias is not a chance occurrence. absorbed dose is the rad (100 rad equal 1 Gy). Biological plausibility When study results are credible and Alpha particle (ionizing radiation): A particle emitted from the believable in terms of current scientific biological knowledge. nucleus of some radioactive atoms when they decay. An alpha Birth defect An abnormality of structure, function or body particle is essentially a helium atom nucleus. It generally carries metabolism present at birth that may result in a physical and (or) more energy than gamma or beta radiation, and deposits that mental disability or is fatal. energy very quickly while passing through tissue. Alpha particles cannot penetrate the outer, dead layer of skin. Cancer A collective term for malignant tumors. (See “tumor,” Therefore, they do not cause damage to living tissue when and “malignant”). outside the body. When inhaled or ingested, however, alpha particles are especially damaging because they transfer relatively Carcinogen An agent or substance that can cause cancer. large amounts of ionizing energy to living cells. -
What Is Electromagnetic Radiation?
WHATHAT ISIS ELELECTRT R OMAGNETICOMAGNETIC RADIAADIATITIONON? MEET A PLANETARY SCIENTIST — Dr. Carlé Pieters, Brown University How are radio waves, visible light, and X-rays similar? They are all types of electromagnetic radiation. All three travel — radiate — What do you do? and are made or detected by electronic (or magnetic) sensors, like a T.V., a digital camera, or a dentist’s X-ray machine. Types of electromagnetic radiation with which we are most familiar include ultraviolet light (causing sunburn), infrared light (in remote controls), and microwaves (in ovens). Electromagnetic radiation is made of electromagnetic waves. It is classified by the distance from the crest of one wave to the crest of the next — the wavelength. These waves can be thousands of miles long, like radiowaves, or smaller than an atom, like gamma rays! Collectively, these wavelengths make a spectrum — the electromagnetic spectrum. The shorter the wavelength, the more energetic the electromagnetic radiation. Radio waves, including microwaves, have long wavelengths and relatively low energy levels. Visible light, ultraviolet rays, X-rays, and gamma rays have shorter wavelengths and correspondingly higher levels of energy. The wavelengths of ultraviolet light, X-rays, and gamma rays are short enough to interact with human tissue and even alter DNA. What have you investigated on the Moon? Radiation Cosmic and Ultraviolet Visible Infrared Type X-Rays Microwaves and Radio Waves Gamma Rays Light Light Light 0.01 10 400 700 1 million nanometers nanometers nanometers nanometers nanometers Relative Why should we return to the Moon? Size tip of atomic atom molecule bacterium butterflyastronaut buildings nucleus a pin (you!) WHATHAT ISIS REFLECTANCEEFLECTANCE SPECPECTRTROSCOPYOSCOPY? If someone wants to become a scientist, what should they do? Spectroscopy is the study of the electromagnetic radiation emitted, absorbed, or reflected by an object. -
Radiation Glossary
Radiation Glossary Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear Regulatory Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended. Under the agreement, the state regulates the use of by-product, source, and small quantities of special nuclear material within said state. Airborne Radioactive Material Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. ALARA Acronym for "As Low As Reasonably Achievable". Making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken. It takes into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, societal and socioeconomic considerations, and in relation to utilization of radioactive materials and licensed materials in the public interest. Alpha Particle A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus, with a mass number of 4 and a charge of +2. Annual Limit on Intake (ALI) Annual intake of a given radionuclide by "Reference Man" which would result in either a committed effective dose equivalent of 5 rems or a committed dose equivalent of 50 rems to an organ or tissue. Attenuation The process by which radiation is reduced in intensity when passing through some material. -
Background Radiation Impacts Human Longevity and Cancer Mortality
bioRxiv preprint doi: https://doi.org/10.1101/832949; this version posted November 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Background radiation impacts human longevity and cancer mortality: Reconsidering the linear no-threshold paradigm Elroei David1*, Ph.D., Marina Wolfson2, Ph.D., Vadim E. Fraifeld2, M.D., Ph.D. 1Nuclear Research Center Negev (NRCN), P.O. Box 9001, Beer-Sheva, 8419001, Israel. 2The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel. *Corresponding author: Elroei David, PhD, e-mail: [email protected] Keywords: background radiation, longevity, cancer, United States Running title: Background Radiation, Human Longevity and Cancer Mortality Number of words (body text + cover page + figure legends): 2302 Number of figures: 3 Number of tables: 1 Number of references: 28 1 bioRxiv preprint doi: https://doi.org/10.1101/832949; this version posted November 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract BACKGROUND The current linear-no-threshold paradigm assumes that any exposure to ionizing radiation carries some risk, thus every effort should be made to maintain the exposures as low as possible. Here, we examined whether background radiation impacts human longevity and cancer mortality. METHODS Our data covered the entire US population of the 3139 US counties, encompassing over 320 million people. -
UV Radiation (PDF)
United States Air and Radiation EPA 430-F-10-025 Environmental Protection 6205J June 2010 Agency www.epa.gov/ozone/strathome.html UV Radiation This fact sheet explains the types of ultraviolet radiation and the various factors that can affect the levels reaching the Earth’s surface. The sun emits energy over a broad spectrum of wavelengths: visible light that you see, infrared radiation that you feel as heat, and ultraviolet (UV) radiation that you can’t see or feel. UV radiation has a shorter wavelength and higher energy than visible light. It affects human health both positively and negatively. Short exposure to UVB radiation generates vitamin D, but can also lead to sunburn depending on an individual’s skin type. Fortunately for life on Earth, our atmosphere’s stratospheric ozone layer shields us from most UV radiation. What does get through the ozone layer, however, can cause the following problems, particularly for people who spend unprotected time outdoors: ● Skin cancer ● Suppression of the immune system ● Cataracts ● Premature aging of the skin Did You Since the benefits of sunlight cannot be separated from its damaging effects, it is important to understand the risks of overexposure, and take simple precautions to protect yourself. Know? Types of UV Radiation Ultraviolet (UV) radiation, from the Scientists classify UV radiation into three types or bands—UVA, UVB, and UVC. The ozone sun and from layer absorbs some, but not all, of these types of UV radiation: ● tanning beds, is UVA: Wavelength: 320-400 nm. Not absorbed by the ozone layer. classified as a ● UVB: Wavelength: 290-320 nm.