Table SI. Differential Target Genes Between GSE105503 and GSE105291 Datasets

Total Page:16

File Type:pdf, Size:1020Kb

Table SI. Differential Target Genes Between GSE105503 and GSE105291 Datasets Table SI. Differential target genes between GSE105503 and GSE105291 datasets. Gene ELF1 CSDE1 Fold change P‑value AATF 298.5087938 83.25382874 0.278899083 0.005998215 ABHD11 115.0217371 36.1496888 0.314285714 0.016921537 AC006486.1 501.1661401 52.58136552 0.104918033 4.96E‑06 AC007773.3 30.12474066 7.668115805 0.254545455 0.027561387 AC016586.1 58.42373947 16.43167673 0.28125 0.016439347 AC073528.1 2.738612788 15.33623161 5.6 0.035200688 AC091948.1 4.564354646 24.09979253 5.28 0.014571871 AC092291.2 1.825741858 18.62256696 10.2 0.005871816 AC092384.1 0.912870929 13.14534138 14.4 0.011364226 AC097381.1 28.2989988 6.57267069 0.232258065 0.022941492 AC110084.1 3.651483717 19.71801207 5.4 0.021715996 AC115618.1 139.6692522 10.95445115 0.078431373 3.75E‑06 ACAP3 245.5622799 75.58571294 0.307806691 0.011289432 ACD 154.275187 61.34492644 0.397633136 0.048875511 ACO2 138.7563812 50.39047529 0.363157895 0.032410205 ACOT4 186.2256696 60.24948133 0.323529412 0.016217042 ACTB 279.3385043 90.92194455 0.325490196 0.0150048 ACTL10 74.85541619 24.09979253 0.32195122 0.024725724 ACTR6 374.277081 144.5987552 0.386341463 0.036984508 ADAMTSL4‑AS1 78.50689991 25.19523765 0.320930233 0.023602102 ADAMTSL5 100.4158022 37.24513391 0.370909091 0.040636034 ADAP1 178.0098312 67.91759713 0.381538462 0.038639115 ADPGK 692.8690352 202.6573463 0.292490119 0.007834152 ADPRHL1 385.2315321 25.19523765 0.065402844 1.44E‑07 ADPRHL2 125.9761882 39.43602414 0.313043478 0.015827238 ADRM1 255.6038602 93.11283478 0.364285714 0.028154805 AF165138.7 12.78019301 84.34927386 6.6 0.000373367 AGPAT2 90.37422199 28.48157299 0.315151515 0.019780324 AIP 238.2593125 53.67681064 0.225287356 0.001725477 AK3 171.6197347 61.34492644 0.357446809 0.028088554 AKT1S1 278.4256334 95.30372501 0.342295082 0.019847132 AKT3 99.50293128 260.7159374 2.620183486 0.035161815 AL121761.2 57.51086854 14.2407865 0.247619048 0.009438085 AL138847.1 12.78019301 52.58136552 4.114285714 0.008611941 AL365202.1 2.738612788 15.33623161 5.6 0.035200688 AL590708.2 40.16632088 8.76356092 0.218181818 0.009576099 AL807752.1 41.99206274 12.04989627 0.286956522 0.026019956 ALAD 379.7543065 128.1670785 0.3375 0.017830926 ALDOA 564.1542342 211.4209072 0.374757282 0.03168705 AMDHD2 64.81383597 19.71801207 0.304225352 0.021252876 ANGPTL5 20.99603137 71.20393248 3.391304348 0.015775963 ANKRD13D 340.5008566 128.1670785 0.376407507 0.032328876 ANKRD37 93.11283478 25.19523765 0.270588235 0.00902156 AP1M1 434.5265623 95.30372501 0.219327731 0.001213631 AP2S1 178.0098312 62.44037156 0.350769231 0.025231473 AP5Z1 467.3899157 133.644304 0.2859375 0.006727076 APC2 158.8395417 63.53581667 0.4 0.049929391 APEH 200.8316044 51.48592041 0.256363636 0.00416681 APRT 500.2532692 49.29503018 0.098540146 3.02E‑06 ARF4 303.9860194 43.8178046 0.144144144 7.04E‑05 ARF6 125.9761882 48.19958506 0.382608696 0.04306704 ARHGAP1 413.5305309 151.1714259 0.365562914 0.027624698 ARHGAP20 52.03364296 134.7397491 2.589473684 0.042943545 ARHGAP4 220.0018939 64.63126179 0.293775934 0.008949955 ARHGDIA 335.9365019 60.24948133 0.179347826 0.000316086 ARHGEF18 119.5860917 23.00434742 0.192366412 0.001087007 ARL14EPL 14.60593487 42.72235949 2.925 0.046795738 ARMC5 755.8571294 90.92194455 0.120289855 1.40E‑05 ARMC7 130.5405429 47.10413995 0.360839161 0.032057642 Table SI. Continued. Gene ELF1 CSDE1 Fold change P‑value ARPC1A 615.2750063 142.407865 0.231454006 0.001740585 ARPC3 264.7325695 62.44037156 0.235862069 0.002200475 ARPC5L 293.0315683 82.15838363 0.280373832 0.006220771 ARRDC1 398.0117251 96.39917012 0.242201835 0.002359676 ARRDC2 243.7365381 59.15403621 0.242696629 0.002730491 ARX 62.07522318 15.33623161 0.247058824 0.00850848 ASB3 0.912870929 10.95445115 12 0.025290099 ASB6 154.275187 47.10413995 0.305325444 0.012666223 ASCL2 45.64354646 10.95445115 0.24 0.011339597 ASCL5 248.3008927 60.24948133 0.242647059 0.002704971 ASF1B 145.1464777 54.77225575 0.377358491 0.038593585 ASPSCR1 653.6155853 178.5575537 0.273184358 0.005119649 ATF4 104.9801569 32.86335345 0.313043478 0.017468547 ATG4D 77.59402898 23.00434742 0.296470588 0.016337607 ATP13A1 357.8454042 136.9306394 0.382653061 0.035200461 ATP6V0C 18.25741858 1.095445115 0.06 0.003987369 ATP6V0D1 745.8155491 144.5987552 0.193880049 0.000517964 AURKAIP1 208.1345719 23.00434742 0.110526316 1.60E‑05 AVPI1 82.15838363 27.38612788 0.333333333 0.027396287 B3GALT6 65.7267069 17.52712184 0.266666667 0.01142317 B3GAT3 295.7701811 59.15403621 0.2 0.000709501 BAD 68.46531969 16.43167673 0.24 0.006613086 BANF1 173.4454765 47.10413995 0.271578947 0.006248831 BCAP31 186.2256696 59.15403621 0.317647059 0.014676226 BCAT2 188.0514114 72.29937759 0.384466019 0.039618178 BCL10 186.2256696 50.39047529 0.270588235 0.005929087 BCL2L1 280.2513753 108.4490664 0.386970684 0.037937814 BHLHA15 25.56038602 6.57267069 0.257142857 0.037502224 BHLHE23 38.34057903 12.04989627 0.314285714 0.04090216 BIN3 196.2672498 52.58136552 0.267906977 0.005468476 BLOC1S3 216.3504102 52.58136552 0.243037975 0.002910062 BLOC1S4 125.9761882 24.09979253 0.191304348 0.000993829 BOP1 53.85938482 15.33623161 0.284745763 0.018904148 BRI3 167.05538 36.1496888 0.216393443 0.001645825 BRMS1 382.4929193 66.82215202 0.174701671 0.000250991 BSCL2 140.5821231 44.91324972 0.319480519 0.016765486 C10orf68 81.2455127 271.6703885 3.343820225 0.009036741 C10orf95 99.50293128 25.19523765 0.253211009 0.006042517 C11orf31 68.46531969 16.43167673 0.24 0.006613086 C11orf35 86.72273827 28.48157299 0.328421053 0.024736235 C12orf10 254.6909892 83.25382874 0.32688172 0.015685513 C12orf61 243.7365381 76.68115805 0.314606742 0.012805164 C12orf66 725.7323887 176.3666635 0.243018868 0.002434456 C14orf2 303.9860194 107.3536213 0.353153153 0.02321312 C14orf39 75.76828712 215.8026877 2.848192771 0.02352538 C14orf80 256.5167311 101.8763957 0.397153025 0.043793329 C16orf13 103.154415 35.05424368 0.339823009 0.02646983 C16orf58 188.0514114 58.0585911 0.308737864 0.012508944 C16orf91 230.0434742 37.24513391 0.161904762 0.000198532 C17orf50 44.73067553 15.33623161 0.342857143 0.04849718 C17orf59 187.1385405 30.67246322 0.163902439 0.000257068 C17orf62 622.5779737 88.73105432 0.142521994 5.25E‑05 C18orf32 91.28709292 8.76356092 0.096 3.50E‑05 C19orf24 173.4454765 16.43167673 0.094736842 7.59E‑06 C19orf25 120.4989627 32.86335345 0.272727273 0.007788001 C19orf26 56.59799761 19.71801207 0.348387097 0.042617227 C19orf40 223.6533776 51.48592041 0.230204082 0.002042779 C19orf52 100.4158022 35.05424368 0.349090909 0.030548916 C19orf53 210.8731846 26.29068276 0.124675325 3.61E‑05 Table SI. Continued. Gene ELF1 CSDE1 Fold change P‑value C19orf73 71.20393248 12.04989627 0.169230769 0.00110821 C19orf81 91.28709292 31.76790834 0.348 0.031606396 C1QTNF4 25.56038602 6.57267069 0.257142857 0.037502224 C1orf122 46.55641739 9.859006035 0.211764706 0.006533725 C1orf172 123.2375754 26.29068276 0.213333333 0.001923661 C1orf227 0.912870929 16.43167673 18 0.00367025 C1orf229 87.6356092 29.57701811 0.3375 0.027976145 C1orf74 38.34057903 12.04989627 0.314285714 0.04090216 C20orf24 55.68512668 17.52712184 0.314754098 0.028142284 C21orf119 97.67718942 25.19523765 0.257943925 0.006767594 C21orf2 1068.058987 142.407865 0.133333333 2.77E‑05 C21orf59 177.0969603 42.72235949 0.241237113 0.003076096 C2orf42 342.3265984 93.11283478 0.272 0.005009274 C2orf43 342.3265984 134.7397491 0.3936 0.040737709 C3orf80 60.24948133 19.71801207 0.327272727 0.031157943 C4orf27 130.5405429 50.39047529 0.386013986 0.044415698 C4orf40 52.94651389 146.7896454 2.772413793 0.029878694 C6orf1 93.11283478 24.09979253 0.258823529 0.00716767 C6orf211 321.3305671 94.20827989 0.293181818 0.007979844 C6orf226 132.3662847 26.29068276 0.19862069 0.00118118 C7orf43 189.8771533 67.91759713 0.357692308 0.027432024 C8orf44‑SGK3 18.25741858 3.286335345 0.18 0.02888742 C8orf82 160.6652835 63.53581667 0.395454545 0.047147326 C9orf142 77.59402898 24.09979253 0.310588235 0.020389666 C9orf37 92.19996385 35.05424368 0.38019802 0.047280981 C9orf69 310.3761159 42.72235949 0.137647059 4.96E‑05 CAP1 293.0315683 90.92194455 0.310280374 0.011317369 CATSPERG 533.1166226 211.4209072 0.396575342 0.042433396 CBWD1 125.0633173 310.0109675 2.478832117 0.045825518 CCBL1 336.8493729 132.5488589 0.393495935 0.040700399 CCDC102B 38.34057903 115.0217371 3 0.021820736 CCDC130 285.7286008 62.44037156 0.218530351 0.001300397 CCDC137 142.407865 40.53146926 0.284615385 0.008939117 CCDC173 44.73067553 138.0260845 3.085714286 0.017474759 CCDC28A 213.6117974 62.44037156 0.292307692 0.008786538 CCDC61 440.9166588 71.20393248 0.161490683 0.000138315 CCDC71 70.29106155 10.95445115 0.155844156 0.000751648 CCDC85B 101.3286731 27.38612788 0.27027027 0.008402946 CCDC9 282.989988 75.58571294 0.267096774 0.004675199 CCDC94 241.9107962 52.58136552 0.217358491 0.001360604 CCND3 265.6454404 96.39917012 0.362886598 0.027396976 CCNDBP1 189.8771533 63.53581667 0.334615385 0.019324437 CCNO 108.6316406 37.24513391 0.342857143 0.026925837 CCZ1B 394.3602414 161.0304319 0.408333333 0.049000666 CD1C 23.73464416 66.82215202 2.815384615 0.03927396 CD200R1 53.85938482 147.8850905 2.745762712 0.031311506 CD2BP2 981.3362489 77.77660317 0.079255814 4.36E‑07 CD69 27.38612788 83.25382874 3.04 0.024176623 CDC45 331.3721473 78.87204828 0.238016529 0.002161582 CDIPT 187.1385405 49.29503018 0.263414634 0.005054287 CDK2AP2 191.7028951 59.15403621 0.308571429 0.012389881 CDK9 315.8533415 53.67681064 0.169942197 0.000222691 CEBPA 67.55244876 17.52712184 0.259459459 0.009758076 CEBPD 162.4910254 28.48157299 0.175280899 0.000451076 CELF5 83.98412548 31.76790834 0.37826087 0.04821733 CENPB 122.3247045 31.76790834 0.259701493 0.005896981 CFD 33.77622438 9.859006035 0.291891892 0.03678151 CHCHD2 107.7187696 31.76790834 0.294915254 0.012680586 CHCHD5 630.7938121 81.06293851 0.128509407 2.36E‑05 Table SI.
Recommended publications
  • Mechanotransduction Signaling in Podocytes from Fluid Flow Shear Stress
    Children's Mercy Kansas City SHARE @ Children's Mercy Manuscripts, Articles, Book Chapters and Other Papers 1-1-2018 Mechanotransduction signaling in podocytes from fluid flow shear stress. Tarak Srivastava Children's Mercy Hospital Hongying Dai Children's Mercy Hospital Daniel P. Heruth Children's Mercy Hospital Uri S. Alon Children's Mercy Hospital Robert E. Garola Children's Mercy Hospital See next page for additional authors Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers Part of the Animal Structures Commons, Medical Biophysics Commons, Medical Genetics Commons, Nephrology Commons, and the Pathology Commons Recommended Citation Srivastava, T., Dai, H., Heruth, D. P., Alon, U. S., Garola, R. E., Zhou, J., Duncan, R. S., El-Meanawy, A., McCarthy, E. T., Sharma, R., Johnson, M. L., Savin, V. J., Sharma, M. Mechanotransduction signaling in podocytes from fluid flow shear stress. American journal of physiology. Renal physiology 314, 22-22 (2018). This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact [email protected]. Creator(s) Tarak Srivastava, Hongying Dai, Daniel P. Heruth, Uri S. Alon, Robert E. Garola, Jianping Zhou, R Scott Duncan, Ashraf El-Meanawy, Ellen T. McCarthy, Ram Sharma, Mark L. Johnson, Virginia J. Savin, and Mukut Sharma This article is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/papers/1227 Am J Physiol Renal Physiol 314: F22–F34, 2018. First published September 6, 2017; doi:10.1152/ajprenal.00325.2017.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Differential Gene Expression of Minnesota (MN) Hygienic Honeybees (Apis Mellifera) Performing Hygienic Behavior
    Minnesota State University, Mankato Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato All Graduate Theses, Dissertations, and Other Graduate Theses, Dissertations, and Other Capstone Projects Capstone Projects 2016 Differential Gene Expression of Minnesota (MN) Hygienic Honeybees (Apis mellifera) Performing Hygienic Behavior Eric Northrup Minnesota State University Mankato Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds Part of the Bioinformatics Commons, Entomology Commons, and the Genetics Commons Recommended Citation Northrup, E. (2016). Differential Gene Expression of Minnesota (MN) Hygienic Honeybees (Apis mellifera) Performing Hygienic Behavior [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/619/ This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. Differential gene expression of Minnesota (MN) Hygienic honeybees (Apis mellifera) performing hygienic behavior By Eric Northrup A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science In Biological Sciences Minnesota State University, Mankato Mankato, Minnesota April 2016 Differential gene expression of MN Hygienic honeybees (Apis mellifera) performing hygienic behavior Eric Northrup This thesis has been examined and approved by the following members of the student’s committee.
    [Show full text]
  • Watsonjn2018.Pdf (1.780Mb)
    UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Microrna-205 Directly Targets Krüppel-Like Factor 12 and Is Involved in Invasion and Apoptosis in Basal-Like Breast Carcinoma
    720 INTERNATIONAL JOURNAL OF ONCOLOGY 49: 720-734, 2016 MicroRNA-205 directly targets Krüppel-like factor 12 and is involved in invasion and apoptosis in basal-like breast carcinoma BING GUAN1, QING LI2*, LI SHEN3*, QIU RAO4, YAN WANG5, YUN ZHU6, XIAO-JUN ZHOU4 and XIAO-HONG LI1 1Department of Pathology, Shanghai 6th People's Hospital Jinshan Branch, Shanghai 201599; 2Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299; 3Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai 201040; 4Department of Pathology, Nanjing Jinling Hospital, Nanjing, Jiangsu 210002; 5Department of Pathology, The Second Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000; 6Department of Pathology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China Received March 31, 2016; Accepted May 23, 2016 DOI: 10.3892/ijo.2016.3573 Abstract. We investigated microRNAs (miRs) specific to control (NC). Gene ontology (GO) analysis suggested miR-205 its target gene and exerting distinct biological functions for may directly targeted Krüppel-like factor 12 (KLF12; basal-like breast carcinoma (BLBC). Total RNA was extracted degree=4). Luciferase assay revealed miR-205 directly and subjected to miR microarray and bioinformatics analysis. targeted KLF12 through binding its 3'-untranslated region Based on the comprehensive analysis, expression of miRs (3'-UTR; p=0.0016). qRT-PCR and western blot analysis including its target was analyzed by quantitative reverse showed miR-205 expression was low in cells (p=0.007) and transcription-polymerase chain reaction (qRT-PCR), western tumor tissues (n=6; p=0.0074), and KLF12 RNA/protein was blot analysis and immunohistochemistry (IHC).
    [Show full text]
  • Accompanies CD8 T Cell Effector Function Global DNA Methylation
    Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M.
    [Show full text]
  • 1 Human Cells Contain Myriad Excised Linear Intron Rnas with Potential
    Human cells contain myriad excised linear intron RNAs with potential functions in gene regulation and as disease biomarkers Jun Yao,1 Hengyi Xu,1 Shelby Winans,1 Douglas C. Wu,1,3 Manuel Ares, Jr.,2 and Alan M. Lambowitz1,4 1Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin TX 78712 2Department of Molecular, Cell, and Developmental Biology University of California, Santa Cruz Santa Cruz, California 95064 Running Title: Structured excised linear intron RNAs 3Present address: Invitae Corporation 4To whom correspondence should be addressed. E-mail: [email protected] 1 Abstract We used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq), which gives full-length end-to-end sequence reads of structured RNAs, to identify > 8,500 short full- length excised linear intron (FLEXI) RNAs originating from > 3,500 different genes in human cells and tissues. Most FLEXI RNAs have stable predicted secondary structures, making them difficult to detect by other methods. Some FLEXI RNAs corresponded to annotated mirtron pre- miRNAs (introns that are processed by DICER into functional miRNAs) or agotrons (introns that bind AGO2 and function in a miRNA-like manner) and a few encode snoRNAs. However, the vast majority had not been characterized previously. FLEXI RNA profiles were cell-type specific, reflecting differences in host gene transcription, alternative splicing, and intron RNA turnover, and comparisons of matched tumor and healthy tissues from breast cancer patients and cell lines revealed hundreds of differences in FLEXI RNA expression. About half of the FLEXI RNAs contained an experimentally identified binding site for one or more proteins in published CLIP-seq datasets.
    [Show full text]
  • European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations
    (19) TZZ Z_T (11) EP 2 884 280 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 33/566 (2006.01) 09.05.2018 Bulletin 2018/19 (21) Application number: 13197310.9 (22) Date of filing: 15.12.2013 (54) Method for evaluating the scent performance of perfumes and perfume mixtures Verfahren zur Bewertung des Duftverhaltens von Duftstoffen und Duftstoffmischungen Procédé d’evaluation de senteur performance du parfums et mixtures de parfums (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB WO-A2-03/091388 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR • BAGHAEI KAVEH A: "Deorphanization of human olfactory receptors by luciferase and Ca-imaging (43) Date of publication of application: methods.",METHODS IN MOLECULAR BIOLOGY 17.06.2015 Bulletin 2015/25 (CLIFTON, N.J.) 2013, vol. 1003, 19 June 2013 (2013-06-19), pages229-238, XP008168583, ISSN: (73) Proprietor: Symrise AG 1940-6029 37603 Holzminden (DE) • KAVEH BAGHAEI ET AL: "Olfactory receptors coded by segregating pseudo genes and (72) Inventors: odorants with known specific anosmia.", 33RD • Hatt, Hanns ANNUAL MEETING OF THE ASSOCIATION FOR 44789 Bochum (DE) CHEMORECEPTION, 1 April 2011 (2011-04-01), • Gisselmann, Günter XP055111507, 58456 Witten (DE) • TOUHARA ET AL: "Deorphanizing vertebrate • Ashtibaghaei, Kaveh olfactory receptors: Recent advances in 44801 Bochum (DE) odorant-response assays", NEUROCHEMISTRY • Panten, Johannes INTERNATIONAL, PERGAMON PRESS, 37671 Höxter (DE) OXFORD, GB, vol.
    [Show full text]
  • Pathogenetic Subgroups of Multiple Myeloma Patients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE High-resolution genomic profiles define distinct clinico- pathogenetic subgroups of multiple myeloma patients Daniel R. Carrasco,1,2,8 Giovanni Tonon,1,8 Yongsheng Huang,3,8 Yunyu Zhang,1 Raktim Sinha,1 Bin Feng,1 James P. Stewart,3 Fenghuang Zhan,3 Deepak Khatry,1 Marina Protopopova,5 Alexei Protopopov,5 Kumar Sukhdeo,1 Ichiro Hanamura,3 Owen Stephens,3 Bart Barlogie,3 Kenneth C. Anderson,1,4 Lynda Chin,1,7 John D. Shaughnessy, Jr.,3,9 Cameron Brennan,6,9 and Ronald A. DePinho1,5,9,* 1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 2 Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115 3 The Donna and Donald Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 4 The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 5 Center for Applied Cancer Science, Belfer Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 6 Neurosurgery Service, Memorial Sloan-Kettering Cancer Center, Department of Neurosurgery, Weill Cornell Medical College, New York, New York 10021 7 Department of Dermatology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115 8 These authors contributed equally to this work. 9 Cocorresponding authors: [email protected] (C.B.); [email protected] (J.D.S.); [email protected] (R.A.D.) *Correspondence: [email protected] Summary To identify genetic events underlying the genesis and progression of multiple myeloma (MM), we conducted a high-resolu- tion analysis of recurrent copy number alterations (CNAs) and expression profiles in a collection of MM cell lines and out- come-annotated clinical specimens.
    [Show full text]
  • Apoptotic Cells Inflammasome Activity During the Uptake of Macrophage
    Downloaded from http://www.jimmunol.org/ by guest on September 29, 2021 is online at: average * The Journal of Immunology , 26 of which you can access for free at: 2012; 188:5682-5693; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication April 2012; doi: 10.4049/jimmunol.1103760 http://www.jimmunol.org/content/188/11/5682 Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells Marie E. Benoit, Elizabeth V. Clarke, Pedro Morgado, Deborah A. Fraser and Andrea J. Tenner J Immunol cites 56 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/04/20/jimmunol.110376 0.DC1 This article http://www.jimmunol.org/content/188/11/5682.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 29, 2021. The Journal of Immunology Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells Marie E.
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]