A Survey of Real-Time Operating Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wind River Vxworks Platforms 3.8
Wind River VxWorks Platforms 3.8 The market for secure, intelligent, Table of Contents Build System ................................ 24 connected devices is constantly expand- Command-Line Project Platforms Available in ing. Embedded devices are becoming and Build System .......................... 24 VxWorks Edition .................................2 more complex to meet market demands. Workbench Debugger .................. 24 New in VxWorks Platforms 3.8 ............2 Internet connectivity allows new levels of VxWorks Simulator ....................... 24 remote management but also calls for VxWorks Platforms Features ...............3 Workbench VxWorks Source increased levels of security. VxWorks Real-Time Operating Build Configuration ...................... 25 System ...........................................3 More powerful processors are being VxWorks 6.x Kernel Compatibility .............................3 considered to drive intelligence and Configurator ................................. 25 higher functionality into devices. Because State-of-the-Art Memory Host Shell ..................................... 25 Protection ..................................3 real-time and performance requirements Kernel Shell .................................. 25 are nonnegotiable, manufacturers are VxBus Framework ......................4 Run-Time Analysis Tools ............... 26 cautious about incorporating new Core Dump File Generation technologies into proven systems. To and Analysis ...............................4 System Viewer ........................ -
Last Time Today Response Time Vs. RM Computing Response Time More Second-Priority Task I Response Time
Last Time Today Priority-based scheduling Response time analysis Static priorities Blocking terms Dynamic priorities Priority inversion Schedulable utilization And solutions Rate monotonic rule: Keep utilization below 69% Release jitter Other extensions Response Time vs. RM Computing Response Time Rate monotonic result WC response time of highest priority task R Tells us that a broad class of embedded systems meet their 1 time constraints: R1 = C 1 • Scheduled using fixed priorities with RM or DM priority Hopefully obvious assignment • Total utilization not above 69% WC response time of second-priority task R 2 However, doesn’t give very good feedback about what is Case 1: R 2 ≤ T1 going on with a specific system • R2 = C 2 + C 1 Response time analysis R T T Tells us for each task, what is the longest time between R1 2 1 2 when it is released and when it finishes Then these can be compared with deadlines 1 1 Gives insight into how close the system is to meeting / not 2 meeting its deadline Is more precise (rejects fewer systems) More Second-Priority Task i Response Time Case 2: T 1 < R 2 ≤ 2T 1 General case: R = C + 2C Ri 2 2 1 Ri = Ci + ∑ Cj j ∀j∈hp (i) T R1 T1 R2 2T 1 T2 1 1 1 hp(i) is the set of tasks with priority higher than I 2 2 Only higher-priority tasks can delay a task Case 3: 2T 1 < R 2 ≤ 3T 1 Problem with using this equation in practice? R2 = C 2 + 3C 1 General case of the second-priority task: R2 = C 2 + ceiling ( R 2 / T 1 ) C 1 1 Computing Response Times Response Time Example Rewrite -
Comparison of Contemporary Real Time Operating Systems
ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 11, November 2015 Comparison of Contemporary Real Time Operating Systems Mr. Sagar Jape1, Mr. Mihir Kulkarni2, Prof.Dipti Pawade3 Student, Bachelors of Engineering, Department of Information Technology, K J Somaiya College of Engineering, Mumbai1,2 Assistant Professor, Department of Information Technology, K J Somaiya College of Engineering, Mumbai3 Abstract: With the advancement in embedded area, importance of real time operating system (RTOS) has been increased to greater extent. Now days for every embedded application low latency, efficient memory utilization and effective scheduling techniques are the basic requirements. Thus in this paper we have attempted to compare some of the real time operating systems. The systems (viz. VxWorks, QNX, Ecos, RTLinux, Windows CE and FreeRTOS) have been selected according to the highest user base criterion. We enlist the peculiar features of the systems with respect to the parameters like scheduling policies, licensing, memory management techniques, etc. and further, compare the selected systems over these parameters. Our effort to formulate the often confused, complex and contradictory pieces of information on contemporary RTOSs into simple, analytical organized structure will provide decisive insights to the reader on the selection process of an RTOS as per his requirements. Keywords:RTOS, VxWorks, QNX, eCOS, RTLinux,Windows CE, FreeRTOS I. INTRODUCTION An operating system (OS) is a set of software that handles designed known as Real Time Operating System (RTOS). computer hardware. Basically it acts as an interface The motive behind RTOS development is to process data between user program and computer hardware. -
Preemption-Based Avoidance of Priority Inversion for Java
Preemption-Based Avoidance of Priority Inversion for Java Adam Welc Antony L. Hosking Suresh Jagannathan [email protected] [email protected] [email protected] Department of Computer Sciences Purdue University West Lafayette, IN 47906 Abstract their actions via mutual exclusion locks. The resulting programming model is reasonably simple, Priority inversion occurs in concurrent programs when but unfortunately unwieldy for large-scale applications. A low-priority threads hold shared resources needed by some significant problem with using low-level, lock-based syn- high-priority thread, causing them to block indefinitely. chronization primitives is priority inversion. We propose a Shared resources are usually guarded by low-level syn- new solution for priority inversion that exploits close coop- chronization primitives such as mutual-exclusion locks, eration between the compiler and the run-time system. Our semaphores, or monitors. There are two existing solu- approach is applicable to any language that offers the fol- tions to priority inversion. The first, establishing high- lowing mechanisms: level scheduling invariants over synchronization primitives to eliminate priority inversion a priori, is difficult in practice • Multithreading: concurrent threads of control execut- and undecidable in general. Alternatively, run-time avoid- ing over objects in a shared address space. ance mechanisms such as priority inheritance still force • Synchronized sections: lexically-delimited blocks high-priority threads to wait until desired resources are re- of code, guarded by dynamically-scoped monitors. leased. Threads synchronize on a given monitor, acquiring it We describe a novel compiler and run-time solution to on entry to the block and releasing it on exit. -
Evidence Company Description …And Future Challenges
1 Evidence Company description …and future challenges Paolo Gai, [email protected] IWES Workshop Pisa, 21 September 2016 2 The company Founded in 2002 as spin-off company of the Real-Time Systems Lab at Scuola Superiore S.Anna ~20 qualified people with an average age of 34 years 10+ years of experience in academic and industrial projects One third of the company has a PhD degree Our Mission : design and development software for small electronic devices 3 The company Partner in several European and Italian research projects (FP6, FP7, Ind.2015, Reg. Tuscany, H2020) Founded SSG Srl in November 2011 http://www.ssginnovation.com/ - (link to SSG slides) Evidence won the first prize at Start Cup Pisa 2005 March 12, 2007 - selected by ”Corriere della Sera ” as one of the most innovative Italian young entrepreneurs 4 (some) customers OSEK, microcontrollers, schedulability analysis, code generation Linux, SW devel. Listed as 3 rd party 5 products and services RTOS , Firmware, Embedded Linux Model-based design • OSEK/VDX, • Matlab/Simulink/Stateflow AUTOSAR, device drivers • Embedded Linux: 8 Yrs experience • National Instruments custom BSPs, GCC, U-Boot, LabView Kernel drivers • Initial developers of the • E4Coder toolset for code SCHED_DEADLINE patch generation • QEMU and emulators • UML/SYSML/Ecore/ Application Development Eclipse/Acceleo 6 Something about ERIKA Enterprise http://erika.tuxfamily.org • ERIKA Enterprise is an RTOS OSEK/VDX certified • ERIKA Enterprise implements an API inspired to a subset of the AUTOSAR API • open-source license -
Porting Embedded Systems to Uclinux
Porting Embedded Systems to uClinux António José da Silva Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa, Portugal [email protected] ABSTRACT Concerning response times, computer systems can be di- The emergence of embedded computing in our daily lives vided in soft and hard real time[26]. In soft real time sys- has made the design and development of embedded applica- tems, missing a deadline only degrades performance, unlike tions into one of the crucial factors for embedded systems. in hard real time systems. In hard real time systems, miss- Given the diversity of currently available applications, not ing a time constraint before giving an answer may be worse only for embedded, but also for general purpose systems, it than having no answer at all. An example of a soft real time will be important to easily reuse part, if not all, of these ap- system is a common DVD player. While good performance plications in future and current products. The widespread is desirable, missing time constraints in this type of system interest and enthusiasm generated by Linux's successful use only results in some frame loss, or some quirks in the user in a number of embedded systems has made it into a strong interface, but the system can continue to operate. This is candidate for defining a common development basis for em- not the case for hard real time systems. Missing a deadline bedded applications. In this paper, a detailed porting guide in a pace maker or in a nuclear plant's cooling system, for to uClinux using the XTran-3[20] board, an embedded sys- example, can lead to catastrophic scenarios! tem designed by Tecmic, is presented. -
RT-ROS: a Real-Time ROS Architecture on Multi-Core Processors
Future Generation Computer Systems 56 (2016) 171–178 Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs RT-ROS: A real-time ROS architecture on multi-core processors Hongxing Wei a,1, Zhenzhou Shao b, Zhen Huang a, Renhai Chen d, Yong Guan b, Jindong Tan c,1, Zili Shao d,∗,1 a School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, PR China b College of Information Engineering, Capital Normal University, Beijing, 100048, PR China c Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996-2110, USA d Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China article info a b s t r a c t Article history: ROS, an open-source robot operating system, is widely used and rapidly developed in the robotics Received 6 February 2015 community. However, running on Linux, ROS does not provide real-time guarantees, while real-time tasks Received in revised form are required in many robot applications such as robot motion control. This paper for the first time presents 20 April 2015 a real-time ROS architecture called RT-RTOS on multi-core processors. RT-ROS provides an integrated Accepted 12 May 2015 real-time/non-real-time task execution environment so real-time and non-real-time ROS nodes can be Available online 9 June 2015 separately run on a real-time OS and Linux, respectively, with different processor cores. In such a way, real-time tasks can be supported by real-time ROS nodes on a real-time OS, while non-real-time ROS nodes Keywords: Real-time operating systems on Linux can provide other functions of ROS. -
Rtlinux and Embedded Programming
RTLinux and embedded programming Victor Yodaiken Finite State Machine Labs (FSM) RTLinux – p.1/33 Who needs realtime? How RTLinux works. Why RTLinux works that way. Free software and embedded. Outline. The usual: definitions of realtime. RTLinux – p.2/33 How RTLinux works. Why RTLinux works that way. Free software and embedded. Outline. The usual: definitions of realtime. Who needs realtime? RTLinux – p.2/33 Why RTLinux works that way. Free software and embedded. Outline. The usual: definitions of realtime. Who needs realtime? How RTLinux works. RTLinux – p.2/33 Free software and embedded. Outline. The usual: definitions of realtime. Who needs realtime? How RTLinux works. Why RTLinux works that way. RTLinux – p.2/33 Realtime software: switch between different tasks in time to meet deadlines. Realtime versus Time Shared Time sharing software: switch between different tasks fast enough to create the illusion that all are going forward at once. RTLinux – p.3/33 Realtime versus Time Shared Time sharing software: switch between different tasks fast enough to create the illusion that all are going forward at once. Realtime software: switch between different tasks in time to meet deadlines. RTLinux – p.3/33 Hard realtime 1. Predictable performance at each moment in time: not as an average. 2. Low latency response to events. 3. Precise scheduling of periodic tasks. RTLinux – p.4/33 Soft realtime Good average case performance Low deviation from average case performance RTLinux – p.5/33 The machine tool generally stops the cut as specified. The power almost always shuts off before the turbine explodes. Traditional problems with soft realtime The chips are usually placed on the solder dots. -
Real-Time Operating Systems (RTOS)
Real-Time Operating Systems (RTOS) 101 Real-Time System Characteristics RTOS Architecture Rate Monotonic • A real-time system is a computer system which is required by its specification to adhere to: Scheduling (RMS) – functional requirements (behavior) • A priority is assigned based on the inverse of its pe- – temporal requirements (timing constraints, deadlines) riod • Specific deterministic timing (temporal ) requirements – Shorter execution periods = higher priority – “Deterministic" timing means that RTOS services consume only – Longer execution periods = lower priority known and expected amounts of time. • Common way to assign fixed priorities • Small size (footprint) – If there is a fixed-priority schedule that meets all dead- lines, then RMS will produce a feasible schedule Types of Real-Time Systems • Simple to understand and implement • A generic real-time system requires that results be produced RTOS Task Services • P1 is assigned a higher priority than P2. within a specified deadline period. • An embedded system is a computing device that is part of a • Scheduling and Dispatching larger system. • Inter-task Communication • A safety-critical system is a real-time system with catastro- phic results in case of failure. • Memory System Management • A hard real-time system guarantees that real-time tasks be Earliest Deadline First (EDF) • Input / Output System Management completed within their required deadlines. Failure to meet a single deadline may lead to a critical catastrophic system • Scheduling Time Management & Timers failure such as physical damage or loss of life. • Priorities are assigned according to deadlines: • Error Management • A firm real-time system tolerates a low occurrence of missing – the earlier the deadline, the higher the priority a deadline. -
Embedded GNU/Linux and Real-Time an Executive Summary
Embedded GNU/Linux and Real-Time an executive summary Robert Berger Embedded Software Specialist Stratigou Rogakou 24, GR-15125 Polydrosso/Maroussi, Athens, Greece Phone : (+ 30) 697 593 3428, Fax: (+ 30) 210 684 7881 email: [email protected] Abstract What is real-time and how can it be added to a plain vanilla Linux kernel[1]? Two fundamentally different approaches are described here. One approach attempts to patch the vanilla Linux kernel (PREEMPT_RT[2]) to achieve real-time functionality, while the other one utilizes a dual kernel architecture (RTAI[3], RTLinux/GPL[4], Xenomai[5], XM/eRTL[6], Real-Time Core[7], XtratuM[8], seL4[9], PaRTiKle[10],...), where Linux runs as the idle process on top of the real- time kernel. How do those approaches compare? At the time I started my quest for the holy grail of real-time Linux I hoped that it would be a clear decision wether to use p-rt or dk, but things seem to be less black and white than I initially thought. Bear with me to find out what changed my initial believes. 1 Introduction I would like to thank Nicholas Mc Guire, Paulo Montegazza, Philippe Gerum1 and Jan Kiszka from the dual kernel (dk) camp and Thomas Gleixner from the preempt-rt (p-rt) side as well as Paul E. McKenney and Carsten Emde for sharing their precious time with me to provide valu- able input and to review this paper. 2 Real-Time Real-Time has to do with time (timeliness), but most of all with determinism (predictability, time and event determinism). -
Real-Time Operating System (RTOS)
Real-Time Operating System ELC 4438 – Spring 2016 Liang Dong Baylor University RTOS – Basic Kernel Services Task Management • Scheduling is the method by which threads, processes or data flows are given access to system resources (e.g. processor time, communication bandwidth). • The need for a scheduling algorithm arises from the requirement for most modern systems to perform multitasking (executing more than one process at a time) and multiplexing (transmit multiple data streams simultaneously across a single physical channel). Task Management • Polled loops; Synchronized polled loops • Cyclic Executives (round-robin) • State-driven and co-routines • Interrupt-driven systems – Interrupt service routines – Context switching void main(void) { init(); Interrupt-driven while(true); } Systems void int1(void) { save(context); task1(); restore(context); } void int2(void) { save(context); task2(); restore(context); } Task scheduling • Most RTOSs do their scheduling of tasks using a scheme called "priority-based preemptive scheduling." • Each task in a software application must be assigned a priority, with higher priority values representing the need for quicker responsiveness. • Very quick responsiveness is made possible by the "preemptive" nature of the task scheduling. "Preemptive" means that the scheduler is allowed to stop any task at any point in its execution, if it determines that another task needs to run immediately. Hybrid Systems • A hybrid system is a combination of round- robin and preemptive-priority systems. – Tasks of higher priority can preempt those of lower priority. – If two or more tasks of the same priority are ready to run simultaneously, they run in round-robin fashion. Thread Scheduling ThreadPriority.Highest ThreadPriority.AboveNormal A B ThreadPriority.Normal C ThreadPriority.BelowNormal D E F ThreadPriority.Lowest Default priority is Normal. -
L4-Linux Based System As a Platform for EPICS Ioccore
L4-Linux Based System As A Platform For EPICS iocCore J. Odagiri, N. Yamamoto and T. Katoh High Energy Research Accelerator Organization, KEK ICALEPCS 2001, Nov 28, San Jose Contents Backgrounds Causes of latency in Linux kernel Real-time Linux and EPICS iocCore L4-Linux as a real-time platform Conclusions Backgrounds iocCore portable to multi-platforms in EPICS 3.14 Linux promising candidate for running EPICS iocCore runs on Linux OS Interface libraries POSIX 1003.1c (Pthread) POSIX 1003.1b (real-time extension) However, … POSIX real-time extensions Unpredictable latency Not for hard real-time applications Possible rare misses to the deadline Causes Not in the libraries but in the Linux kernel Causes of Latency Non-preempt-able kernel Possibly up to 100 ms or more Disabling of interrupts Typically, several hundreds of µs Address Space Switching Tens of µs Non-preempt-able Kernel Interrupt Kernel Latency High Priority Process Low Priority Process Interrupt Disabling unsigned long flags; save_flags(flags); cli(); /* critical section */ restore_flags(flags); Address Space Switching Page Directory x86x86 Table User Page Space Table Physical Page Kernel Space Impacts on the Latency Non-preempt-able Kernel Interrupt Disabling Address Space Switching Two Different Approaches Kernel-level tasks / real-time scheduler RTLinux RTAI … User-level processes / low latency Linux Low latency patches Preempt-able kernel … RTLinux / RTAI Definitely shortest latency! Several tens of µs Free from all of the three obstacles