Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Arteriosclerosis/Atherosclerosis

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Arteriosclerosis/Atherosclerosis Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Arteriosclerosis/Atherosclerosis Chemical Activity Count (+)-8HYDROXYCALAMENENE 1 (+)-ALPHA-VINIFERIN 1 (+)-AROMOLINE 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 8 (+)-CEPHARANTHINE 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALBACIN 1 (+)-GALLOCATECHIN 2 (+)-HERNANDEZINE 2 (+)-ISOCORYDINE 1 (+)-PRAERUPTORUM-A 2 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 2 (+)-TENUIPINE 1 (+)-TETRANDRINE 2 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ACETOXYCOLLININ 1 (-)-ALPHA-BISABOLOL 1 (-)-APOGLAZIOVINE 1 (-)-ARCTIGENIN 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 Chemical Activity Count (-)-BORNYL-P-COUMARATE 2 (-)-CANADINE 1 (-)-CURINE 1 (-)-DAURISOLINE 1 (-)-DICENTRINE 1 (-)-EMETINE 1 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 13 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 4 (-)-EPIGALLOCATECHIN-3-O-GALLATE 3 (-)-EPIGALLOCATECHIN-GALLATE 6 (-)-EUDESMIN 1 (-)-HYDROXYJASMONIC-ACID 1 (-)-MATAIRESINOL 1 (-)-MELLEIN 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (-)-STEPHOLIDINE 1 (-)-TENUIPINE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 2 (15:1)-CARDANOL 2 (1S-2-TRANS-4R-6R-7-TRANS)-CEMBRA-2,7,12-(20-TRIENE-4,6,11-TRIOL) 1 (1S-2-TRANS-4R-6R-7-TRANS-11-TRANS)-CEMBRA-2,7,11-TRIENE-4,6-DIOL 1 (1S-2-TRANS-4S-6R-7-TRANS)-CEMBRA-2,7,12-(20-TRIENE-4,6,11-TRIOL) 1 (1S-2-TRANS-4S-6R-7-TRANS-11-TRANS)-CEMBRA-2,7,11-TRIENE-4,6-DIOL 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (2S)-5-METHOXY-6-METHYLFLAVAN-7-OL 1 2 Chemical Activity Count (2Z,8Z)-10-ANGELOYLOXY-MATRICARIA-ESTER 1 (5R,8R,9S,10R)-12-OXO-ENT-3,13-CLERODIEN-15-OIC-ACID 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (D,L)-BORRERINE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 2 (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE 2 0-METHYLCORYPALLINE 2 1,2,3,4,6-PENTA-O-GALLOYL-BETA-D-GLUCOSE 1 1,2,4,6-TETRA-O-GALLOYL-BETA-D-GLUCOSE 1 1,2,4-TRIHYDROXY-BENZENE 1 1,2,4-TRIHYDROXYHEPTADECA-16-ENE 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 2 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE 1 1,3,4,5-TETRACAFFEOYLQUINIC-ACID 1 1,3,5-TRIHYDROXY-BENZENE 1 1,3,5-TRIMETHOXYBENZENE 1 1,3,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,4-NAPTHAQUINONE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 5 1,8-DIHYDROXY-9-ANTHRONE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ACETOXYPINORESINOL 1 1-ACETYLJATIVATRIOL 1 1-ETHYL-BETA-CARBOLINE 2 3 Chemical Activity Count 1-HYDROXY-2-(3'-PENTENYL)-3,7-DIMETHYLBENZOFURAN 1 1-METHOXY-2-(3'-PENTENYL)-3,7-DIMETHYLBENZOFURAN 1 1-METHOXYCANTHIN-6-ONE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 1-TULIPOSIDE-A 1 1-TULIPOSIDE-B 1 10,6-HONOKIOL 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 2 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 10-GINGEROL 1 10-METHOXYCAMPTOTHECIN 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 2 13',II8-BIAPIGENIN 4 13-HYDROXYLUPANINE 1 13-OXYINGENOL-ESTER 1 14-ACETOXY-7-BETA-(3'-ETHYL-CROTONOYL-OXY)-NOTONIPETRANONE 1 14-ACETOXYCEDROL 3 14-O-ACETYL-ACOVENIDOSE-C 1 15-ALPHA-ACETOXYKAUREN-19-OIC-ACID 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 3 CYCLOPENTA[A]PHENANTHREN-3-ONE 16-HYDROXYINGENOL-ESTER 1 16-HYDROXYPSEUDOJOLKINOLIDE 1 2',6'-DIMETHOXY-4'-HYDROXYACETOPHENONE 1 2'-ANGELOYL-3'-ISOVALERYL-VAGINATE 1 4 Chemical Activity Count 2'-HYDROXY-4,6'-DIMETHOXY-3'-METHYLDIHYDROCHALCONE 1 2'-O-GLYCOSYLVITEXIN 1 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H- 1 BENZOCYCLOHEPTENE 2,4,6-TRIMETHOXYPHENOL 1 2,4-DI-O-GALLOYL-BETA-D-GLUCOSE 1 2,4-DIHYDROXY-6-METHOXY-3-METHYL-ACETOPHENONE 1 2,4-DIHYDROXY-6-METHOXY-3-METHYL-ACETOPHENONE-2-BETA-GLUCOSIDE 1 2,6-DIMETHOXY-P-BENZOQUINONE 1 2,6-DIMETHOXYPHENOL 1 2,7-DIHYDROXYCADALENE 1 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 1 2-(3',4-DIPHENYL)-ETHANOL 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-CAFFEOYL-OXY-3-{2-(4-HYDROXYBENZYL)-4,5-DIHYDROXY}PHENYLPROPIONIC-ACID 1 2-HYDROXY-4,4,7-TRIMETHYL-(4H)-NAPHTHALEN-1-ONE 1 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE 1 2-METHYLBUT-3-ENE-2-OL 1 2-METHYLCHROMONE 1 2-THIOURACIL 1 2-VINYL-4H-1,3-DITHIIN 3 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 26-O-BETA-D-GLUCOPYRANOSYLFUROST-20(22)-ENE-3-BETA,26-DIOL-3-O-BETA-D- 1 GLUCOPYRANOSYL(1---2)-BETA-D-GALACTOPYRANOSIDE 3',4',5,7-TETRAHYDROXYFLAVONE 1 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE 1 3'-O-METHYLBATATASIN-III 1 5 Chemical Activity Count 3,3',7-TRIMETHYL-ETHER-6-C-METHYLQUERCETIN 1 3,3'-DIMETHYLELLAGIC-ACID 2 3,4,5-TRI-O-CAFFEOYLQUINIC-ACID 1 3,4-DICAFFEOYL-QUINIC-ACID 1 3,4-DIHYDROXYACETOPHENONE 2 3,4-DIHYDROXYBENZOATE 1 3,4-DIHYDROXYBENZOIC-ACID 2 3,4-DIHYDROXYPHENYLETHANOL 1 3,4-DIMETHOXYTOLUENE 1 3,4-HYDROXYCINNAMIC-ACID 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 1 3,4-SECOTRACHYLOBANOIC-ACID 1 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 2 3,5'-DIALLYL-2'-HYDROXY-4-METHOXYBIPHENYL-ETHER 1 3,5,4'-TRIHYDROXY-6,7-METHYLENEDIOXY-3,O-BETA-D-GLUCOPYRANOSIDE 1 3,5,8,3',4'-PENTAHYDROXYFLAVONE 1 3,5-BIS(3-METHYL-2-BUTENYL)-4-METHOXY-BENZOIC-ACID 1 3,5-DI-O-CAFFEOYLQUINIC-ACID 1 3,5-DICAFFEOYL-QUINIC-ACID 1 3,5-DIMETHOXY-1,6-DIHYDROXYXANTHONE 1 3,7,8,2',5'-PENTAHYDROXYFLAVONE 1 3,7-DIMETHYL-ETHER-6,8-DI-C-METHYLKAEMPFEROL 1 3,7-DIMETHYL-ETHER-6,8-DI-C-METHYLQUERCETIN 1 3,7-DIMETHYL-ETHER-6-C-METHYLQUERCETIN 1 3-ACETYLACONITINE 1 3-ALPHA,15-DIHYDROXY-LABDA-8(17)-13E-DIENE 1 3-ALPHA-DIHYDROCADAMBINE 1 6 Chemical Activity Count 3-ALPHA-HYDROXY-12,13E-BIFORMENE 1 3-ALPHA-HYDROXYMANOOL 1 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-23-CAFFEATE 1 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-3-BETA-CAFFEATE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 2 3-BETA-HYDROXYPARTHENOLIDE 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-20(29)-LUPEN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-12-EN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-18-EN-28-OIC-ACID 1 3-CARBOMETHOXY-1,8-DIHYDROXYANTHRAQUINONE 1 3-HYDROXY-FLAVONE 3 3-METHOXY-1,8-DIHYDROXY-ANTHRQUINONE 1 3-METHYL-ETHER-6,8-DI-C-METHYLKAEMPFEROL 1 3-METHYL-ETHER-6,8-DI-C-METHYLQUERCETIN 1 3-METHYL-ETHER-6-C-METHYLQUERCETIN 1 3-METHYLQUERCETIN 1 3-N-BUTYL-PHTHALIDE 5 3-O-ACETYLOLEANOLIC-ACID 1 3-O-CAFFEOYLQUINIC-ACID 1 3-O-METHYL-(+)-CATECHIN 1 3-O-METHYL-MANGOSTIN 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID 2 3-OXO-11-ALPHA-METHOXYOLEAN-12-ENE-30-OIC-ACID 2 3-OXO-OLEAN-9(11),12-DIENE-30-OIC-ACID 2 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL 1 4,4'-DIALLYL-2,3'-DIHYDROXYBIPHENYL-ETHER 1 4,5-DI-O-CAFFEOYLQUINIC-ACID 1 7 Chemical Activity Count 4,5-DIMETHOXY-6-(2-PROPENYL)1,3-BENZDIOXOLE 1 4,5-EPOXYOVATODIOLIDE 1 4,7-DIHYDROXY-2-METHOXY-9,10-DIHYDROPHENANTHRENE 1 4-ACETYLARABINOSYL-ELLAGIC-ACID 1 4-ACETYLXYLOSYL-ELLAGIC-ACID 1 4-ALLYL-PYROCATECHOL 1 4-AMINO-4-CARBOXYCHROMAN-2-ONE 2 4-ARABINOSYL-ELLAGIC-ACID 1 4-CINNAMOYLMUSSATIOSIDE 1 4-DIMETHYLCAFFEOYLMUSSATIOSIDE 1 4-EPIABIETIC-ACID 1 4-EPIABIETOL 1 4-HYDROXY-3(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 1 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID-METHYL-ESTER 1 4-HYDROXY-3-(3-METHYL-2-BUTENYL)-5-(3-METHYL-2-BUTENYL)-BENZOIC-ACID 1 4-HYDROXY-3-(ISOPENTEN-2-YL)-ACETOPHENONE 1 4-HYDROXY-TRITRIACONTANE-16,18-DIONE 1 4-HYDROXYBENZOYL-ERYTHRITOL 1 4-KETOPINORESINOL 1 4-METHOXY-3,5-BIS(3-METHYL-2-BUTENYL)BENZOIC-ACID 1 4-METHYLENE-MILTIRONE 1 4-O-CAFFEOYLQUINIC-ACID 1 4-P-METHOXYCINNAMOYLMUSSATIOSIDE 1 4-TERPINEOL 2 4-VINYL-GUAIACOL 3 5,6-DEHYDROKAWAIN 2 8 Chemical Activity Count 5,6-DI-C-GLUCOSYLAPIGENIN 1 5,7,2',6'-TETRAHYDROXYFLAVONE 1 5,7-DIHYDROXY-2-METHYLCHROMONE-8-C-BETA-GLUCOPYRANOSIDE 2 5,7-DIHYDROXY-3,8-DIMETHOXYFLAVONE 1 5,7-DIHYDROXYCHROMONE 1 5,7-DIHYDROXYCOUMARIN-7-METHYL-ETHER 1 5,7-DIMETHOXYFLAVONE 1 5,8-DIHYDROXYBENZOPYRANONE 1 5-DEOXYINGENOL-ESTER 1 5-HYDROXY-8-O-BETA-D-GLUCOPYRANOSYL-BENZOPYRANONE 1 5-METHOXY-N,N-DIMETHYLTRYPTAMINE 1 5-O-BETA-D-GLUCOPYRANOSYL-3-1-(4-PHENYL)-DECANE 1 5-O-CAFFEOYLQUINIC-ACID 1 5-[2-(ACETOXY)-3-HYDROXY-3-METHYLBUTOXY]-PSORALEN 1 6'-O-ACETYL-DAIDZIN 1 6'-O-ACETYL-GENISTIN 1 6,7,4'-TRIHYDROXYISOFLAVAN 1 6,7,4'-TRIHYDROXYISOFLAVANONE 1 6,7,4'-TRIHYDROXYISOFLAVONE 1 6,7-DI-4'-METHOXYISOFLAVAN 1 6,7-DI-4'-METHOXYISOFLAVANONE 1 6,7-DI-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVAN 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVANONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXYCOUMARIN 1 6,7-DIMETHYLAESCULETIN 1 9 Chemical Activity Count 6,7-DIMETHYLESCULETIN 1 6-(3-CARBOXY-BUT-2-ENYL)-7-HYDROXYCOUMARIN 1 6-ACETONYLDIHYDRONITIDINE 1 6-ALPHA-HYDROXYDEHYDROCOSTUS-LACTONE 1 6-ALPHA-HYDROXYMEDICARPIN 1 6-DEHYDROGINGERDIONE 1 6-DEOXYJACAREUBIN 1 6-GINGERDIOL 1 6-GINGERDIONE 1 6-GINGEROL 6 6-METHOXY-BENZOLINONE 2 6-METHOXYBENZOXAZOLINONE 1 6-METHOXYTECLEANTHINE 1 6-O-(2''-ACETYL-3'',4''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-O-(4''-ACETYL-2'',3''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-O-ANGELOYLPLENOLIN 2 6-SHOGAOL 4 7,4'-DIHYDROXY-8-METHYLFLAVAN 1 7,4'-DIHYDROXYFLAVAN 1 7,8-DIHYDROXYFLAVONE 1 7-HYDROXYFLAVAN 1 7-METHOXYCOUMARIN 2 7-METHYLJUGLONE 1 7-N-BUTOXY-3,2',5'-TRIHYDROXYFLAVONE 1 7-O-(6-O-BETA-D-APIOFURANOSYL)-BETA-D-(GLUCOPYRANOSYL)-ORCHINOL 1 7-[3-(3,4-DIHYDROXY-4-HYDROXYMETHYL-TETRAHYDRO-FURAN-2-YLOXY)-4,5-DIHYDROXY-6- 1 HYDROXYMETHYL-TETRAHYDRO-PYRAN-2-YLOXY]...
Recommended publications
  • Amorpha Fruticosa – a Noxious Invasive Alien Plant in Europe Or a Medicinal Plant Against Metabolic Disease?
    fphar-08-00333 June 6, 2017 Time: 18:44 # 1 REVIEW published: 08 June 2017 doi: 10.3389/fphar.2017.00333 Amorpha fruticosa – A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease? Ekaterina Kozuharova1, Adam Matkowski2, Dorota Wo´zniak2, Rumiana Simeonova3, Zheko Naychov4, Clemens Malainer5, Andrei Mocan6,7, Seyed M. Nabavi8 and Atanas G. Atanasov9,10,11* 1 Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria, 2 Department of Pharmaceutical Biology with Botanical Garden of Medicinal Plants, Medical University of Wroclaw, Poland, 3 Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria, 4 Sofia University St. Kliment Ohridski, Faculty of Medicine, Department of Surgery, Obstetrics and Gynecology, Division of Cardiac Surgery, University Hospital Lozenetz, Sofia, Bulgaria, 5 Independent Researcher, Vienna, Austria, 6 Department of Pharmaceutical Botany, Iuliu Ha¸tieganuUniversity of Medicine and Pharmacy, Cluj-Napoca, Romania, 7 ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania, 8 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, 9 Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland, 10 Department of Pharmacognosy, University of Vienna, Vienna, Austria, 11 Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria Amorpha fruticosa L. (Fabaceae) is a shrub native to North America which has been Edited by: Kalin Yanbo Zhang, cultivated mainly for its ornamental features, honey plant value and protective properties University of Hong Kong, Hong Kong against soil erosion.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Karanja” Belonging to Family Leguminosae
    Int. J. Pharm. Sci. Rev. Res., 59(1), November - December 2019; Article No. 05, Pages: 22-29 ISSN 0976 – 044X Review Article The Review: Phytochemical and Bioactive Screening of “Karanja” belonging to family Leguminosae. Preethima G1*, Ananda V 1, D. Visagaperumal 1, Vineeth Chandy 1, Prashanthi P 2 1Department of Pharmaceutical chemistry, T. John College of Pharmacy, Bangalore, India. 2Department of Pharmacognosy, T. John College of Pharmacy, Bangalore, Karnataka, India. *Corresponding author’s E-mail: [email protected] Received: 10-09-2019; Revised: 22-10-2019; Accepted: 03-11-2019. ABSTRACT Traditional medicine consists of huge number of plants with different pharmacological and medicinal values. The bioactive molecules have been identified. Pongamia pinnata (Linn.) Pierre is one of the oldest plants with numerous properties, which is found all over the globe. It is commonly known as “Indian beech tree” and has been identified in Ayurvedic and Siddha system of medicines for the healing effect of human beings. Different parts of whole plant are used for treatment of various diseases including rheumatism, diarrhoea, gonorrhoea, whooping cough, leprosy and bronchitis. Extracts of the whole plant show significant anti- plasmodial, anti-ulcerogenic, anti-diarrhoeal, anti-inflammatory, anti-fungal, and analgesic activities. Its oil is used as a source of biodiesel. The present review paper was aimed to u0pdate the information of Pongamia pinnata with reference to its pharmacological properties, chemical constituents and its use as anti-urolithiatic agent for the treatment of Urolithiasis. Keywords: Pongamia pinata, Indian beech tree, Healing effect, Anti-urolithiatic agent, urolithiasis. INTRODUCTION four- to five-toothed, with a papilionaceous corolla.
    [Show full text]
  • Characterization of the Isoflavone Pratensein As a Novel
    July 2009 Notes Biol. Pharm. Bull. 32(7) 1289—1294 (2009) 1289 Characterization of the Isoflavone Pratensein as a Novel Transcriptional Up-Regulator of Scavenger Receptor Class B Type I in HepG2 Cells # # Yuan YANG, Wei JIANG, Li WANG, Zhong-Bing ZHANG, Shu-Yi SI,* and Bin HONG* Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050, China. Received January 22, 2009; accepted April 9, 2009; published online April 15, 2009 Scavenger receptor class B type I (SR-BI), as well as its human homologue CLA-1, plays an important role in reverse cholesterol transport (RCT) as high density lipoprotein (HDL) receptor. Using a previously developed cell-based screening model for CLA-1 up-regulators, pratensein, was shown to present activity in elevating CLA- 1 transcriptional level. In this study, three other isoflavones including formononetin, genistein and daidzein were also shown to up-regulate CLA-1 transcriptional activity in the cell-based reporter assay. The effects of praten- sein on up-regulating CLA-1 expression were demonstrated at both mRNA and protein levels, and validated by its increasing of 1,1؅-dioctadecyl-3,3,3؅,3؅-tetramethylindocarbocyanine perchlorate-labeled (DiI)-HDL uptake in HepG2 cells. Furthermore, the cis-elements responsible for the pratensein up-regulatory effects were mapped to the ؊1055/؊182 bp fragment of CLA-1 promoter in HepG2 cells. These findings might provide a new molecular mechanism by which isoflavones potentially prevent atherosclerosis. Key words pratensein; scavenger receptor class B type I; reverse cholesterol transport; atherosclerosis; cis-element Cardiovascular disease is one of the most common dis- is beneficial in post-menopausal women for bone, cardiovas- eases that damage human health in developed countries and cular risk and hot flashes.9) The hypolipidemic activity of most developing countries, while atherosclerosis is the prin- pratensein has been reported in Triton-WR1339-induced hy- cipal pathogenesis for many critical cardiovascular diseases.
    [Show full text]
  • IN SILICO ANALYSIS of FUNCTIONAL Snps of ALOX12 GENE and IDENTIFICATION of PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS
    Tulasidharan Suja Saranya et al. Int. Res. J. Pharm. 2014, 5 (6) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article IN SILICO ANALYSIS OF FUNCTIONAL SNPs OF ALOX12 GENE AND IDENTIFICATION OF PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS LIPOXYGENASE INHIBITORS Tulasidharan Suja Saranya, K.S. Silvipriya, Manakadan Asha Asokan* Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Viswa Vidyapeetham University, AIMS Health Sciences Campus, Kochi, Kerala, India *Corresponding Author Email: [email protected] Article Received on: 20/04/14 Revised on: 08/05/14 Approved for publication: 22/06/14 DOI: 10.7897/2230-8407.0506103 ABSTRACT Cancer is a disease affecting any part of the body and in comparison with normal cells there is an elevated level of lipoxygenase enzyme in different cancer cells. Thus generation of lipoxygenase enzyme inhibitors have suggested being valuable. Individual variation was identified by the functional effects of Single Nucleotide Polymorphisms (SNPs). 696 SNPs were identified from the ALOX12 gene, out of which 73 were in the coding non-synonymous region, from which 8 were found to be damaging. In silico analysis was performed to determine naturally occurring flavonoids such as isoflavones having the basic 3- phenylchromen-4-one skeleton for the pharmacological activity, like Genistein, Diadzein, Irilone, Orobol and Pseudobaptigenin. O-methylated isoflavones such as Biochanin, Calycosin, Formononetin, Glycitein, Irigenin, 5-O-Methylgenistein, Pratensein, Prunetin, ψ-Tectorigenin, Retusin and Tectorigenine were also used for the study. Other natural products like Aesculetin, a coumarin derivative; flavones such as ajoene and baicalein were also used for the comparative study of these natural compounds along with acteoside and nordihydroguaiaretic acid (antioxidants) and active inhibitors like Diethylcarbamazine, Zileuton and Azelastine as standard for the computational analysis.
    [Show full text]
  • The Pongam Tree, Unfit for Florida Landscaping, Has Multiple Practical Uses in Under-Developed Lands
    Proc. Fla. State Hort. Soc. 103:338-343. 1990. THE PONGAM TREE, UNFIT FOR FLORIDA LANDSCAPING, HAS MULTIPLE PRACTICAL USES IN UNDER-DEVELOPED LANDS Julia F. Morton come 6 to 14 in long; have 3 to 9 opposite, elliptic or obo- Morton Collectanea vate leaflets, 2 to 6 in long, pointed at the apex, dark- University of Miami green, glossy on the upper surface, paler, dull, with prom Coral Gables, FL 33124 inent veins on the underside. The strongly fragrant, pea- like flowers, V2 in long, may be white, pale-pink, or laven Additional index words. Pongamia pinnata, P. glabra, Derris der with purple calyx; are borne in axillary racemes to 10 indica. in long. The short-stalked pods, borne in great abundance 3 to 4 months after blooming, are somewhat almond- Abstract. The pong am tree, Pongamia pinnata (Linn.) Merr. (P. shaped, with a short, recurved beak at the apex. They are glabra Vent, nom Meg.) (7), grows wild on seashores and about lA in thick, II/2 to 2V2 in long, V4 to 1 V2 in wide; along inland waterways from India and Malaysia to northern bright-green and waxy when immature; light-brown when Australia, the Philippines and Polynesia. It was introduced mature and dry; leathery and durable; remain on the tree into Hawaii by Hillebrand in the 1860#s. The U.S. Department all year, are difficult to crush on the ground, creating a of Agriculture received seeds from Sri Lanka in 1910, from long-lasting litter. In the words of Cowen (26): "The Mauritius in 1911, from India in 1912, from Egypt in 1916, ground below is always covered with a crackling carpet." and from India in 1926.
    [Show full text]
  • Ginkgo Biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 278273, 11 pages doi:10.1155/2012/278273 Research Article Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor Sherry L. Xu, Roy C. Y. Choi, Kevin Y. Zhu, Ka-Wing Leung, Ava J. Y. Guo, Dan Bi, Hong Xu, David T. W. Lau, Tina T. X. Dong, and Karl W. K. Tsim Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Correspondence should be addressed to Karl W. K. Tsim, [email protected] Received 6 March 2012; Accepted 11 April 2012 Academic Editor: Paul Siu-Po Ip Copyright © 2012 Sherry L. Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells.
    [Show full text]
  • UHPLC-MS Chemical Fingerprinting and Antioxidant, Antiproliferative, and Enzyme Inhibition Potential of Gaultheria Pumila Berries
    H OH metabolites OH Article UHPLC-MS Chemical Fingerprinting and Antioxidant, Antiproliferative, and Enzyme Inhibition Potential of Gaultheria pumila Berries Carlos Fernández-Galleguillos 1, Luisa Quesada-Romero 2,*, Adrián Puerta 3, José M. Padrón 3 , Ernane Souza 4, Javier Romero-Parra 5 and Mario J. Simirgiotis 1,6,* 1 Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; [email protected] 2 Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile 3 BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, 38206 La Laguna, Spain; [email protected] (A.P.); [email protected] (J.M.P.) 4 The Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33401, USA; [email protected] 5 Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago 6640022, Chile; [email protected] 6 Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile * Correspondence: [email protected] (L.Q.-R.); [email protected] (M.J.S.); Tel.: +56-632632811 (L.Q.-R.) Citation: Fernández-Galleguillos, C.; Quesada-Romero, L.; Puerta, A.; Abstract: Gaultheria pumila (Ericaceae) (known as Chaura or Mutilla) is a Chilean native small Padrón, J.M.; Souza, E.; shrub that produces berry fruits consumed by local Mapuche people. In this study, the chemical Romero-Parra, J.; Simirgiotis, M.J. fingerprinting and antioxidant, enzyme inhibition, and antiproliferative activities of the berries UHPLC-MS Chemical Fingerprinting were investigated for the first time.
    [Show full text]
  • Medicinal Uses, Phytochemistry and Pharmacology of Pongamia Pinnata (L.) Pierre: a Review
    Journal of Ethnopharmacology 150 (2013) 395–420 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: A review L.M.R. Al Muqarrabun a, N. Ahmat a,n, S.A.S. Ruzaina a, N.H. Ismail a, I. Sahidin b a Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia b Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Haluoleo University (Unhalu), 93232 Kendari, Southeast Sulawesi, Indonesia article info abstract Article history: Ethnopharmacological relevance: Pongamia pinnata (L.) Pierre is one of the many plants with diverse Received 10 April 2013 medicinal properties where all its parts have been used as traditional medicine in the treatment and Received in revised form prevention of several kinds of ailments in many countries such as for treatment of piles, skin diseases, 19 August 2013 and wounds. Accepted 20 August 2013 Aim of this review: This review discusses the current knowledge of traditional uses, phytochemistry, Available online 7 September 2013 biological activities, and toxicity of this species in order to reveal its therapeutic and gaps requiring Keywords: future research opportunities. Pongamia pinnata Material and methods: This review is based on literature study on scientific journals and books from Fabaceae library and electronic sources such as ScienceDirect, PubMed, ACS, etc. Anti-diabetic Results: Several different classes of flavonoid derivatives, such as flavones, flavans, and chalcones, and Anti-inflammatory Karanjin several types of compounds including terpenes, steroid, and fatty acids have been isolated from all parts Pongamol of this plant.
    [Show full text]
  • A Phytochemical Investigation of Two South African Plants: Strophanthus Speciosus and Eucomis Montana
    UNIVERSITY OF KWAZULU-NATAL A PHYTOCHEMICAL INVESTIGATION OF TWO SOUTH AFRICAN PLANTS WITH THE SCREENING OF EXTRACTIVES FOR BIOLOGICAL ACTIVITY By ANDREW BRUCE GALLAGHER B. Sc Honours (cum laude) (UKZN) Submitted in fulfilment of the requirements for the degree of Master of Science In the School of Biological and Conservation Science and The School of Chemistry University of KwaZulu-Natal, Howard College campus Durban South Africa 2006 ABSTRACT Two South African medicinal plants, Strophanthus speciosus and Eucomis montana, were investigated phytochemically. From Strophanthus speciosus a cardenolide, neritaloside, was isolated, whilst Eucomis montana yielded three homoisoflavanones, 3,9- dihydroeucomin, 4' -demethyl-3,9-dihydroeucomin, and 4' -demethyl-5-0-methyl-3,9- dihydroeucomin. The structures were elucidated on the basis of spectroscopic data. The homoisoflavanones were screened for anti-inflammatory activity usmg a chemiluminescent luminol assay, modified for microplate usage. All of the homoisoflavanones exhibited good inhibition of chemiluminescence, with ICso values for 3,9-dihydroeucomin, 4' -demethyl-3,9-dihydroeucomin, and 4' -demethyl-5-0-methyl-3,9- dihydroeucomin being 14mg/mL, 7 mg/mL, and 13mg/mL respectively. The ICso value of 4'-demethyl-3,9-dihydroeucomin compared favourably with the NSAID control (meloxicam), which had an ICso of 6mg/mL. Neritaloside was not screened for biological activity as the yield of 14.4mg was insufficient for the muscle-relaxant screen for which it was intended. An assay for antioxidant/free radical scavenging activity was also performed. All the compounds had excellent antioxidant/free radical scavenging activity, with percentage inhibition of the reaction being 92%, 96%, and 94% for 3,9-dihydroeucomin, 4'­ demethyl-3,9-dihydroeucomin, and 4'-demethyl-5-0-methyl-3,9-dihydroeucomin respectively at a concentration of 10mg/mL.
    [Show full text]
  • Phylogenetic Insights on the Isoflavone Profile Variations In
    Food Research International 76 (2015) 51–57 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Phylogenetic insights on the isoflavone profile variations in Fabaceae spp.: Assessment through PCA and LDA Tatiana Visnevschi-Necrasov a,b, João C.M. Barreira b,c,⁎,SaraC.Cunhab, Graça Pereira d, Eugénia Nunes a, M. Beatriz P.P. Oliveira b a CIBIO-ICETA, Faculdade de Ciências, Universidade do Porto, R. Padre Armando Quintas 4485-661 Vairão, Portugal b REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, No. 228, 4050-313, Porto,Portugal c CIMO-ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal d INRB/IP — INIA — Instituto Nacional de Recursos Biológicos, Caia E São Pedro Estrada Gil Vaz, 7350-228 Elvas, Portugal article info abstract Article history: Legumes (Fabaceae) are important crops, known as sources of food, feed for livestock and raw materials for in- Received 30 September 2014 dustry. Their ability to capture atmospheric nitrogen during symbiotic processes with soil bacteria reduces the Received in revised form 15 November 2014 need for expensive chemical fertilizers, improving soil and water quality. Several Fabaceae species are acknowl- Accepted 20 November 2014 edged for the high levels of secondary metabolites. Isoflavones are among the most well-known examples of Available online 28 November 2014 these compounds, being recognized for their several types of biological activity. Herein, isoflavone profiles were characterized in nine species of four Fabaceae genera (Biserrula, Lotus, Ornithopus and Scorpiurus). Plants Chemical compounds studied in this article: fl Daidzin (PubChem CID: 107971) were harvested in the late ower physiological stage to prevent biased results due to naturally occurring varia- Genistin (PubChem CID: 5281377) tions along the vegetative cycle.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Antibacterial
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Antibacterial Chemical Dosage (+)-8HYDROXYCALAMENENE -- (+)-8HYDROXYCALAMENENE -- (+)-GALBACIN -- (+)-T-CADINOL MIC=2-24 ug/ml (-)-EPICATECHIN -- (-)-EPIGALLOCATECHIN -- (-)-EPIGALLOCATECHIN-GALLATE -- (2Z,8Z)-10-ANGELOYLOXY-MATRICARIA-ESTER MIC=50->100 ug/mL (5R,8R,9S,10R)-12-OXO-ENT-3,13-CLERODIEN-15-OIC-ACID 20-25ug/ml (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE -- 1,2,4-TRIHYDROXYHEPTADECA-16-ENE -- 1,2-DIHYDROXY-4-GLUCOSYLNAPTHALENE -- 1,3,4,5-TETRACAFFEOYLQUINIC-ACID -- 1,3,5-TRIMETHOXYBENZENE -- 1,4-NAPTHAQUINONE -- 1,8-CINEOLE 50 ppm 1-ACETYLJATIVATRIOL -- 1-ETHYL-BETA-CARBOLINE -- 1-METHOXYCANTHIN-6-ONE -- 1-TULIPOSIDE-A -- 1-TULIPOSIDE-B -- 15-ALPHA-ACETOXYKAUREN-19-OIC-ACID 250 mM/ml 16-HYDROXYPSEUDOJOLKINOLIDE -- 2,4,6-TRIMETHOXYPHENOL -- 2,6-DIMETHOXY-P-BENZOQUINONE -- 2,7-DIHYDROXYCADALENE -- 2,7-DIMETHOXY-5-ISOPROPYL-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- Chemical Dosage 2-HYDROXY-5-ISOPROPYL-7-METHOXY-3-METHYL-8,1-NAPTHALENE-CARBOLACTONE -- 3'-FORMYL-2',4',6'-TRIHYDROXY-5'-METHYLDIHYDROCHALCONE -- 3'-O-METHYLBATATASIN-III -- 3,4-DIHYDROXYBENZOIC-ACID -- 3,4-DIMETHOXYTOLUENE -- 3,4-SECOTRACHYLOBANOIC-ACID MIC=25 ug/ml 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID MIC=3->6.25 ug/ml 3,5'-DIALLYL-2'-HYDROXY-4-METHOXYBIPHENYL-ETHER -- 3,5-BIS(3-METHYL-2-BUTENYL)-4-METHOXY-BENZOIC-ACID MIC=1.25->50 nM 3,5-DIMETHOXY-1,6-DIHYDROXYXANTHONE -- 3-CARBOMETHOXY-1,8-DIHYDROXYANTHRAQUINONE -- 3-METHOXY-1,8-DIHYDROXY-ANTHRQUINONE -- 3-O-METHYL-MANGOSTIN -- 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID
    [Show full text]