A Cognitive View of Biological Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discrimination of Male Black-Capped Chickadee Songs: Relationship Between Acoustic Preference and Performance Accuracy
Animal Behaviour 126 (2017) 107e121 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Discrimination of male black-capped chickadee songs: relationship between acoustic preference and performance accuracy Allison H. Hahn a, 1, Lauren M. Guillette a, 2, Marisa Hoeschele a, 3, Kenneth A. Otter b, * Laurene M. Ratcliffe c, Christopher B. Sturdy a, d, a Department of Psychology, University of Alberta, Edmonton, AB, Canada b Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada c Department of Biology, Queen's University, Kingston, ON, Canada d Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada article info Many species form social groups with dominance hierarchies. Often, individuals possess a status signal Article history: that indicates dominance rank. Songbirds produce songs that are used to attract mates or repel rivals, Received 5 May 2016 and acoustic features within songs can also indicate an individual's quality, including dominance rank. Initial acceptance 5 August 2016 Acoustic status signals have been reported in the songs of male black-capped chickadees, Poecile atri- Final acceptance 19 January 2017 capillus, a nonmigratory North American songbird. Here we used two operant conditioning tasks to examine acoustic preference for and discrimination of conspecific songs produced by males varying in MS. number: A16-00410R dominance rank. We used a choice preference task to examine birds' preferences for listening to dominant or subordinate songs and conducted an instrumental learning task to determine whether Keywords: chickadees considered dominant and subordinate songs as belonging to separate signal categories based acoustic discrimination on acoustic features. -
Evolution, Politics and Law
Valparaiso University Law Review Volume 38 Number 4 Summer 2004 pp.1129-1248 Summer 2004 Evolution, Politics and Law Bailey Kuklin Follow this and additional works at: https://scholar.valpo.edu/vulr Part of the Law Commons Recommended Citation Bailey Kuklin, Evolution, Politics and Law, 38 Val. U. L. Rev. 1129 (2004). Available at: https://scholar.valpo.edu/vulr/vol38/iss4/1 This Article is brought to you for free and open access by the Valparaiso University Law School at ValpoScholar. It has been accepted for inclusion in Valparaiso University Law Review by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Kuklin: Evolution, Politics and Law VALPARAISO UNIVERSITY LAW REVIEW VOLUME 38 SUMMER 2004 NUMBER 4 Article EVOLUTION, POLITICS AND LAW Bailey Kuklin* I. Introduction ............................................... 1129 II. Evolutionary Theory ................................. 1134 III. The Normative Implications of Biological Dispositions ......................... 1140 A . Fact and Value .................................... 1141 B. Biological Determinism ..................... 1163 C. Future Fitness ..................................... 1183 D. Cultural N orm s .................................. 1188 IV. The Politics of Sociobiology ..................... 1196 A. Political Orientations ......................... 1205 B. Political Tactics ................................... 1232 V . C onclusion ................................................. 1248 I. INTRODUCTION -
Cognitive Biology: Evolutionary and Developmental Perspectives
Cognitive Biology Evolutionary and Developmental Perspectives on Mind, Brain and Behavior edited by Luca Tommasi, Mary A. Peterson and Lynn Nadel The MIT Press Cambridge, Massachusetts London, England © 2009 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected] or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book was set in Times Roman 10/13pt by SNP Best-set Typesetter Ltd., Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Cognitive biology : evolutionary and developmental perspectives on mind, brain, and behavior / edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel. p. ; cm.—(Vienna series in theoretical biology) Includes bibliographical references and index. ISBN-13: 978-0-262-01293-5 (hardcover : alk. paper) ISBN-10: 0-262-01293-6 (hardcover : alk. paper) 1. Brain–Evolution. 2. Cognitive science. I. Tommasi, Luca, 1970–. II. Peterson, Mary A., 1950–. III. Nadel, Lynn. IV. Series. [DNLM: 1. Adaptation, Physiological. 2. Cognition–physiology. 3. Evolution. QT 140 C676 2009] QL933.C64 2009 153–dc22 2008035962 10 9 8 7 6 5 4 3 2 1 1 Cognitive Biology: The New Cognitive Sciences Luca Tommasi, Lynn Nadel, and Mary A. Peterson Most who have written about the history of the cognitive sciences have conceived of the fi eld as an interdisciplinary gathering of psychology, philosophy, computer science, lin- guistics, neuroscience, and anthropology. -
Advances in Computational Biology: a Real Boost Or a Wishful Thinking
Advances in Computational Biology: A Real Boost or a Wishful Thinking Emanuel Diamant VIDIA-mant, Kiriat Ono, Israel [email protected] Abstract Computational biology is on the verge of a paradigm shift in its research practice – from a data-based (computational) paradigm to an information-based (cognitive) paradigm. As in the other research fields, this transition is impeded by lack of a right understanding about what is actually hidden behind the term “information”. The paper is intended to clarify this issue and introduces two new notions of “physical information” and “semantic information”, which together constitute the term “information”. Some implications of this introduction are considered. Keywords: Biological information, Physical information, Semantic information, information processing 1 Introduction Striking advances in high-throughput sequencing technologies have resulted in a tremendous increase in the amounts of data related to various biological screening experiments. Consequently, that gave rise to an urgent need of new techniques and algorithms for analyzing, modeling and interpreting these amounts of data. This is announced as the main purpose of Computational biology – to organize, and to make sense of these amounts of data… and to use this information to make predictions and obtain experimentally testable models, [5]. To reach its goals, Computational biology involves the use of computational tools to discover new information in complex data sets and to decipher the languages of biology (e.g., the one-dimensional information of DNA, the three-dimensional information of proteins, and the four-dimensional information of living systems), [2]. As a theoretical foundation for a suitable model of the information flow that runs at each level and through all levels of biological organization the most often used theoretical model is the Shannon’s Information theory. -
Special Issue on REINSTATING REPTILES
CALL FOR PAPERS: Special issue of Behaviour on REINSTATING REPTILES: FROM CLUELESS CREATURES TO ESTEEMED MODELS OF COGNITIVE BIOLOGY Guest Editors: Gilles De Meester (University of Antwerp) and Katleen Huyghe (University of Antwerp) Our understanding of the evolution of animal cognition is seriously hampered by an unfortunate choice of study animals. The field of animal cognition is heavily biased towards studies of a limited number of mammalian and avian model species, whereas other vertebrate taxa, reptiles and amphibians in particular, have been almost completely ignored – at least until recently. Non-avian reptiles (turtles, snakes, lizards, crocodiles) have long been neglected in cognitive science due to their reputation as slow, inflexible learners. Currently, our view on reptile cognition is changing rapidly. The last two decades have witnessed a renewed interest in the cognitive abilities of reptiles, and more ecologically relevant protocols have been designed to measure the mental capabilities of this group. Now we appreciate that reptiles possess an impressive set of cognitive skills, including problem-solving abilities, fast and flexible learning, quantity discrimination and even social learning. Several authors have recommended reptiles as model organisms to test hypotheses in cognitive biology that have proven difficult to tackle with traditional bird or mammalian models. The aim of this special issue is to highlight current research on reptiles, a taxonomic group that is still unrepresented within the field of animal cognition. We specifically hope to bring together a collection of articles showing the diversity of research questions that may be answered by using reptiles as study species, and thereby illustrating the potential of reptiles in cognitive research. -
LF Jacobs 2020 CV Revised
Curriculum vitae September, 2020 LUCIA F. JACOBS ADDRESS Department of Psychology University of California 2121 Berkeley Way Berkeley, CA 94720-1650 Email: [email protected] Phone: 510-642-5739 Website: http://jacobs.berkeley.edu EDUCATION 1978 - B.S. in Neurobiology and Behavior, Biological Sciences, Cornell University, Ithaca, NY. (1976) Neuroscience and Ethology, Zoological Institute, University of Vienna, Austria. 1983 – M.A., Department of Biology, Princeton University, Princeton, NJ. 1987 – Ph.D. in Population Biology, Department of Biology, Princeton University, Princeton, NJ. PROFESSIONAL POSITIONS 1987-89 Postdoctoral Fellow, Department of Psychology, University of Toronto 1989-90 Postdoctoral Fellow, Department of Anthropology, University of Pittsburgh 1990-93 Research Assistant Professor, Depts. Biology and Psychology, University of Utah 1993-00 Assistant Professor, Department of Psychology, University of California, Berkeley 2000-12 Associate Professor, Department of Psychology, UC Berkeley 2007- Associate Professor, Helen Wills Neuroscience Institute, UC Berkeley 2012- Professor, Department of Psychology and Helen Wills Neuroscience Institute, UCB HONORS & AWARDS 1982 University Fellowship, Princeton University 1987 NATO Postdoctoral Fellowship, Department of Psychology, University of Toronto 1988 NIH NRSA Postdoctoral Fellowship, Department of Psychology, University of Toronto 1989 NSF Postdoctoral Fellowship, Department of Anthropology, University of Pittsburgh 1993 NSF CAREER Award 1995 Herbert Spencer Lecture, University -
W. Tecumseh Fitch, Ph.D. Born Boston, Massachusetts, USA (1963) – US Citizen
Curriculum Vitae (updated March 2020) W. Tecumseh Fitch, Ph.D. Born Boston, Massachusetts, USA (1963) – US Citizen Department of Behavioral and Cognitive Biology, [email protected] Faculty of Life Sciences, University of Vienna http://cogbio.univie.ac.at 14 Althanstrasse, A1090 Vienna, Austria +44 1334 462054 (voice) http://cogbio.univie.ac.at +44 1334 463042 (fax) Teaching/Professional Experience Current Position: (2009 - present) Professor of Cognitive Biology, University of Vienna Head of Department of Behavioral and Cognitive Biology 2003-2009: Senior Lecturer and Reader, School of Psychology, University of St. Andrews Dec 2005- Mar 2006: Leibniz Professor, & Visiting Scholar, Max Planck Institute EVA, Leipzig. 2002-2003: Fellow, European Institute for Advanced Study, Berlin, Germany. 1999-2002: Lecturer, Harvard University: Dept of Biology & Dept. of Psychology Graduate Teaching Assistant & Lecturer, Brown University (1989-1994) Education: Postdoctoral Fellow, Harvard/MIT Speech & Hearing Science Program, (1996-1999) Ph.D., Cognitive and Linguistic Sciences, Brown University, (1989-1994) B.A. with honors, Biology, Brown University, (1981 -1986) Selected Academic Honors and Service Honors/Prizes: Best Article Award 2017: Psychonomic Society: Clifford T. Morgan Best Article Award. Fellow of the Association for Psychological Science (elected Dec 2018) ERC Advanced Grant Awardee: Sept 2009-2014 (European Research Council) Honorary Professor, University of St Andrews Psychology Dept (2009-2013) Leibniz Professorship (Visiting -
Biological Waste Water Treatment
Wastewater Management 18. SECONDARY TREATMENT Secondary treatment of the wastewater could be achieved by chemical unit processes such as chemical oxidation, coagulation-flocculation and sedimentation, chemical precipitation, etc. or by employing biological processes (aerobic or anaerobic) where bacteria are used as a catalyst for removal of pollutant. For removal of organic matter from the wastewater, biological treatment processes are commonly used all over the world. Hence, for the treatment of wastewater like sewage and many of the agro-based industries and food processing industrial wastewaters the secondary treatment will invariably consist of a biological reactor either in single stage or in multi stage as per the requirements to meet the discharge norms. 18.1 Biological Treatment The objective of the biological treatment of wastewater is to remove organic matter from the wastewater which is present in soluble and colloidal form or to remove nutrients such as nitrogen and phosphorous from the wastewater. The microorganisms (principally bacteria) are used to convert the colloidal and dissolved carbonaceous organic matter into various gases and into cell tissue. Cell tissue having high specific gravity than water can be removed in settling tank. Hence, complete treatment of the wastewater will not be achieved unless the cell tissues are removed. Biological removal of degradable organics involves a sequence of steps including mass transfer, adsorption, absorption and biochemical enzymatic reactions. Stabilization of organic substances by microorganisms in a natural aquatic environment or in a controlled environment of biological treatment systems is accomplished by two distinct metabolic processes: respiration and synthesis, also called as catabolism and anabolism, respectively. -
Perspectives on the Behavioural Ecology and Cognitive Nature of Plants
Point of View SPECIAL ISSUE: Using Ideas from Behavioural Ecology to Understand Plants In a green frame of mind: perspectives on the behavioural ecology and cognitive nature of plants Monica Gagliano* Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Received: 6 August 2014; Accepted: 11 November 2014; Published: 21 November 2014 Associate Editor: James F. Cahill Citation: Gagliano M. 2015. In a green frame of mind: perspectives on the behavioural ecology and cognitive nature of plants. AoB PLANTS 7: plu075; doi:10.1093/aobpla/plu075 Abstract. It is increasingly recognized that plants are highly sensitive organisms that perceive, assess, learn, remember, resolve problems, make decisions and communicate with each other by actively acquiring information from their environment. However, the fact that many of the sophisticated behaviours plants exhibit reveal cognitive competences, which are generally attributed to humans and some non-human animals, has remained unappreciated. Here, I will outline the theoretical barriers that have precluded the opportunity to experimentally test such behaviour- al/cognitive phenomena in plants. I will then suggest concrete alternative approaches to cognition by highlighting how (i) the environment offers a multitude of opportunities for decision-making and action and makes behaviours possible, rather than causing them; (ii) perception in itself is action in the form of a continuous flow of information; (iii) all living organisms viewed within this context become agents endowed with autonomy rather than objects in a mechanistically conceived world. These viewpoints, combined with recent evidence, may contribute to move the entire field towards an integrated study of cognitive biology. -
Bishop Scott Boys' School
BISHOP SCOTT BOYS’ SCHOOL (Affiliated to CBSE, New Delhi) Affiliation No.: 330726, School Campus: Chainpur, Jaganpura, By-Pass, Patna 804453. Phone Number: 7061717782, 9798903550. , Web: www.bishopscottboysschool.com Email: [email protected] STUDY COURSE MATERIAL BIOLOGY SESSION-2020-21 CLASS-XII TOPIC: REPRODUCTION IN ORAGANISM DAY-1 TEACHING MATERIAL :- INTRODUCTION Life Span: Each and every organism is capable to live only for a limited period of time. Lifespan refers to the life expectancy or longevity of an individual. The period from birth to the natural death of an organism known as its life span. Reproduction: Reproduction is defined as a biological process in which an organism gives rise to young ones (offspring) similar to itself. The offspring grow mature and in turn produce new offspring. Thus there is a cycle of birth, growth and death. The main purpose of reproduction are to: continue and preserve the specie pass species genetic identity keep the evolutionary chain going Page 1 of 21 Types of reproduction: Based on whether there is participation of one organism or two in the process of reproduction, it is of two types. Asexual reproduction: When offspring is produced by a single parent with or without the involvement of gamete formation the reproduction is asexual. Sexual reproduction: When two parents (opposite sex) participate in the reproductive process and also involved fusion of male and female gametes it is called sexual reproduction. ASSIGNMENT Q.1. Why is reproduction essential for organisms? Q.2. Which is better mode of reproduction: sexual or asexual? Why? MULTIPLE CHOICE QUESTIONS : - Q.1. Which physiological process is necessary for birth, growth, death, production of offspring and for continuity of the species? (a) Digestion (b) Transportation (c) Reproduction (d) Nutrition Q.2. -
Fundamental Principles of Cognitive Biology
(2000) Evolution and Cognition 6, 51-69 Fundamental principles of cognitive biology Ladislav Kováč Abstract Cognitive biology aims at a synthesis of data of various scientific disciplines within a single frame of conceiving life as epistemic unfolding of the universe (the epistemic principle). In accord with evolutionary epistemology, it considers biological evolution as a progressing process of accumulation of knowledge. The knowledge is embodied in constructions of organisms, and the structural complexity of those constructions which carry embodied knowledge corresponds to their epistemic complexity. In contrast to evolutionary epistemology, cognitive biology is based on the assumption that the molecular level is fundamental for cognition and adheres to a principle of minimal complexity, which stipulates that the most efficient way to study any trait of life is by studying it at the simplest level at which it occurs. Several principles of cognitive biology are similar to extremum principles of physics and may represent tight junctions between ontic and epistemic realms. A principle of minimisation of suffering is derived from the evidence of human conscious emotional experience. It has a bearing upon such notions as onticity, fitness, altruism, science, future of mankind. This principle, just as all the other principles of cognitive biology, is descriptive, not normative. Key words Algorithmic complexity, cognitive biology, complementarity, Gödel, epistemic complexity, epistemic principle, extremum principles, Jaynes, logical parity, minimisation of suffering, molecular recognition, ratchet. Author´s address Konrad Lorenz Istitut für Evolutions- und Kognitionsforschung, Adolf-Lorenz-Gasse 2, A-3422 Altenberg/Donau; and Centre for Cognitive Biology, Faculty of Science, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia. -
Computational Models for the Study of Sexual Selection Dynamics
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO MARCELO DE OLIVEIRA ROSA PRATES Computational models for the study of sexual selection dynamics Monograph presented in partial fulfillment of the requirements for the degree of Bachelor of Computer Science Prof. Dr. Luis Lamb Advisor Porto Alegre, July 28th, 2014 CIP – CATALOGING-IN-PUBLICATION Marcelo de Oliveira Rosa Prates, Computational models for the study of sexual selection dy- namics / Marcelo de Oliveira Rosa Prates. – Porto Alegre: Graduação em Ciência da Computação da UFRGS, 2014. 87 f.: il. Monograph – Universidade Federal do Rio Grande do Sul. Curso de Bacharelado em Ciência da Computação, Porto Alegre, BR–RS, 2014. Advisor: Luis Lamb. 1. Keyword 1. 2. Keyword 2. 3. Keyword 3. 4. Keyword 4. 5. Keyword 5. I. Lamb, Luis. II. Título. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Reitor: Prof. Carlos Alexandre Netto Vice-Reitor: Prof. Rui Vicente Oppermann Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb Coordenador do CIC: Prof. Raul Fernando Weber Bibliotecário-chefe do Instituto de Informática: Beatriz Regina Bastos Haro Draft 1.0 June 19, 2015 morprates @inf.ufrgs.br http://inf.ufrgs.br/∼morprates “Because the history of evolution is that life escapes all barriers. Life breaks free. Life expands to new territories. Painfully, perhaps even dangerously. But life finds a way.” - Michael Crichton, Jurassic Park ACKNOWLEDGMENTS I owe a great deal to my teacher and supervisor, Luís Lamb, who not only provided help and made it possible for this monograph to take its actual form, but also persuaded me to venture into research and gave me freedom to work on projects of my own interest in all these years as a scientific initiation scholarship holder.