Object Management Group Meeting (Reston, Va., March 2014)

Total Page:16

File Type:pdf, Size:1020Kb

Object Management Group Meeting (Reston, Va., March 2014) Object Management Group Meeting (Reston, Va., March 2014) Report by Claude Baudoin (cébé IT & Knowledge Management) April 20, 2014 This report contains notes from sessions the author personally attended during the OMG Technical Meeting in Reston on March 24-28: the meeting of the Business Modeling and Integration Domain Task Force, the Business Architecture SIG, the Analysis and Design Task Force, the plenary lunch presentations, and the closing plenary report sessions. A comprehensive list of all the committees, task forces and working groups of the OMG can be found at www.omg.org/homepages/. A list of all the work in progress, with links to the corresponding materials (RFPs, etc.) is at http://www.omg.org/schedule/. Contents 1. Business Modeling and Integration Domain Task Force (BMI DTF) ......................................................... 2 2. Business Architecture Innovation Summit ............................................................................................... 7 3. Analysis & Design Task Force (ADTF) ..................................................................................................... 14 4. Plenary Lunch Presentations .................................................................................................................. 18 5. Plenary Report Sessions ......................................................................................................................... 18 6. Next Meetings ........................................................................................................................................ 25 OMG Reston Meeting Report Meeting Reston OMG Copyright © 2014 Object Management Group 1 1. Business Modeling and Integration Domain Task Force (BMI DTF) Claude Baudoin (cébé IT & Knowledge Management), Donald Chapin (Business Semantics Ltd), and Fred Cummins (Agile Enterprise Design) co-chaired the meeting. Claude reviewed the agenda. The meeting started with a series of presentations and discussions about SBVR (sections 1.1—1.4). 1.1. “Whither SBVR: Insights for SBVR 2.0 from Tool Development” by Ed Barkmeyer Ed Barkmeyer said that the Semantic of Business Vocabulary and Business Rules (SBVR) is now seven years old. It has some good and some bad features. The goal was to enable the interchange between tools, but this goal has been “lost in the shuffle.” SBVR is not used in the Decision Modeling Notation (DMN) or in other recent specifications that should have used it. One of the problems, according to Ed, is that the standard is written as a tutorial to use business vocabularies, not as a standard. Another issue is that almost everyone who uses SBVR is actually using SBVR Structured English (SBVR-SE), which was just supposed to be an example, described in an Appendix, and is not a normative specification. Ed pointed out some inconsistencies in the definition of properties and relationships. SBVR uses statements like “owner has car” and “car has owner” which are not equivalent: the first statement says that there is a relationship between two entities, and the second one says that a car has the property of having an owner – but the specification confuses two meaning of “to have.” Ed made many impassioned statements, and Don Chapin disagreed with several of them. Ed criticized the Revision Task Force for “rearranging the chairs on the deck of the Titanic.” He then proceeded to propose what changes need to be made: • Better semantic formulations, specifically in OCL • Improve the conformance criteria for tools that produce and consume exchange files • Remove certain “ontological commitments,” including SBVR’s handling of a time model • Mappings between SKOS (the W3C’s Simple Knowledge Organization System) and SBVR, and an RDF representation form in order to compete directly in the SKOS market • A metamodel for Structured English. Ed presented a sample metamodel, which he has implemented in a tool. The presentation is available at www.omg.org/members/cgi-bin/doc?bmi/14-03-01.pdf. 1.2. “SBVR: What It Is, What Its Future Should Be” by Donald Chapin Don Chapin, who chairs the SBVR RTF, presented his view of the specification. He said that SBVR “has a metamodel, but is not itself a metamodel.” SBVR addresses the existence of communities that share the meanings of certain concepts, the existence of subgroups that employ different preferred terms, and the use of specialized vocabularies, such as legal terminology. OMG Reston Meeting Report Meeting Reston OMG Copyright © 2014 Object Management Group 2 Donald described the process of “deconstructing” a regulation to extract the business vocabulary and rules. He showed and example from US anti-money laundering regulations, which were analyzed by GITC, a policy group within University College Cork. The first step is to formalize the compliance rules from the source regulation; the second step is to recognize the verb concepts in the formalized source. There was some discussion of when compound verb phrases need to be split into multiple verb concepts. Noun concepts fill roles in verb concepts. There was discussion about the distinction between concepts and “things in the real world.” There is a semantic triangle in SBVR to describe the relationship between concepts, terms, and things. A term like “US dollar” is the name of a concept (the US currency), but it is also used to designate the actual things (amounts of money, or dollar bills), which are not in SBVR but live in the real world of the business. Don described the changes being made to create version 1.3: • Complete the interpretation in formal logic, consistent with ISO Common Logic (ISO/IEC 24707) • Resequence the text to improve readability In addition, SBVR needs to be promoted to business people, especially people who deal with regulations. Don’s presentation is at www.omg.org/members/cgi-bin/doc?bmi/14-03-02.pdf. 1.3. “SBVR as a Meta-Meta-Model – Should SBVR be a Language for the Specification of Modeling Language?” by Fred Cummins Fred Cummins raised the question of whether SBVR could sufficiently align with the Meta Object Facility (MOF) to express all MOF concepts. Fred presented a potential mapping, which Donald and Ed said was incorrect; however, Fred said that the point was not the correctness of the mapping, but the idea that there could be a mapping. MOF is a form of business language, so it could in theory be expressed using SBVR. Fred’s slides are available at http://www.omg.org/members/cgi-bin/doc?bmi/14-03-03.pdf. Fred’s perspective comes from experience with “reflective languages” – languages that can describe themselves, and can operate on themselves. He sees a potential RFP for a “core reflective metamodel.” Donald and Ed agreed that what Fred proposes is essentially the same thing as the Semantic Information Modeling for Federation (SIMF), for which there is an RFP that has not progressed quickly. There was also an Architecture Ecosystem Foundation RFP in 2010, which competed with UML/MOF, did not generate sufficient market interest, and was not approved. Ed also pointed out that a complicating factor is that the SIMF RFP is handled in a Platform Task Force, while BMI is a Domain Task Force. In order to have a voice in both efforts, an organization would have to be a Contributing Member, which costs more. 1.4. Roadmap Discussion on SBVR Following the presentations of these often conflicting viewpoints on SBVR, a discussion was undertaken to establish a mutually agreeable roadmap. The discussion, captured on flip charts, is transcribed in the table below. OMG Reston Meeting Report Meeting Reston OMG Copyright © 2014 Object Management Group 3 Agreement • Don has canvassed tool vendors, and they support SBVR in their databases. Areas • There is a consensus that they would support a controlled natural language (syntax, not metamodel) – so this is an opportunity for an RFP. • They would support having an RDF interchange format – hence an opportunity for an RFP or RFC. • Many of the line items about SBVR shortcomings (Ed’s presentation) are agreed by the RTF and can be addressed by it. • A mapping to ISO Common Logic could replace the one that Terry did, based on work that’s 25 years old. o There is a question whether Clause 10 needs to be redone completely or not – this led to a “battle of the experts” about common logic. Semantic • Different positions: Model of SBVR o Don Chapin: we’re going to work on it in the RTF o Fred Cummins: this is beyond the scope of the RTF, we should have an RFP o Ed Barkmeyer (NIST), Fabien Neuhaus (University of Magdeburg): we need modal logic o Jishnu Mukerji (HP): who cares about it? (answer: GITC, for one) • Elie Abi-Lahoud (UCC): Develop mappings between a subset of the vocabulary and structure rules on the one hand, and first-order logic on the other o Agreement that this can be done by splitting the table in Clause 10 into two • Clarification of the exchange for and SBVR XMI metamodel o After discussion, it seemed to be an issue of clarity rather than substance; hence it needs to be captured as an issue for the RTF. Process • Should all this be done by the RTF (Don’s position) or via an RFP (Fred’s position)? Question o Jishnu: RTFs should be limited to bug fixes; RFPs should be used to make substantial changes. o Progress in the RTF requires consensus by the submitters of the original specification, while submissions to an RFP can be competitive and allow the entire task force to interact with those submitters. o Jishnu: you need to capture everything as issues, then do triage, and then see what
Recommended publications
  • Metadata for Semantic and Social Applications
    etadata is a key aspect of our evolving infrastructure for information management, social computing, and scientific collaboration. DC-2008M will focus on metadata challenges, solutions, and innovation in initiatives and activities underlying semantic and social applications. Metadata is part of the fabric of social computing, which includes the use of wikis, blogs, and tagging for collaboration and participation. Metadata also underlies the development of semantic applications, and the Semantic Web — the representation and integration of multimedia knowledge structures on the basis of semantic models. These two trends flow together in applications such as Wikipedia, where authors collectively create structured information that can be extracted and used to enhance access to and use of information sources. Recent discussion has focused on how existing bibliographic standards can be expressed as Semantic Metadata for Web vocabularies to facilitate the ingration of library and cultural heritage data with other types of data. Harnessing the efforts of content providers and end-users to link, tag, edit, and describe their Semantic and information in interoperable ways (”participatory metadata”) is a key step towards providing knowledge environments that are scalable, self-correcting, and evolvable. Social Applications DC-2008 will explore conceptual and practical issues in the development and deployment of semantic and social applications to meet the needs of specific communities of practice. Edited by Jane Greenberg and Wolfgang Klas DC-2008
    [Show full text]
  • A Metadata Registry for Metadata Interoperability
    Data Science Journal, Volume 6, Supplement, 8 July 2007 A METADATA REGISTRY FOR METADATA INTEROPERABILITY Jian-hui Li *, Jia-xin Gao, Ji-nong Dong, Wei Wu, and Yan-fei Hou Computer Network Information Center, Chinese Academy of Sciences *Email: [email protected] ABSTRACT In order to use distributed and heterogeneous scientific databases effectively, semantic heterogeneities have to be detected and resolved. To solve this problem, we propose architecture for managing metadata and metadata schema using a metadata registry. A metadata registry is a place to keep facts about characteristics of data that are necessary for data sharing and exchange in a specific domain. This paper will explore the role of metadata registries and describe some of the experiences of implementing the registry. Keywords: Metadata, Metadata Registry, Interoperability, Crosswalk, Application Profile 1 INTRODUCTION Users and applications can easily find, locate, access, and use distributed and heterogeneous scientific databases with the help of metadata. Metadata are especially important for open access to and sharing of scientific data and databases. Different domains, however, will develop or follow different metadata specifications; even the same domain develops different metadata application profiles based on the same specifications according to their special requirements. Consequently, interoperability of metadata is a major issue for scientific data sharing and exchanging. Metadata Registry is a key solution to solve this problem. The DESIRE (Heery, Gardner, Day, & Patel, 2000), SCHEMAS (UKOLN, SCHEMAS, 2003), and CORES (UKOLN, CORES, 2003) projects are successful examples. Based on the requirements of the scientific databases of the Chinese Academy of Sciences and the Basic Scientific Data Sharing Network, one project of the National Scientific Data Sharing Program, we have designed and developed a metadata registry – the Scientific Database Metadata Registry (SDBMR).
    [Show full text]
  • 1 1. Opening Page Good Morning Ladies and Gentlemen My Name Is
    1. Opening page Good morning ladies and gentlemen My name is stephen machin I currently work As a data management consultant in mons in belgium Thank you very much for allowing me to speak to you today And thanks for coming along to listen I hope that you will find the presentation informative The purpose of this presentation Is to resolve the ambiguous term metadata Into its constituent concepts Having separated out the concepts We then provide Unambiguous and "systematic" definitions for each And then we give an exact description of the nature of the relationships between them with an equation which emphasises the separation of the concepts but also shows how they are tightly bound together 1 2. Metadata Metadata is a confused and ambiguous concept. several authors have remarked upon this One even goes so far as to say that the word No longer has any meaning Iso 11179 A much quoted metadata standard Says that the word has evolved and no longer has its old traditional meaning and that it now also refers to many other things but the standard explicitly limits it scope to the traditional sense of the word and this means that these things are not described 2 3. 11179: metadata = DE = container If we take a close look at The specifications for iso 11179 "The Metadata registry“ we note that for at least 7 years between 1994 and 2001 In its original formulation It referred to itself as the "data element" registry And the standard describes a data element as being a "container for data" and so ISO 11179 describes a metadata registry a data element registry a data container registry 3 4.
    [Show full text]
  • Reference Architecture for Space Information Management
    Report Concerning Space Data System Standards REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT INFORMATIONAL REPORT CCSDS 312.0-G-1 GREEN BOOK March 2013 Report Concerning Space Data System Standards REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT INFORMATIONAL REPORT CCSDS 312.0-G-1 GREEN BOOK March 2013 REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT AUTHORITY Issue: Green Book, Issue 1 Date: March 2013 Location: Washington, DC, USA This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical working group experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in Organization and Processes for the Consultative Committee for Space Data Systems. This document is published and maintained by: CCSDS Secretariat Space Communications and Navigation Office, 7L70 Space Operations Mission Directorate NASA Headquarters Washington, DC 20546-0001, USA CCSDS 312.0-G-1 Page i March 2013 REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT FOREWORD Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Report is therefore subject to CCSDS document management and change control procedures, which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-3). Current versions of CCSDS documents are maintained at the CCSDS Web site: http://www.ccsds.org/ Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i. CCSDS 312.0-G-1 Page ii March 2013 REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT At time of publication, the active Member and Observer Agencies of the CCSDS were: Member Agencies – Agenzia Spaziale Italiana (ASI)/Italy.
    [Show full text]
  • Metadata Schema Registries in the Partially Semantic Web: the CORES Experience
    Metadata schema registries in the partially Semantic Web: the CORES experience Rachel Heery, Pete Johnston UKOLN, University of Bath, UK {r.heery, p.johnston}@ukoln.ac.uk Csaba Fülöp, András Micsik Computer and Automation Research Institute of the Hungarian Academy of Sciences (SZTAKI), Hungary {csabi, micsik}@dsd.sztaki.hu Abstract Increasingly, as the digital library becomes embedded in the wider sphere of e-Learning and e-Science, implementers are The CORES metadata schemas registry is designed to challenged to manage interworking systems based on enable users to discover and navigate metadata element different metadata standards. CORES envisages a network sets. The paper reflects on some of the experiences of of schema registries supporting the discovery and implementing the registry, and examines some of the issues navigation of core element sets. By 'declaring' such element of promoting such services in the context of a "partially sets in structured schemas and making those schemas Semantic Web" where metadata applications are evolving available to navigable registries, their owners make them and many have not yet adopted the RDF model. accessible to other users who can find and re-use either a Keywords: metadata schema registries, RDF, XML, whole element set or the component data elements, or even Semantic Web. a particular localisation of the element set captured as an 'application profile' [3]. If schemas can be located easily, implementers will be encouraged to re-use existing work, 1. Introduction and to take a common approach to the naming and identification of data elements. The CORES project has explored the potential for In order to enable such core element sets to be shared, supporting the creation and re-use of metadata schemas there needs to be a common model for identifying data using Semantic Web technology [1].
    [Show full text]
  • 2 Data Development Overview
    2 Data development overview This chapter provides an overview of data development and introduces the key components, such as data, information, data elements, metadata, data standards and their relationships. The importance of data standards to data development is explained and the relationship between terminology and data standards is discussed. 2.1 What is data? Data are representations of real world facts, concepts or instructions in a formalised manner suitable for communication, interpretation or processing by human beings or automatic means (Standards Australia 2005). Data relates to events, people, transactions and facts. For example, some of the data collected when a person buys products at a supermarket include: • cash register identifier (id) (for example, 123) • cashier identifier (id) (for example Z456) • item description (for example, apple juice, jam, bread, coffee, milk) • item identifier (id) (for example, X123) • item unit price (for example, $1.20) • quantity (for example, 2) • total cost (for example, $10.30) • date of service (for example, 26.10.2005) • time of service (for example, 14:30) • payment method (for example, cash, credit card, cheque). 2.2 What is information? Information is data that are interpreted, organised and structured in such a way as to be meaningful to the person who receives it (Standards Australia 2005). At the point of service delivery, data about items purchased by a customer in a supermarket are converted into information and provided to the customer in the form of a receipt. The same data would also be useful to the supermarket manager. For example, information in the form of a report showing total sales in the day and the best-selling products would help with inventory control.
    [Show full text]
  • Metadata Registry, Iso/Iec 11179
    LLNL-JRNL-400269 METADATA REGISTRY, ISO/IEC 11179 R. K. Pon, D. J. Buttler January 7, 2008 Encyclopedia of Database Systems Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. METADATA REGISTRY, ISO/IEC 11179 Raymond K. Pon UC Los Angeles, http://www.cs.ucla.edu/~rpon David J. Buttler Lawrence Livermore National Laboratory, http://people.llnl.gov/buttler1 This work (LLNL-JRNL-400269) was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. SYNONYMS Metadata Repository, MDR DEFINITION ISO/IEC-11179 [1] is an international standard that documents the standardization and registration of metadata to make data understandable and shareable. This standardization and registration allows for easier locating, retrieving, and transmitting data from disparate databases.
    [Show full text]
  • Metadata Standards and Metadata Registries: an Overview
    METADATA STANDARDS AND METADATA REGISTRIES: AN OVERVIEW Bruce E. Bargmeyer, Environmental Protection Agency, and Daniel W. Gillman, Bureau of Labor Statistics Daniel W. Gillman, Bureau of Labor Statistics, Washington, DC 20212 [email protected] ABSTRACT Much work is being accomplished in the national and international standards communities to reach consensus on standardizing metadata and registries for organizing that metadata. This work has had a large impact on efforts to build metadata systems in the statistical community. Descriptions of several metadata standards and their importance to statistical agencies are provided. Applications of the standards at the Census Bureau, Environmental Protection Agency, Bureau of Labor Statistics, Statistics Canada, and many others are provided as well, with an emphasis on the impact a metadata registry can have in a statistical agency. Standards and registries based on these standards help promote interoperability between organizations, systems, and people. Registries are vehicles for collecting, managing, comparing, reusing, and disseminating the designs, specifications, procedures, and outputs of systems, e.g., statistical surveys. These concepts are explained in the paper. Key Words: Data Quality, Data Management 1. INTRODUCTION Metadata is loosely defined as data about data. Though this definition is cute and easy to remember, it is not very precise. Its strength is in recognizing that metadata is data. As such, metadata can be stored and managed in a database, often called a registry or repository. However, it is impossible to identify metadata just by looking at it. We don't know when data is metadata or just data. Metadata is data that is used to describe other data, so the usage turns it into metadata.
    [Show full text]
  • Metadata and Paradata: Information Collection and Potential Initiatives
    Metadata and Paradata Institute of Education Sciences National Center for Education Statistics national institute OF statistical sciences Expert Panel report METADATA AND PARADATA: INFORMATION COLLECTION AND POTENTIAL INITIATIVES National Institute of Statistical Sciences Expert Panel Report November 2010 1 Metadata and Paradata TABLE OF CONTENTS _ Executive Summary ......................................................................................................................................... 3 Preface ............................................................................................................................................................. 5 Background ...................................................................................................................................................... 6 I. Terminology ............................................................................................................................................. 6 II. Review of Metadata Resources ................................................................................................................ 9 III. Specific Efforts in Other Countries ......................................................................................................... 13 IV. Specific Initiatives in the US Government .............................................................................................. 14 V. Survey of ICSP Websites ........................................................................................................................
    [Show full text]
  • Ebxml Manager Composite Application User's Guide
    ebXML Manager Composite Application User’s Guide Release 5.0.5 SeeBeyond Proprietary and Confidential The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation (SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing, copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for the use or reliability of its software on platforms that are not supported by SeeBeyond. SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay, eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective owners.
    [Show full text]
  • Semantic Technologies I OMG Ontology Definition Metamodel
    Arbeitsgruppe Semantic Business Process Management Lecture 5 – Semantic Technologies I OMG Ontology Definition Metamodel Prof. Dr. Adrian Paschke Corporate Semantic Web (AG-CSW) Institute for Computer Science, Freie Universitaet Berlin [email protected] http://www.inf.fu-berlin.de/groups/ag-csw/ Problem: Only Syntactic BPM Models Lacks of Web Service Technology . Current BPM technologies allow usage of Web Services . But: . only syntactical information descriptions . syntactic support for discovery, composition and execution => Web Service usability, usage, and integration needs to be inspected manually . no semantically marked up content / services . no support for the Semantic Web rules and ontologies => current Web Service Technology Stack failed to realize the promise of Web Services Overview . Overview Semantic Technologies . Ontologies . OMG Ontology Definition Metamodel . W3C Web Ontology Language . Rules . OMG SBVR . OMG PRR . W3C RIF . RuleML Semantic Computing Technologies 4. Software Agents and Web-based Services . Rule Responder, FIPA, Semantic Web Services, … 3. Rules and Event/Action Logic & Inference . RIF, SBVR, PRR, RuleML, Logic Programming Rule/Inference Engines,… 2. Ontologien . ODM, CL, Topic Maps RDFS, OWL Lite|DL|Full, OWL 2, … 1. Explicit Meta-data and Terminologies . vCard, PICS, Dublin Core, RDF, RDFa, Micro Formats, FOAF, SIOC … 1. Explicit Metadata on the Web . Metadata are data about data . Metadata on the Web: . Machine processable information about information on the Web . Projects . e.g., PICS, Dublin Core, RDF, FOAF, SIOC, … . Problem domains: . Syntax: . Which representation and interchange format for metadata? . Semantics: . Which metadata are allowed for resources (metadata vocabulary, schema) . Association problem: . How to connect metadata with resources (who defines the metadata, are metadata separated from the content, etc.) 2.
    [Show full text]
  • Metadata Standards & Applications
    Cataloging for the 21st Century -- Course 2 Metadata Standards & Applications Trainee Manual Original course design by Diane I. Hillmann Cornell University Library Revised by Rebecca Guenther and Allene Hayes, Library of Congress For The Library of Congress And the Association for Library Collections & Technical Services Washington, DC August 2008 THIS PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE SIDED COPY Trainee Manual Course Outline Metadata Standards and Applications Outline 1. Introduction to Digital Libraries and Metadata • Discuss similarities and differences between traditional and digital libraries • Understand how the environment where metadata is developing is different from the library automation environment • Explore different types and functions of metadata (administrative, technical, administrative, etc.) Exercise: Examine three digital library instances, discuss differences in user approach and experience, and look for examples of metadata use 2. Descriptive Metadata Standards • Understand the categories of descriptive metadata standards (e.g., data content standards, data value standards, data structure standards, relationship models) • Learn about the various descriptive metadata standards and the communities that use them • Evaluate the efficacy of a standard for a particular community • Understand how relationship models are used Exercise: Create a brief descriptive metadata record using the standard assigned. 3. Technical and Administrative Metadata Standards • Understand the different types of administrative metadata
    [Show full text]