RESEARCH ARTICLE The cis-regulatory effects of modern human-specific variants Carly V Weiss1†, Lana Harshman2,3†, Fumitaka Inoue2,3‡, Hunter B Fraser1, Dmitri A Petrov1*, Nadav Ahituv2,3*, David Gokhman1* 1Department of Biology, Stanford University, Stanford, Stanford, United States; 2Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, San Francisco, United States; 3Institute for Human Genetics, University of California San Francisco, San Francisco, San Francisco, United States Abstract The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells, and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these *For correspondence: drove differential expression between human groups. Differentially active sequences were
[email protected] (DAP); associated with divergent transcription factor binding motifs, and with genes enriched for vocal
[email protected] (NA); tract and brain anatomy and function. This work provides insight into the regulatory function of
[email protected] (DG) variants that emerged along the modern human lineage and the recent evolution of human gene †These authors contributed expression. equally to this work Present address: ‡Institute for the Advanced Study of Human Introduction Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan The fossil record allows us to directly compare skeletons between modern humans and their closest extinct relatives, the Neanderthal and the Denisovan.