MARS COMMUNICATION PROTOCOLS. G. J. Kazz1 and E

Total Page:16

File Type:pdf, Size:1020Kb

MARS COMMUNICATION PROTOCOLS. G. J. Kazz1 and E Concepts and Approaches for Mars Exploration 6114.pdf MARS COMMUNICATION PROTOCOLS. G. J. Kazz1 and E. Greenberg 2, 1Jet Propulsion Laboratory, Califor- nia Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA. 91109, [email protected]., 2Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA. 91109, egreen- [email protected]. Introduction: Over the next decade, international messaging service between In-Situ assets. Proximity-1 plans and commitments are underway to develop an is a bi-directional protocol using the same format and infrastructure at Mars to support future exploration of procedures in the forward (command) as well as the the red planet. The purpose of this infrastructure is to return (telemetry) link. It provides for expedited as provide reliable global communication and navigation well as reliable data transfer. It is truly a modeless coverage for on-approach, landed, roving, and in-flight assets at Mars. The claim is that this infrastructure protocol meaning all of the services provided do not will: 1) eliminate the need of these assets to carry Di- require that the caller or responder be configured into a rect to Earth (DTE) communications equipment, 2) particular mode for operations. It supports all types of significantly increase data return and connectivity, 3) directionality: full, half duplex, and simplex. It uses a enable small mission exploration of Mars without DTE data driven technique as opposed to a managed ap- equipment, 4) provide precision navigation i.e., 10 to proach for on-board data processing. It supports both 100m position resolution, 5) supply timing reference coded and uncoded links as well as asynchronous accurate to 10ms. [1]. This paper in particular focuses (variable frame) vs synchronous (fixed frames) links. on two CCSDS recommendations for that infrastruc- Communication is point-to-point but includes one to ture: CCSDS Proximity-1 Space Link Protocol [2] and many on the forward link. CCSDS File Delivery Protocol (CFDP)[3]. A key as- CFDP Key Characteristics: CFDP is an interna- pect of Mars exploration will be the ability of future missions to interoperate. These protocols establish a tional standard for automatic, reliable or expedited bi- framework for interoperability by providing standard directional file transfer between spacecraft or space- communication, navigation, and timing services. In craft and ground, built on top of the CCSDS data link addition, these services include strategies to recover layer. Unlike TCP/IP, it requires no handshaking and is gracefully from communication interruptions and inter- datagram and transaction based to deal with space link ference while ensuring backward compatibility with characteristics e.g., long RTLT and non-persistent previous missions from previous phases of exploration. links but is adaptable to fit the proximity link as well. [4]. Metadata associated with each transaction describes Need for Standardization: The diversity of the data transfer including data processing once the file communication links within the future potential Mars arrives. environment creates challenging engineering problems. Operational Scenarios: The following scenarios Problems such as frequency coordination, link opera- examine operations across two separate links: proxim- tions, standard data transfer, product accountability, ity (landed assets to orbiters) and deep space (orbiters link performance, scheduling vs demand access of to Earth). The proximity link is characterized by short services, and network-wide data prioritization need to distance (within 400,000 km), moderate signal be addressed. The CCSDS Proximity-1 Space Link strength, and single sessions. The deep space link is Protocol provides recommendations for dealing with characterized by long delays, and weak signals. The the components of these issues in the physical and data following 5 scenarios generically demonstrate opera- link layers. These include frequency allocation, coding, tions between Mars landed assets, orbiter relays, and data rates, link establishment, maintenance, and termi- Earth ground stations. nation procedures, reliable or expedited data transfer, Scenario 1: Simple Relay. The objective is to trans- ranging and time transfer. On top of Proximity-1, the fer a file by means of an orbital relay. A file may be CCSDS File Delivery Protocol at the transport layer transferred from a landed asset to Earth or visa versa. provides applications the capability of transporting The orbital relay functions as a store and forward node. their data products end to end across the entire space The on-board command and data handling system link either expedited or reliably. manages the data it receives from Earth or the landed Proximity-1 Key Characteristics: Proximity-1 asset, as a file in it’s on-board file management system. In those cases where the lander does not manage data provides standard services for transferring command, as a file, the relay orbiter can accept data not organized telemetry, and radiometric data products across the In- in files e.g., byte streams, CCSDS packet sets, and cre- Situ link. It provides a timing service which includes ate one or multiple files from this data on-board. Once techniques for round trip light time (RTLT) calculation the file is successfully transferred to the orbiter, it and setting remote spacecraft time. It also provides a takes custody of the data (custody transfer), and relays Concepts and Approaches for Mars Exploration 6114.pdf MARS COMMUNICATION PROTOCOLS: G.J. Kazz and E. Greenberg status back to the lander acknowledging its receipt. three phased approach below describes how the bi- Given adequate resource margins on-board the orbiter, directional file transfer concept can be infused into the lander can now delete this data providing storage future Mars missions. The description below uses a space for future data acquisition. simple communications model of a landed asset, an Scenario 2:Multi-Hop Relay (Rover to lander to orbiter relay, and Earth stations as illustrative only. orbiter to Earth) Now a rover enters the environment and transfers its data to the lander. The rover having Phase 1:Expedited CFDP (Deep Space limited computing power and storage does not have the Link)/reliable Proximity-1 Link The objective of this resources to run CFDP. Depending upon the required phase is to relay data collected by the landed asset via completeness of the data transfer, the rover utilizes a reliable Proximity-1 link to an orbiter, store the data either the expedited or the sequence controlled service on-board, and later transmit that data as a file to Earth of Proximity-1. Both the lander and orbiter function as using the expedited features of CFDP. This phase does store and forward nodes. Custody transfer occurs first not require the landed asset to transmit nor store its between the lander and the rover and later between the data as a file. This version of CFDP does not include orbiter and the lander. the automated selective repeat (report) feature. Scenario 3:Point-to-Multi-point (forward link) Phase 2: Expedited CFDP (In-Situ and Deep Within the proximity link environment, an orbiter en- Space)/reliable Proximity-1 Link The objective here is counters multiple landed assets. Assuming the orbiter has only one transceiver, it can simultaneously com- to move the functionality of building the file into the municate to all or a subset of the Mars assets within its landed asset. The orbiter is provided with the function- field of view. By cycling through a set of spacecraft ality of receiving the file and storing it in the on-board IDs during the hailing period, the orbiter can a) broad- data management. As in phase 1, the orbiter transmits cast commands for all Mars assets, or b) multicast the data as a file to Earth using expedited CFDP. commands to a subset of landed assets e.g., all landers, Phase 3: Reliable CFDP (In-Situ and Deep Space)/ or c) poll each landed asset to determine the priority of unreliable Proximity-1 Link. Here the landed asset uses its return link data transfer and once determined the more efficient and reliable QoS (selective repeat choose the asset with the highest priority. The Proxim- methodology) of CFDP to transfer a file to the orbiter ity-1 frame verification rules specify that only data using the expedited QoS of the Proximity-1 link. marked with the called asset’s spacecraft ID or multi- Similarly, for the Deep Space link, CFDP can be run cast address will be accepted by the asset. reliably on top of either CCSDS Packet Telemetry [5] Scenario 4:Time-Sequenced Point-to-Point (return or CCSDS Telecommand [6] Standard to/from Earth. link) Again assuming the orbiter has only one trans- References: [1] Hastrup, R.C. “Mars Network for ceiver, it can time share the return link with multiple Enabling Low-Cost Missions," Fourth IAA Interna- Mars assets based upon a priority scheme. It does this tional Conference on Low-Cost Planetary Missions," by establishing communications with a specific asset IAA-L-0509, Laurel, Maryland, 2-5 May 2000. [2] by hailing it, limiting the period of the data contact to a Consultative Committee on Space Data Systems subset of the total pass time, terminating the link with Proximity-1 Space Link Protocol , CCSDS 211.0-R-2, that asset before hailing the next asset and repeating Red Book Issue 2, Jan. 2000. Available at the process. http://www.ccsds.org/ .[3] Consultative Committee on Scenario 5:Point-to-Point Network This scenario Space Data Systems File Delivery Protocol, CCSDS will require some form of multiple access scheme. 727.0-R-3, Red Book Issue 3, May 1999. Available at Candidates under study at this time are frequency divi- http://www.ccsds.org/ [4] Kazz, G.J. “Application of sion multiple access (FDMA), code division multiple an Extended CCSDS Telecommand Standard for all access (CDMA), and time division multiple access Mars In-Situ Telecommunication Links,” First ESA (TDMA).
Recommended publications
  • Mars Express Orbiter Radio Science
    MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound
    [Show full text]
  • The Reference Mission of the NASA Mars Exploration Study Team
    NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor Science Applications International Corporation Houston, Texas David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 This publication is available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934 (301) 621-0390. Foreword Mars has long beckoned to humankind interest in this fellow traveler of the solar from its travels high in the night sky. The system, adding impetus for exploration. ancients assumed this rust-red wanderer was Over the past several years studies the god of war and christened it with the have been conducted on various approaches name we still use today. to exploring Earth’s sister planet Mars. Much Early explorers armed with newly has been learned, and each study brings us invented telescopes discovered that this closer to realizing the goal of sending humans planet exhibited seasonal changes in color, to conduct science on the Red Planet and was subjected to dust storms that encircled explore its mysteries. The approach described the globe, and may have even had channels in this publication represents a culmination of that crisscrossed its surface. these efforts but should not be considered the final solution. It is our intent that this Recent explorers, using robotic document serve as a reference from which we surrogates to extend their reach, have can continuously compare and contrast other discovered that Mars is even more complex new innovative approaches to achieve our and fascinating—a planet peppered with long-term goal.
    [Show full text]
  • Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
    Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis.
    [Show full text]
  • Origin of Fluvial Channels in the Walls of Juventae Chasma: Evidences of Groundwater Sapping? P
    47th Lunar and Planetary Science Conference (2016) 1878.pdf ORIGIN OF FLUVIAL CHANNELS IN THE WALLS OF JUVENTAE CHASMA: EVIDENCES OF GROUNDWATER SAPPING? P. Singh1, R. Sarkar1, I. Ganesh1 and A. Porwal1, 1Geology and Mineral Resources Group, CSRE, Indian Institute of Technology, Bombay, India ([email protected]) Introduction: Juventae Chasma is a deep box- Type IV: This type includes channels emanating from canyon located to the north of Valles Marineris. The gullies between the spurs on the chasma wall (Fig. 1d). main geological units of the chasma are chaotic terrain, They are mainly found in the southern wall of the four mounds of interior layered deposits (ILDs) and an chasma. These channels have shorter lengths ranging outflow channel. The presence of the outflow channel from 1-6 km and at places converge into a single chan- indicates that water played an important role in the nel. geological and geomorphological evolution of the Age determination: We estimated the ages of the chasma. In this paper, we report ground-water sapping geological units containing Type 1 and Type III chan- features from the wall of Juventae Chasma. We also delineate and characterize fluvial channels originating nels using crater size-frequency distributions. The re- from the chasma wall. This study was carried out using sults indicate that Type 1 channels are younger than panchromatic data from the CTX and digital terrain 790+- 200 Ma and Type III channels are younger than models from the HRSC onboard the MRO and MEX 620+-300 Ma. Type II and IV were left out because of respectively.
    [Show full text]
  • Propagation Dynamics of Spatio-Temporal Wave Packets
    PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electro-Optics By Qian Cao UNIVERSITY OF DAYTON Dayton, Ohio August, 2014 PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Name: Cao, Qian APPROVED BY: Andy Chong, Ph.D. Joseph Haus, Ph.D. Advisor Committee Chairman Committee Member Assistant Professor, Department of Professor, Electro-Optics Graduate Physics Engineering Program Partha Banerjee, Ph.D. Committee Member Professor, Electro-Optics Graduate Engineering Program John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean, School of Engineering School of Engineering ii c Copyright by Qian Cao All rights reserved 2014 ABSTRACT PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Name: Cao, Qian University of Dayton Advisor: Dr. Andy Chong We measured the three-dimensional (3D) propagation dynamics of the Airy-Bessel wave packet, inculding its intensity and phase evolution. Its non-diffraction and non-dispersive features were verified. Meanwhile, we built a spatial light modulator (SLM) based wave packet shaping system to generate other types of wave packets such as Airy-Airy-Airy and dual-Airy-Airy-rings. These wave packets were also measured in 3D. The abrupt 3D autofocusing effect was observed on dual-Airy- Airy-rings. iii To my family, my advisor and committee members and the time in University of Dayton. iv ACKNOWLEDGMENTS First of all, I want to express my thank to my advisor, Prof. Andy Chong. Although the time when I became his student it was the second year of his professor career, he taught and guided me in the world of science in such an experienced way.
    [Show full text]
  • Human Exploration of Mars Design Reference Architecture 5.0
    July 2009 “We are all . children of this universe. Not just Earth, or Mars, or this System, but the whole grand fireworks. And if we are interested in Mars at all, it is only because we wonder over our past and worry terribly about our possible future.” — Ray Bradbury, 'Mars and the Mind of Man,' 1973 Cover Art: An artist’s concept depicting one of many potential Mars exploration strategies. In this approach, the strengths of combining a central habitat with small pressurized rovers that could extend the exploration range of the crew from the outpost are assessed. Rawlings 2007. NASA/SP–2009–566 Human Exploration of Mars Design Reference Architecture 5.0 Mars Architecture Steering Group NASA Headquarters Bret G. Drake, editor NASA Johnson Space Center, Houston, Texas July 2009 ACKNOWLEDGEMENTS The individuals listed in the appendix assisted in the generation of the concepts as well as the descriptions, images, and data described in this report. Specific contributions to this document were provided by Dave Beaty, Stan Borowski, Bob Cataldo, John Charles, Cassie Conley, Doug Craig, Bret Drake, John Elliot, Chad Edwards, Walt Engelund, Dean Eppler, Stewart Feldman, Jim Garvin, Steve Hoffman, Jeff Jones, Frank Jordan, Sheri Klug, Joel Levine, Jack Mulqueen, Gary Noreen, Hoppy Price, Shawn Quinn, Jerry Sanders, Jim Schier, Lisa Simonsen, George Tahu, and Abhi Tripathi. Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 Phone: 301-621-0390 or 703-605-6000 Fax: 301-621-0134 This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/ CONTENTS 1 Introduction ......................................................................................................................
    [Show full text]
  • Chemical and Textural Observations by Chemcam of Conglomerates in Gale Crater R.C
    45th Lunar and Planetary Science Conference (2014) 1171.pdf CHEMICAL AND TEXTURAL OBSERVATIONS BY CHEMCAM OF CONGLOMERATES IN GALE CRATER R.C. Wiens1, N. Mangold2, O. Forni3, A. Ollila4, J. Johnson5, V. Sautter6, S. Maurice3, S. Clegg1, D. Blaney7, S. Le Mouelic2, R.B. Anderson8, N. Bridges5, B. Clark9, G. Dromart10, C. D’Uston3, C. Fabre11, O. Gasnault3, K. Herken- hoff8, Y. Langevin12, H. Newsom4, D. Vaniman13, G. Berger3, A. Cousin1, L. Deflores7, N. Lanza1, J. Lasue1, E. Lewin14, P.-Y. Meslin3, P. Pinet3, S. Schröder3, R. Leveille15, M.R. Fisk16, J. Blank17, N. Melikechi18, A. Mezzacap- pa18, J. Grotzinger19, and the MSL Science Team (1LANL; [email protected], LPGN2, IRAP/CNRS3, UNM4, APL/JHU5, MNHN6, JPL/Caltech7, USGS Flagstaff8, SSI9, U. Lyon10, U. Lorraine11, U. Paris-Sud12, PSI13, U. Gre- noble14, CSA15, Oregon State U.16, BAERI17, Caltech19) Overview and Localization: Observations of Conglomerate morphologies are illustrated in conglomerates along the Curiosity rover traverse Fig. 2. They usually appear as cemented agglomerates provide important clues to the sedimentary histo- of subangular to rounded pebbles with sand-size or ry of Gale crater [1]. Differences in clast sizes, finer-grained matrix. They usually lack obvious layer- and context, including imbrication, may indicate ing but often have a flat top due to erosion. Conglom- flow velocities. Clast shapes including rounding, erates often weather leaving loose pebbles on the and compositions may signal different source re- ground whereas finer material is removed by wind. gions and episodes of fluvial activity. The extent Conglomerate pebbles vary from light-toned to dark- of the conglomerate bedding helps define the toned, suggesting variety in the source material.
    [Show full text]
  • Role of Glaciers in Halting Syrtis Major Lava Flows to Preserve and Divert a Fluvial System
    ROLE OF GLACIERS IN HALTING SYRTIS MAJOR LAVA FLOWS TO PRESERVE AND DIVERT A FLUVIAL SYSTEM A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Geology in The Department of Geology and Geophysics by Connor Michael Matherne B.S., Louisiana State University, 2017 December 2019 ACKNOWLEDGMENTS Special thanks to J.R. Skok and Jack Mustard for conceiving the initial ideas behind this project and to Suniti Karunatillake and J.R. Skok for their guidance. Additionally, thank you to my committee members Darrell Henry and Peter Doran for aid in understanding the complex volcanic and climate history for this location. This work has benefited from reviews and discussions with Tim Goudge, Steven Ruff, Jim Head, and Bethany Ehlmann. We thank Caleb Fassett for providing the CTX DEM processing of the outlet fan and Tim Goudge for providing the basin Depression CTX DEM. All data and observations used in this study are publically available from the NASA PDS. Derived products such as produced CTX DEMs can be attained through processing or contacting the primary author. Connor Matherne was supported by the Frank’s Chair funds, W.L. Calvert Memorial Scholarship, NASA-EPSCoR funded LASpace Graduate Student Research Assistantship grant, and Louisiana Board of Regents Research Award Program grant LEQSF-EPS(2017)-RAP-22 awarded to Karunatillake. J.R. Skok was supported with the MDAP award NNX14AR93G. Suniti Karunatillake’s work was supported by NASA- MDAP grant 80NSSC18K1375. ii TABLE OF CONTENTS Acknowledgments..............................................................................................................
    [Show full text]
  • A Serpentinization Origin for Jezero Crater Carbonates
    47th Lunar and Planetary Science Conference (2016) 2165.pdf A SERPENTINIZATION ORIGIN FOR JEZERO CRATER CARBONATES. A. J. Brown1, C.E. Viviano- Beck2, J.L. Bishop1, N.A. Cabrol1, D. Andersen1, P. Sobron1, J.Moersch3, A.S. Templeton4, M.J. Russell5. 1SETI Insti- tute, 189 N. Bernardo Ave, Mountain View, CA ([email protected]) 2Johns Hopkins Applied Physics Laboratory, 3University of Tennessee, 4University of Colorado, Boulder, 5Jet Propulsion Laboratory, Pasadena, CA. Figure 1 – (left) CRISM image FRT47A3 and HRL40FF, CAR browse product, overlain on CTX image D14_032794_1989_XN_18N282W in Jezero crater. Green regions show strong carbonate signatures, with associated 2.38μm band. Light/dark blue shows north/south fan as delin- eated by Goudge et al. [9]. Note 2.38μm feature appears strongly in west part of north fan. The east part of the northern fan is spectrally feature- less. (right) Example of spectra from point A in the right image, showing 2.31, 2.38 and 2.54μm bands. Introduction: The Nili Fossae region is the site of used this spectral feature to map the locations and con- a number of proposed Landing Sites for the Mars 2020 fine the talc findings to eastern Nili Fossae. Rover. A distinguishing feature of all of these sites is Methods: The so-called “talc-carbonate” hypothe- the access to large amounts of carbonate deposits [1] sis rests on the presence of a 2.38μm absorption band and smaller carbonate deposits have been found else- that is almost always present when carbonate absorp- where on Mars [2]. Serpentinization has been proposed tion bands are detected.
    [Show full text]
  • The Stratigraphy and Evolution of Lower Mount Sharp from Spectral
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE The stratigraphy and evolution of lower Mount Sharp 10.1002/2016JE005095 from spectral, morphological, and thermophysical Key Points: orbital data sets • We have developed a stratigraphy for lower Mount Sharp using analyses of A. A. Fraeman1, B. L. Ehlmann1,2, R. E. Arvidson3, C. S. Edwards4,5, J. P. Grotzinger2, R. E. Milliken6, new spectral, thermophysical, and 2 7 morphologic orbital data products D. P. Quinn , and M. S. Rice • Siccar Point group records a period of 1 2 deposition and exhumation that Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, Division of Geological and followed the deposition and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 3Department of Earth and Planetary exhumation of the Mount Sharp Sciences, Washington University in St. Louis, St. Louis, Missouri, USA, 4United States Geological Survey, Flagstaff, Arizona, group USA, 5Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona, USA, 6Department of Earth, • Late state silica enrichment and redox 7 interfaces within lower Mount Sharp Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA, Geology Department, Physics were pervasive and widespread in and Astronomy Department, Western Washington University, Bellingham, Washington, USA space and/or in time Abstract We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Correspondence to: A. A. Fraeman, Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and [email protected] thermophysical properties.
    [Show full text]
  • Exomars Lander Radioscience Lara, a Space Geodesy Experiment to Mars
    EPSC Abstracts Vol. 11, EPSC2017-852, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 ExoMars Lander Radioscience LaRa, a Space Geodesy Experiment to Mars. V. Dehant (1), S. Le Maistre (1), R.M. Baland (1), M. Yseboodt (1), M.J. Péters (1), Ö. Karatekin (1), A. Rivoldini (1), and T. Van Hoolst (1) (1) Royal Observatory of Belgium, Brussels, Belgium ([email protected]) Abstract These Doppler measurements will be used to obtain the orientation and rotation of Mars in space The LaRa (Lander Radioscience) experiment is (precession and nutations, polar motion, and length- designed to obtain coherent two-way Doppler of-day variations). The ultimate objectives are to measurements from the radio link between the obtain information on Mars’ interior and on the ExoMars lander and Earth over at least one Martian sublimation/condensation process of CO2. This is year. The instrument lifetime is larger than the one possible since one will be able to obtain the moment Earth year of nominal mission duration. The Doppler of inertia of the whole planet that includes the mantle measurements will be used to observe the orientation and the core, the moment of inertia of the core, as and rotation of Mars in space (precession, nutations, well as the seasonal mass transfer between the and length-of-day variations), as well as polar motion. atmosphere and ice caps. The ultimate objective is to obtain information / constraints on the Martian interior, and on the The LaRa experiment will be used jointly with the sublimation / condensation cycle of atmospheric CO2.
    [Show full text]
  • Mars Exploration Camp Is to Excite Young Minds and Inspire Student Trainees Toward Future Science, Technology, Engineering, and Mathematics (STEM) Pursuits
    National Aeronautics and Space Administration Summer of Innovation Mars Exploration 4th – 9th grade www.nasa.gov Introduction The goal of the NASA Summer of Innovation Mars Exploration camp is to excite young minds and inspire student trainees toward future science, technology, engineering, and mathematics (STEM) pursuits. Raising trainee achievement in STEM pursuits begins by leading trainees on a journey of understanding through these highly engaging activities. The activities and experiences in this guide come from across NASAʼs vast collection of educational materials. This themed camp outline provides examples of one-day, two-day, and weeklong science and engineering programs. Each day contains 6-8 hours of activities totaling more than 35 hours of instructional time. The camp template will assist you in developing an appropriate learning progression focusing on the concepts necessary to engage in learning about Mars. The Mars Exploration camp provides an interactive set of learning experiences that center on the past, present, and future exploration of Mars. The activities scaffold to include cooperative learning, problem solving, critical thinking, and hands-on experiences. As each activity progresses, the conceptual challenges increase, offering trainees full immersion in the topics. Intended Learning Experiences Through the participation in these camps future scientists and engineers will have the opportunity to explore Mars. Student trainees gain learning experiences that help make scientific careers something they can envision
    [Show full text]