Innovative Methods to Mitigate Alkali-Silica Reaction in Concrete Materials Containing Recycled Glass Aggregates

Total Page:16

File Type:pdf, Size:1020Kb

Innovative Methods to Mitigate Alkali-Silica Reaction in Concrete Materials Containing Recycled Glass Aggregates The Pennsylvania State University The Graduate School College of Engineering INNOVATIVE METHODS TO MITIGATE ALKALI-SILICA REACTION IN CONCRETE MATERIALS CONTAINING RECYCLED GLASS AGGREGATES A Dissertation in Civil and Environmental Engineering by Seyed-Mohammad-Hadi Shafaatian Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2012 The dissertation proposal of Seyed-Mohammad-Hadi Shafaatian was reviewed and approved* by the following: Farshad Rajabipour (Chair) Assistant Professor off the civil and environmental engineering Dissertation advisor, Chair of Committee William Burgos Professor of Civil and Environmental Engineering Carlo Pantano Distinguished Professor of Materials Science and Engineering Barry Scheetz Professor of Civil and Environmental Engineering *Signatures are on file in the Graduate School. Peggy Johnson Civil and Environmental Engineering Department Head ABSTRACT Application of recycled glass as a cement or fine aggregate replacement in concrete could result in major benefits towards a more sustainable design of concrete materials. This is however only possible if the main obstacle, the alkali silica reaction (ASR), is properly addressed and the ASR damage is mitigated. ASR is a deleterious reaction that occurs between meta-stable silicate phases of aggregates and hydroxyl ions present in the pore solution of portland cement concrete. With the overall goal of developing effective methods to mitigate ASR in concrete containing recycled glass, the research objectives of this PhD study are: 1- To understand the mechanisms through which fly ash controls ASR in accelerated mortar bar test (AMBT). 2- To investigate the beneficial effects of high alkali content glass powder towards ASR mitigation and elucidate the underlying ASR controlling mechanisms in AMBT 3- To perform a preliminary study of the feasibility of using Al(OH)3 as a cement replacement to control ASR . As one potential mechanism, the effect of Al on the dissolution rate of glass aggregates in alkaline solutions is further researched. To achieve the first objective, a series of experiments were designed to assess different potential ASR mitigation mechanisms with the aid of computer modeling coupled with advanced material characterization techniques. Various properties (e.g., pore solution composition, ion diffusion coefficient, pore size distribution, strength, ASR gel production and its composition) of mortars with the minimum required fly ash dosage were compared with 100% portland cement mortars. The findings revealed that fly ash mainly reduces the ASR expansion of mortars, by reducing the rate of ingress of the attacking hydroxyl ions from the external alkali bath. This was linked to the pore refinement occurred due to pozzolanic reaction of fly ash. With a numerical study, simulating the adsorption of alkalis by cement hydration products as a sink term, it was shown that alkali binding was also effective. Application of fly ash increased tensile strength of the mortars and thus, could enhance their resistance against cracking. Variation in ASR gel composition and alkali dilution were found to have minor effect in AMBT conditions. Finally, a new mechanism was introduced and validated in which fly ash to reduce ASR by iii repressing the dissolution rate of silicate aggregates which occurs due to reduction of the effective hydroxyl ion to aggregate surface ratio. To achieve the second research objective, four types of glass powder (GP) with different sizes were experimented in AMBT. An approximately linear relationship was obtained between GP size and the required dosage to mitigate ASR. A set of material characterization techniques was designed to shed light on the ASR suppressing effects of GP. The findings revealed that cement replacement by glass powder leads to a decrease in the pH of the pore solution even if alkalis are released from the glass powder. Based on charge balance, it was speculated that some alkalis were present in non-ionic form which do not increase the pore solution’s pH and promote ASR. Application of glass powder leads to a significant reduction in the rate of ion transport from the external bath. During the test, portlandite content of GP mortar decreased due to the pozzolanic reaction which led to a reduction in the average pore size of the binder phase of GP mortar. GP enhanced the tensile strength of the mortars which could be beneficial in ASR mitigation. Finally, to achieve the third research objective, the replacement of 20% weight of cement with Al(OH)3 powder was shown to suppress ASR expansion during ASTM C1260 test. The study was then focused on one possible mechanism through which Al(OH)3 can mitigate ASR. The effect of soluble Al on the rate of silicate glass dissolution, at high pH was studied. Corrosion of glass slides in alkaline solutions significantly decreased in presence of Al in the solution. The cause of this phenomenon was further investigated and related to formation of a semi-crystalline Al-Si (zeolite) layer at the surface of glass slides as well as Al-poisoning of silica surface. Based on experimental results, it is speculated that the latter mechanism is more significant in reducing glass dissolution rate and the protective action of the zeolite layer is likely to be less effective. The presence of sufficient dissolved Al was found to be essential for minimizing the dissolution rate of silicate glass. iv TABLE OF CONTENTS LIST OF FIGURES ……………………………………………………………..ix LIST OF TABLES……………………………………………………………….xv CHAPTER 1: INTRODUCTION……...……………………...…………………1 1.1 The Problem of Waste Glass ....................................................................................................... 1 1.2 Alkali Silica Reaction (ASR) ...................................................................................................... 3 1.3 Research Significance and Needs: ............................................................................................... 4 1.4 Organization of Contents ............................................................................................................. 6 1.5 References: .................................................................................................................................. 9 CHAPTER 2: BACKGROUND……………...………………………………………………….10 2.1 Using Recycled Glass in Concrete: ........................................................................................... 10 2.2 Benefits of Using Recycled Glass in Concrete: ......................................................................... 14 2.3 Challenges to Use of Recycled Glass in Concrete: ................................................................... 16 2.4 Chemical Mechanism of ASR ................................................................................................... 17 2.4.1 Structure of soda-lime glass ...................................................................................................... 17 2.4.2 Glass dissolution ........................................................................................................................ 18 2.4.3 Silica gelation and swelling ....................................................................................................... 23 2.5 ASR Gel: ................................................................................................................................... 25 2.6 Controlling ASR: ....................................................................................................................... 26 2.7 Tests to Evaluate the ASR risk of Aggregate-Cement Combinations ....................................... 28 2.8 Summary: .................................................................................................................................. 33 2.9 References: ................................................................................................................................ 34 CHAPTER 3: HOW DOES FLY ASH MITIGATE ALKALI-SILICA REACTION (ASR) IN ACCELERATED MORTAR BAR TEST (ASTM C1567)?...................................................................................................................38 3.1 Introduction ......................................................................................................................................... 38 3.2 Existing Literature .............................................................................................................................. 40 3.3 Materials and Methods ........................................................................................................................ 44 v 3.3.1 Accelerated mortar bar test (ASTM C1567) ............................................................................. 45 3.3.2 Pore solution extraction and analysis ........................................................................................ 46 3.3.3 Measurement of ion diffusivity using electrical impedance spectroscopy ................................ 47 3.3.4 Tensile and compressive strength tests ...................................................................................... 48 3.3.5 SEM/EDS imaging .................................................................................................................... 49 3.3.6 Aggregate dissolution rate measurements ................................................................................. 50 3.3.7 Numerical Model to Simulate Alkali Transport and Binding ..................................................
Recommended publications
  • Evaluation of Ash Pozzolanic Activity by Means of the Strength Activity Index Test, Frattini Test and DTA/TG Analysis
    ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20171203193229 Original scientific paper Evaluation of Ash Pozzolanic Activity by Means of the Strength Activity Index Test, Frattini Test and DTA/TG Analysis Sabina KRAMAR, Vilma DUCMAN Abstract: The pozzolanic activity of five different types of ash was studied using various direct and indirect methods. In addition to strength activity index (SAI) determination and the Frattini test, ash pozzolanicity was assessed via differential thermal and thermogravimetric analyses (DTA/TG) after curing for 7, 28 and 90 days. The results showed that, due to their respective mineralogical, chemical and physical characteristics, the ashes exhibited different levels of pozzolanic activity in terms of the amount of lime with which they could chemically bind, as well as reaction kinetics. Although SAI and Frattini test results were not in agreement in the case of some of the ashes, DTA/TG analysis revealed that a certain amount of portlandite was consumed, thus confirming the occurrence of a pozzolanic reaction. The results also showed that ashes with higher amounts of reactive SiO2 were more reactive, while those with higher BET surface areas displayed a faster pozzolanic reaction rate. Keywords: biomass ash, DTA/TG, fly ash, Frattini test, pozzolanic activity, SAI 1 INTRODUCTION [7]. The utilisation potential of fly ash is mainly controlled by its chemical composition, but also by particle size, Supplementary cementitious materials (SCMs), amorphous phase content, specific surface area, including fly ash, ground granulated blast furnace slag, morphology and surface texture [8-10]. In contrast to those silica fume, calcined clays and natural pozzolans, are obtained from coal combustion, biomass fly ashes are increasingly used in the construction sector, e.g.
    [Show full text]
  • Assessment of Wood-Based Fly Ash As Alternative Cement Replacement
    sustainability Article Assessment of Wood-Based Fly Ash as Alternative Cement Replacement Jan Foˇrt 1,2,* , Jiˇrí Šál 2, Jaroslav Žák 2 and Robert Cernˇ ý 1 1 Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákutova 7, 166 29 Prague, Czech Republic; [email protected] 2 Institute of Technology and Business in Ceskˇ é Budˇejovice,Okružní 10, 370 01 Ceskˇ é Budˇejovice, Czech Republic; [email protected] (J.Š.); [email protected] (J.Ž.) * Correspondence: [email protected] Received: 16 October 2020; Accepted: 15 November 2020; Published: 17 November 2020 Abstract: The abandonment of coal energy plants in the near future will result in a substantially reduced availability of the coal fly ash broadly used as an efficient supplementary material. In line with the growth of alternative and renewable energy resources, the amount of biomass-based ash rises substantially. Nevertheless, a diverse chemical composition prevents a broader utilization of biomass-based fly ash compared to coal ash on an industrial scale. On this account, the present work is aimed at investigating the basic physical and mechanical properties of concrete mortars modified by a high volume of biomass fly ash (BFA) from wood combustion. Delivered results confirm a significant potential of BFA in the building industry. Experimental analysis of concrete mortars with BFA reveals preservation or even improvement of compressive and bending strength up to 30 wt.% cement replacement. On the contrary, higher dosages induce a gradual decrease in mechanical performance. The performed Life Cycle Assessment analysis reveals the perspective of BFA incorporation taking into account environmental issues considering the ratio between preservation of mechanical performance per normalized endpoint environmental score that allows a direct comparison with other alternatives.
    [Show full text]
  • Alkali-Silica Reactivity: an Overview of Research
    SHRP-C-342 Alkali-Silica Reactivity: An Overview of Research Richard Helmuth Construction Technology Laboratories, Inc. With contributions by: David Stark Construction Technology Laboratories, Inc. Sidney Diamond Purdue University Micheline Moranville-Regourd Ecole Normale Superieure de Cachan Strategic Highway Research Program National Research Council Washington, DC 1993 Publication No. SHRP-C-342 ISBN 0-30cL05602-0 Contract C-202 Product No. 2010 Program Manager: Don M. Harriott Project Maxtager: Inam Jawed Program AIea Secretary: Carina Hreib Copyeditor: Katharyn L. Bine Brosseau May 1993 key words: additives aggregate alkali-silica reaction cracking expansion portland cement concrete standards Strategic Highway Research Program 2101 Consti!ution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publicat:Lon of this report does not necessarily indicate approval or endorsement by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein. ©1993 National Academy of Sciences 1.5M/NAP/593 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This document has been written as a product of Strategic Highway Research Program (SHRP) Contract SHRP-87-C-202, "Eliminating or Minimizing Alkali-Silica Reactivity." The prime contractor for this project is Construction Technology Laboratories, with Purdue University, and Ecole Normale Superieure de Cachan, as subcontractors. Fundamental studies were initiated in Task A.
    [Show full text]
  • A Study of Strength Activity Index of Ground Coarse Fly Ash with Portland Cement
    R ESEARCH ARTICLE ScienceAsia 25 (1999) : 223-229 A Study of Strength Activity Index of Ground Coarse Fly Ash with Portland Cement Chai Jaturapitakkul*, Kraiwood Kiattikomol and Smith Songpiriyakij Department of Civil Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand. * Corresponding author. Received 16 February 1999 ABSTRACT Fly ash, from Mae Moh power plant, was classified by air classifier to yield fine and coarse fractions. The coarse fly ash was ground and classified again into 3 sizes. Four different sizes of fly ash from the process including the original fly ash were replaced cement 20% by weight to make mortars. Chemical and physical properties of all fly ashes were tested. Setting times of fly ash-cement pastes and compressive strength of fly ash-cement mortars were investigated, and compared with those of the control. The results revealed that slight change in chemical composition of processed fly ashes did not give much effect on the compressive strength, whereas, the fineness of fly ash played a more important factor on the compressive strength development rate. More than 110% of strength activity index of ground coarse fly ash mortar can be achieved as early as 1 to 3 days since the coarse fly ash is not in crystalline phase. KEYWORDS: fly ash, coarse fly ash, fineness, mortar, strength activity index. INTRODUCTION showed that the small particle size of fly ash was a good source of pozzolanic material7. Later, classified Fly ash, as defined by ACI 116,1 is the finely fly ash by air cycling was developed at King divided residue resulting from the combustion of Mongkut’s Institute of Technology Thonburi ground or powdered coal and which is transported (KMITT) in 1996 which be able to select the mean from the firebox through the boiler by flue gases; particle size down to 3 micron.8 The test results of known in UK as pulverized-fuel ash.
    [Show full text]
  • We Now Know That the Maximum Level That Avoids
    Using ash in concrete is nothing new. h e Romans rials derived from coal combustion products, includ- used volcanic ash in their spectacular construction ing fly ash, nationwide. projects long before the introduction of Portland cement, “Fly ash is composed of the non-combustible mineral having discovered its value as a hardening agent when portion of coal. When coal is consumed in a power plant, mixed with lime. h e ancient Romans used volcanic ash it’s i rst ground to the i neness of powder. Blown into as an admix to erect buildings such as the Pantheon and the power plant’s boiler, the carbon is consumed – leav- Coliseum, roads, and aqueducts. Remember, these struc- ing molten particles rich in silica, alumina, and calcium. tures are more than 2,000 years old. h ese particles solidify as microscopic, glassy spheres Fly ash concrete was first used in the U.S. in the that are collected from the power plant’s exhaust before 1920s for dam construction, when engineers found that it reduced the total cement requirement. Today, as more projects seek LEED certification, ash is resurfac- WE NOW KNOW THAT THE ing as a popular environmentally-friendly alternative MAXIMUM LEVEL THAT AVOIDS to Portland cement. No longer are we using volcanic COMPLICATIONS IN ADHERING FLOOR ash, of course, but coal fly ash is gaining ground as the COVERING IS 15% FLY ASH. green alternative of choice for LEED projects. Many of the projects and the millions of square yards of LEED flooring we’ve installed in recent years used ash in the they can “l y” away – hence the product’s name: l y ash,” cement mixture.
    [Show full text]
  • The Effect of Various Chemical Activators on Pozzolanic Reactivity: a Review
    Scientific Research and Essays Vol. 7(7), pp. 719-729, 23 February, 2012 Available online at http://www.academicjournals.org/SRE DOI: 10.5897/SRE10.858 ISSN 1992-2248 ©2012 Academic Journals Review The effect of various chemical activators on pozzolanic reactivity: A review A. Abdullah1,2, M. S Jaafar3*, Y. H Taufiq-Yap1, A. Alhozaimy4 and A. Al-Negheimish4 and J. Noorzaei3,5 1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. 2Faculty of Applied Sciences, Universiti Teknologi Mara, 72000 Kuala Pilah, Negeri Sembilan, Malaysia. 3Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. 4Centre of Excellent for Concrete Research and Testing (CoE-CRT), Faculty of Engineering, King Saud University, Riyadh, Saudi Arabia. 5Institute of Advance Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Accepted 26 January, 2011 Pozzolans are being extensively used as a partial cement replacement in the production of Portland cement concrete. The advantages of using pozzolans are lower costs and better durability, however it requires longer setting time and the strength development at the initial age is slower. Different methods have been developed to overcome these disadvantages and to enhance the reactivity of natural pozzolans. There are three ways which have been used to improve the pozzolanic reactivity; it includes mechanical method, thermal method and chemical method. The utilization of the chemical method as an activator of pozzolanic reactivity has received considerable attention in recent years. In this paper the effect of using different chemical activators on pozzolanic activity of a pozzolan is summarized by reviewing previously published work.
    [Show full text]
  • Report No. REC-ERC-82-1. Fly Ash and Fly Ash Concrete
    May 1984 Engineering and Research Center U. S. Department of the Interior Bureau of Reclamation Bureau ot Reclamation TECHNICAL REPORT STANDARD TITLE PAGE Fly Ash and Fly Ash Concrete May 1984 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S)-. 8. PERFORMING ORGANIZATION Edwin R. Dunstan, Jr. REPORT NO. I REC-ERC-82-1 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Bureau of Reclamation, Engineering and Research Center 11. CONTRACT OR GRANT NO. Denver, Colorado 80225 10781 V0195 13. TYPE OF REPORT AND PERIOD COVERED 2. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE DlBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Engineering and Research Center. Denver. Colorado. Editor: RNW 16. ABSTRACT Fly ash is a residue that results from the combustion of ground or powdered coal. Historically, fly ash has been referred to as a ponolan and is used to reduce the amount of portland cement in concrete. However, in many Western States fly ashes have cementitious properties as well as pozzolanic properties, and they are capable of producing good strengths without portland cement. This study discusses test results of several ashes according to ASTM: C 6 18. Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete. Many changes are suggested. The replacement of 15 to 25 percent by mass of portland cement in concrete is examined. A few highly cementitious ashes were used to make concrete without portland cement. A new cement was developed that consists of over 90-percent fly ash and anhydrous CaS04.Test data for most concretes include: mix proportions, compressive strength, elasticity, drying shrinkage.
    [Show full text]
  • How to Make Concrete More Sustainable Harald Justnes1
    Journal of Advanced Concrete Technology Vol. 13, 147-154, March 2015 / Copyright © 2015 Japan Concrete Institute 147 Scientific paper How to Make Concrete More Sustainable Harald Justnes1 A selected paper of ICCS13, Tokyo 2013. Received 12 November 2013, accepted 16 February 2015 doi:10.3151/jact.13.147 Abstract Production of cement is ranking 3rd in causes of man-made carbon dioxide emissions world-wide. Thus, in order to make concrete more sustainable one may work along one or more of the following routes; 1) Replacing cement in con- crete with larger amounts of supplementary cementing materials (SCMs) than usual, 2) Replacing cement in concrete with combinations of SCMs leading to synergic reactions enhancing strength, 3) Producing leaner concrete with less cement per cubic meter utilizing plasticizers and 4) Making concrete with local aggregate susceptible to alkali silica reaction (ASR) by using cement replacements, thus avoiding long transport of non-reactive aggregate. 1 Introduction SCMs, also uncommon ones like calcined marl 2. Replacing cement in concrete with combinations of The cement industry world-wide is calculated to bring SCMs leading to synergic reactions enhancing about 5-8% of the total global anthropogenic carbon strength dioxide (CO2) emissions. The general estimate is about 3. Producing leaner concrete with less cement per cubic 1 tonne of CO2 emission per tonne clinker produced, if meter utilizing plasticizers. fossil fuel is used and no measures are taken to reduce it. 4. Making concrete with local aggregate susceptible to The 3rd rank is not because cement is such a bad mate- alkali silica reaction (ASR) by using cement re- rial with respect to CO2 emissions, but owing to the fact placements, thus avoiding long transport of non- that it is so widely used to construct the infrastructure reactive aggregate and buildings of modern society as we know it.
    [Show full text]
  • Silica Fume and Metakaolin As Supplementary Cementing Materials- a Review
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 6, Issue 10, October 2017 Silica Fume and Metakaolin as Supplementary Cementing Materials- A Review Syed Abuthahir 1, Nirmalkumar2 P.G. Student, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India1 Professor, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India2 ABSTRACT:The replacement of cement by various mineral admixtures as supplementary cementing materials for concrete has gained a global attention in recent years. This replacement becomes efficient not only by increasing the strength and durability of the concrete but also reduces the usage of the ordinary cement thereby curtailing the environmental hazardous due to cement manufacturing industries. This paper reviews the work carried out on the use of silica fume (SF) and Metakaolin (MK) as supplementary cementing materials as a partial replacement for cement. The literature demonstrates that both SF and MK are effective and causes significant improvement in various properties of the concrete in both fresh and harden state. KEYWORDS: Metakaolin, Silica Fume, Compressive Strength, Durability Properties. I.INTRODUCTION Major of the construction company relies on the concrete. Cement is major constituent of concrete. The annual global production of ordinary portland cement is about 3 Gt. Cement becomes a dominant binder due to its versatility, durability, and its demand increases dramatically. Even though it is a vital material, it production directly affects the environment by releasing 0.87t of carbon dioxide for every tonne of cement produced.
    [Show full text]
  • Silica White Paper (PDF)
    Jeff Cameron, P.E., Amy Blain, P.E. – To: Date: June 6, 2014 City of Longview Stephen Booth, Ph.D., Distribution System Water Quality Evaluation From: Melinda Friedman, P.E. – Project: Confluence Cc: Subject: Final – Silica White Paper 1 INTRODUCTION AND OBJECTIVES Since switching sources of supply from the surface water treated at the Filter Plant on Fishers Lane to a ground water supply treated at the new Mint Farm Regional Water Treatment Plant (MFRWTP), the City of Longview has received complaints due to white spot formation. The spots seem to be formed upon evaporation of water drops on the exterior of cars, plumbing fixtures, and kitchenware. Investigations conducted to date have shown that the white spots consist largely of silica and to a lesser degree calcium carbonate and other minerals. Although the MFRWTP water has a higher hardness level compared to the Cowlitz River source, it is classified as Moderately Hard on most hardness scales. The nature and degree of white spotting is not consistent with other ground waters with a hardness of approximately 90-100 mg/L as CaCO3 (calcium carbonate). Additional study has indicated that elevated silica levels in the ground- water supply (50 mg/L as SiO2 (silicon dioxide)) is the primary cause of the white spotting. The purpose of this white paper is to present background information on silica chemistry, to summarize information concerning silica treatment alternatives, and to discuss potential silica deposit modification alternatives. This document is not intended as an exhaustive review of the literature pertaining to silica, but rather as an overview of the key aspects of silica chemistry that may provide insights on the feasibility of removing silica from the water and methods customers of the City of Longview could use to reduce white spotting.
    [Show full text]
  • FW: Seabrook Attachments: Alkali-Silica Reaction 5571E6f008ae7536374c6022.Pdf
    SeabrookLANPEm Resource From: Morante, Richard J <[email protected]> Sent: Tuesday, October 24, 2017 3:28 PM To: Lehman, Bryce Subject: [External_Sender] FW: Seabrook Attachments: Alkali-Silica Reaction 5571e6f008ae7536374c6022.pdf From: Morante, Richard J Sent: Monday, July 18, 2016 11:47 AM To: Braverman, Joseph I Subject: Seabrook Joe, For your information. Rich 1 Hearing Identifier: Seabrook_LA_NonPublic Email Number: 162 Mail Envelope Properties (4909515901062646BE47A0C16E45C8673755A297) Subject: [External_Sender] FW: Seabrook Sent Date: 10/24/2017 3:27:35 PM Received Date: 10/24/2017 3:28:12 PM From: Morante, Richard J Created By: [email protected] Recipients: "Lehman, Bryce" <[email protected]> Tracking Status: None Post Office: EXMB3.bnl.gov Files Size Date & Time MESSAGE 175 10/24/2017 3:28:12 PM Alkali-Silica Reaction 5571e6f008ae7536374c6022.pdf 2107918 Options Priority: Standard Return Notification: No Reply Requested: No Sensitivity: Normal Expiration Date: Recipients Received: Cement and Concrete Research 76 (2015) 130–146 Contents lists available at ScienceDirect Cement and Concrete Research journal homepage: http://ees.elsevier.com/CEMCON/default.asp Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps Farshad Rajabipour a,⁎, Eric Giannini b, Cyrille Dunant c, Jason H. Ideker d, Michael D.A. Thomas e a Dept. of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA b Dept. of Civil, Construction, and Environmental Engineering, The University
    [Show full text]
  • Item 421 Hydraulic Cement Concrete
    421 Item 421 Hydraulic Cement Concrete 1. DESCRIPTION Furnish hydraulic cement concrete for concrete pavements, concrete structures, and other concrete construction. 2. MATERIALS Use materials from prequalified sources listed on the Department website. Provide coarse and fine aggregates from sources listed in the Department’s Concrete Rated Source Quality Catalog (CRSQC). Use materials from non-listed sources only when tested and approved by the Engineer before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material. 2.1. Cement. Furnish cement conforming to DMS-4600, “Hydraulic Cement.” 2.2. Supplementary Cementing Materials (SCM). Fly Ash. Furnish fly ash, ultra-fine fly ash (UFFA), and modified Class F fly ash (MFFA) conforming to DMS-4610, “Fly Ash.” Slag Cement. Furnish Slag Cement conforming to DMS-4620, “Slag Cement.” Silica Fume. Furnish silica fume conforming to DMS-4630, “Silica Fume.” Metakaolin. Furnish metakaolin conforming to DMS-4635, “Metakaolin.” 2.3. Cementitious Material. Cementitious materials are the cement and supplementary cementing materials used in concrete. 2.4. Chemical Admixtures. Furnish admixtures conforming to DMS-4640, “Chemical Admixtures for Concrete.” 2.5. Water. Furnish mixing and curing water that is free from oils, acids, organic matter, or other deleterious substances. Water from municipal supplies approved by the Texas Department of Health will not require testing. Provide test reports showing compliance with Table 1 before use when using water from other sources. Water that is a blend of concrete wash water and other acceptable water sources, certified by the concrete producer as complying with the requirements of both Table 1 and Table 2, may be used as mix water.
    [Show full text]