An Unrecognized Major Collision of the Okhotomorsk Block with East Asia During the Late Cretaceous, Constraints on the Plate Reorganization of the Northwest Pacific

Total Page:16

File Type:pdf, Size:1020Kb

An Unrecognized Major Collision of the Okhotomorsk Block with East Asia During the Late Cretaceous, Constraints on the Plate Reorganization of the Northwest Pacific Y.-T. Yang / Earth-Science Reviews 126 (2013) 96–115 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific Yong-Tai Yang ⁎ CAS Key Laboratory of Crust–Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China article info abstract Article history: Interactions at plate boundaries induce stresses that constitute critical controls on the structural evolution of Received 28 February 2013 intraplate regions. However, the traditional tectonic model for the East Asian margin during the Mesozoic, invoking Accepted 30 July 2013 successive episodes of paleo-Pacific oceanic subduction, does not provide an adequate context for important Late Available online 8 August 2013 Cretaceous dynamics across East Asia, including: continental-scale orogenic processes, significant sinistral strike- slip faulting, and several others. The integration of numerous documented field relations requires a new tectonic Keywords: model, as proposed here. The Okhotomorsk continental block, currently residing below the Okhotsk Sea in Continental collision Continental transform boundary Northeast Asia, was located in the interior of the Izanagi Plate before the Late Cretaceous. It moved northwest- East Asia ward with the Izanagi Plate and collided with the South China Block at about 100 Ma. The indentation of the Northwest Pacific Okhotomorsk Block within East Asia resulted in the formation of a sinistral strike-slip fault system in South China, Okhotomorsk Block formation of a dextral strike-slip fault system in North China, and regional northwest–southeast shortening and Late Cretaceous orogenic uplift in East Asia. Northeast-striking mountain belts over 500 km wide extended from Southeast China to Southwest Japan and South Korea. The peak metamorphism at about 89 Ma of the Sanbagawa high- pressure metamorphic belt in Southwest Japan was probably related to the continental subduction of the Okhotomorsk Block beneath the East Asian margin. Subsequently, the north-northwestward change of motion direction of the Izanagi Plate led to the northward movement of the Okhotomorsk Block along the East Asian margin, forming a significant sinistral continental transform boundary similar to the San Andreas fault system in California. Sanbagawa metamorphic rocks in Southwest Japan were rapidly exhumed through the several- kilometer wide ductile shear zone at the lower crust and upper mantle level. Accretionary complexes successively accumulated along the East Asian margin during the Jurassic–Early Cretaceous were subdivided into narrow and subparallel belts by the upper crustal strike-slip fault system. The departure of the Okhotomorsk Block from the northeast-striking Asian margin resulted in the occurrence of an extensional setting and formation of a wide magmatic belt to the west of the margin. In the Campanian, the block collided with the Siberian margin, in Northeast Asia. At about 77 Ma, a new oceanic subduction occurred to the south of the Okhotomorsk Block, ending its long-distance northward motion. Based on the new tectonic model, the abundant Late Archean to Early Proterozoic detrital zircons in the Cretaceous sandstones in Kamchatka, Southwest Japan, and Taiwan are interpreted to have been sourced from the Okhotomorsk Block basement which possibly formed during the Late Archean and Early Proterozoic. The new model suggests a rapidly northward-moving Okhotomorsk Block at an average speed of 22.5 cm/yr during 89–77 Ma. It is hypothesized that the Okhotomorsk–East Asia collision during 100–89 Ma slowed down the northwestward motion of the Izanagi Plate, while slab pull forces produced from the subducting Izanagi Plate beneath the Siberian margin redirected the plate from northwestward to north-northwestward motion at about 90–89 Ma. © 2013 Elsevier B.V. All rights reserved. Contents 1. Introduction...............................................................97 2. GeologicalsettingoftheOkhotomorskBlockandJapanIslands........................................98 3. Thenewtectonicmodel......................................................... 103 3.1. ThecollisionoftheOkhotomorskBlockwiththeEastAsianmargin.................................. 103 3.2. Strike-slipmotionoftheOkhotomorskBlock............................................ 105 ⁎ Tel.: +86 0551 63607193. E-mail address: [email protected]. 0012-8252/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.earscirev.2013.07.010 Y.-T. Yang / Earth-Science Reviews 126 (2013) 96–115 97 3.2.1. Thesinistraltransformfaultzone............................................. 105 3.2.2. Effectsinamuchbroaderregion............................................. 106 3.2.3. Extensionandmagmatismfollowingthetranspressionalregime.............................. 107 3.3. ThecollisionoftheOkhotomorskBlockwiththeSiberianmargin.................................. 108 4. EvidencesofArcheanandEarlyProterozoiczircons............................................ 108 4.1. U–Pbdatingofdetritalzircons.................................................. 108 4.2. Newinterpretations....................................................... 109 5. EvolutionoftheSanbagawaHPmetamorphicbelt............................................. 109 6. Discussions.............................................................. 110 6.1. TheOkhotomorskBlockbeforetheLateCretaceous......................................... 110 6.2. Constraints on the plate reorganization of the Northwest PacificduringtheCNS............................ 110 6.3. The Okhotomorsk–EastAsiacollisionandtheEarlyCretaceousandCenozoicextensionaleventsinEastChina.............. 111 7. Conclusions.............................................................. 112 Acknowledgments............................................................. 112 References................................................................. 112 1. Introduction Tectonic Line (MTL) (Taira et al., 1983; Takagi, 1986; Otsuki, 1992), Tanakura Tectonic Line (TTL) (Taira et al., 1983; Otsuki, 1992), and Cen- Reconstructing tectonic processes operating along the East Asian tral Sikhote-Alin Fault (CSAF) (Zonenshain et al., 1990), etc. (Figs. 1 and margin (Figs. 1 and 2) during the Cretaceous is important for under- 2). Moreover, a series of small NE–SW trending pull apart basins devel- standing the geologic evolution of East Asia, especially in extensive oped in Southeast China during the Late Cretaceous (Charvet et al., intraplate regions, and for constraining plate reconstructions of the 1994; Lapierre et al., 1997; Ma et al., 2009). Structural studies indicated paleo-Pacific Ocean (Engebretson et al., 1985; Lithgow-Bertelloni and that Japan Islands (Taira et al., 1983; Kanaori, 1990; Otsuki, 1992)and Richards, 1998; Smith, 2003; Norton, 2007; Seton et al., 2012), particu- South Korea (Hwang et al., 2008) are subdivided into many blocks by larly during the Cretaceous Normal Superchron (CNS) (125–84 Ma), a strike-slip faults and the Late Cretaceous igneous rocks are mainly dis- time of no magnetic reversals. It is generally accepted that the East tributed around these faults. However, the current oceanic subduction Asian margin has experienced successive oceanic subduction with model is unable to reconcile these ubiquitous strike-slip features with occasional oceanic ridge collision since the Paleozoic (Isozaki, 1996; the subhorizontal internal structure of the crust in SW Japan, as imaged Maruyama et al., 1997; Isozaki et al., 2010). However, a series of geolog- by seismic data (Ito et al., 2009)(Fig. 2c). Because of this, the idea ical events occurred in East Asia during the early Late Cretaceous are of strike-slip-fault-controlled tectonics in Japan (Taira et al., 1983; poorly explained by this successive oceanic subduction model. Kanaori, 1990; Otsuki, 1992)(Fig. 4) has been completely abandoned Many thermochronologic, structural, and stratigraphic studies have (Isozaki et al., 2010). indicated that a continental-scale NW–SE shortening event occurred Other features unaccounted for in the traditional tectonic model in East Asia during the early Late Cretaceous (Charvetetal.,1994; include: ubiquitous thrusting features, high metamorphic pressure and Lapierre et al., 1997; Ratschbacher et al., 2003), which was intervened fast exhumation of Sanbagawa high-pressure metamorphic rocks, and cer- between two widespread extensional episodes in the Early Cretaceous, tain geochemical characteristics of granites in SW Japan (Fig. 2), which and in the latest Cretaceous–Cenozoic, respectively (Watson et al., are best explained by episodic collision and underthrusting of micro- 1987; Ren et al., 2002). During this period, major mountains and basins continents (Charvet, 2013). Although various relatively small-scale conti- were rapidly uplifted and exhumed, including: the Nanling Mountains nental collisional events during the Late Jurassic–Cretaceous have been (NL) (Chen, 2000), Wuyi Mountains (WY) (Chen, 2000), Yellow proposed at the proto-Japan margin (Jolivet et al., 1988; Otsuki, 1992; Mountains (Y) (Zheng et al., 2011), Xuefeng Mountains (XF) (Yan et al., Charvet, 2013) and at the SE China margin (Charvet et al., 1994; Lapierre 2011), Sichuan Basin (SB) (Shen et al., 2009), Qinling–Dabie mountain et al., 1997;
Recommended publications
  • USGS Open-File Report 2010-1099
    25th Himalaya-Karakoram-Tibet Workshop San Francisco – June 2010 A Model for the Tectonic Evolution of the Tethys-Tibetan Plateau System and Implications for Continental Tectonics in China R.Z. Qiu1, S. Zhou2, Y.J. Tan1, G.S. Yan3, X.F. Chen1, Q.H. Xiao4, L.L. Wang1,2, Y.L. Lu1, Z. Chen1, C.H. Yuan1,2, J.X. Han1, Y.M. Chen1, L. Qiu2, K. Sun2 1 Development and Research Center, China Geological Survey, Beijing 100037, China 2 China University of Geosciences, Beijing 100083, China, [email protected] 3 China Geological Survey, Beijing 100037, China 4 Information Center of Ministry of Land and Resources, Beijing 100812, China An integrated petrologic, geochemical and geochronological study of magmatic-tectonic-assemblages (volcanic and plutonic rocks and ophiolite suites) from the Greater Tibetan Plateau has led to a new model for the tectonic evolution of the Tethys-Tibetan Plateau system: opening of the Tethyan oceans followed by initial subduction, subduction/collision, post-collision and uplifting. The evidence for this comprehensive model comes from (1) Sm-Nd and 40Ar-39Ar ages of gabbros in ophiolite suites (180– 204 Ma) from both Yarlung Zangpo and Bangong-Nujiang sutures reflecting the timing of the opening of the two ocean basins at J1, probably under the influence of a super-plume. (2) Ages of subduction-related lavas: ~140–170Ma in the Bangong-Nujiang suture and ~ 65–170Ma in the Yarlung Zangpo suture. Among these lavas, boninite and boninite series, which are generally regarded as the indicating an early state of subduction initiation, have been recognized at both the northern and southern edges of the Gangdese block (Zhang, 1985; Qiu, 2004, 2007).
    [Show full text]
  • Impacts of Re-Vegetation on Surface Soil Moisture Over the Chinese Loess Plateau Based on Remote Sensing Datasets
    remote sensing Article Impacts of Re-Vegetation on Surface Soil Moisture over the Chinese Loess Plateau Based on Remote Sensing Datasets Qiao Jiao 1,†, Rui Li 1,2,3,*, Fei Wang 1,2,3,*,†, Xingmin Mu 1,2,3, Pengfei Li 2 and Chunchun An 2 1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; [email protected] (Q.J.); [email protected] (X.M.) 2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; [email protected] (P.L.); [email protected] (C.A.) 3 Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China * Correspondence: [email protected] (R.L.); [email protected] (F.W.); Tel.: +86-29-8701-9829 (R.L. & F.W.); Fax: +86-29-8701-2210 (R.L. & F.W.) † These authors contributed equally to this work. Academic Editors: Angela Lausch, Marco Heurich, Nicolas Baghdadi and Prasad S. Thenkabail Received: 4 November 2015; Accepted: 15 February 2016; Published: 19 February 2016 Abstract: A large-scale re-vegetation supported by the Grain for Green Project (GGP) has greatly changed local eco-hydrological systems, with an impact on soil moisture conditions for the Chinese Loess Plateau. It is important to know how, exactly, re-vegetation influences soil moisture conditions, which not only crucially constrain growth and distribution of vegetation, and hence, further re-vegetation, but also determine the degree of soil desiccation and, thus, erosion risk in the region. In this study, three eco-environmental factors, which are Soil Water Index (SWI), the Normalized Difference Vegetation Index (NDVI), and precipitation, were used to investigate the response of soil moisture in the one-meter layer of top soil to the re-vegetation during the GGP.
    [Show full text]
  • Petrography and Geochemistry of the Upper Triassic Sandstones from the Western Ordos Basin, NW China: Provenance and Tectonic Implications
    Running title: Petrography and Geochemistry of the Upper Triassic Sandstones Petrography and Geochemistry of the Upper Triassic Sandstones from the Western Ordos Basin, NW China: Provenance and Tectonic Implications ZHAO Xiaochen1, LIU Chiyang2*, XIAO Bo3, ZHAO Yan4 and CHEN Yingtao1 1 College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China 2 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, Shaanxi, China 3 Fifth Oil Production Plant of Changqing Oilfield, Xi’an 710200, Shaanxi, China 4 Chang’an University, Xi’an 710064, Shaanxi, China Abstract: Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics, provenance and tectonic implications. Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity. The CIA and CIW values reveal weak and moderate weathering history in the source area. The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature, while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt. The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in western and southwestern Ordos Basin were mainly developed from continental island arc, which is closely
    [Show full text]
  • Study on the Change Ruleof Soil Water in Land of Different Use
    E3S Web o f Conferences 136, 07025 (2019) https://doi.org/10.1051/e3sconf/20191360 7025 ICBTE 2019 Study on the Change Rule of Soil Water in Land of Different Use Types in Taihang Mountain Area Guangying Zhang Baoding Soil and Water Conservation Experimental Station, Baoding, Hebe 074200, China Abstract: This paper first studies the vertical structure and soil physical properties of Songlin Plot and Huangshan Plot in Chongling Small Watershed. Then, based on a series of field experiments, this paper obtains the basic parameters and infiltration characteristics of soil water movement in two runoff Plots with different land use types. After that, this paper analyzes the seasonal variation, vertical spatial change and the response to precipitation of land with different use types based on the data monitored in the runoff Plots under natural rainfall conditions. The result shows that the changes of soil water at different depths of Songlin Plot and Huangshan Plot are basically the same and that the soil water supply is completely controlled by precipitation. The water storage capacity of Songlin Plot is stronger, while the soil moisture variation of Huangpo Plot is higher, which indicates that Songlin Plot is more stable in terms of soil moisture content and stronger in self-adjustment. annual average temperature of 11.6 °C, the annual average evaporation of 1906 mm (20 cm evaporating 1 Introduction dish), and the frost-free period of about 210d. In terms of The distribution and storage of forest soil moisture in the the outcrop in the study area, the limestone and marble basin and its transmission and movement in the soil are are mostly in the northwest, the purplish red important links affecting the flow and distribution conglomerate is in the southeast, the granitic gneiss is in mechanism of forest watershed.
    [Show full text]
  • Quantifying Trends of Land Change in Qinghai-Tibet Plateau During 2001–2015
    remote sensing Article Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015 Chao Wang, Qiong Gao and Mei Yu * Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, PR 00936, USA; [email protected] (C.W.); [email protected] (Q.G.) * Correspondence: [email protected]; Tel.: +1-787-764-0000 Received: 1 September 2019; Accepted: 17 October 2019; Published: 20 October 2019 Abstract: The Qinghai-Tibet Plateau (QTP) is among the most sensitive ecosystems to changes in global climate and human activities, and quantifying its consequent change in land-cover land-use (LCLU) is vital for assessing the responses and feedbacks of alpine ecosystems to global climate changes. In this study, we first classified annual LCLU maps from 2001–2015 in QTP from MODIS satellite images, then analyzed the patterns of regional hotspots with significant land changes across QTP, and finally, associated these trends in land change with climate forcing and human activities. The pattern of land changes suggested that forests and closed shrublands experienced substantial expansions in the southeastern mountainous region during 2001–2015 with the expansion of massive meadow loss. Agricultural land abandonment and the conversion by conservation policies existed in QTP, and the newly-reclaimed agricultural land partially offset the loss with the resulting net change of 5.1%. Although the urban area only expanded 586 km2, mainly at the expense of agricultural − land, its rate of change was the largest (41.2%). Surface water exhibited a large expansion of 5866 km2 (10.2%) in the endorheic basins, while mountain glaciers retreated 8894 km2 ( 3.4%) mainly in the − southern and southeastern QTP.
    [Show full text]
  • The Tectonic Uplift Since the Late Cretaceous and Its Impact on the Preservation of Hydrocarbon in Southeastern Sichuan Basin, China
    J Petrol Explor Prod Technol DOI 10.1007/s13202-016-0305-z ORIGINAL PAPER - EXPLORATION GEOLOGY The tectonic uplift since the Late Cretaceous and its impact on the preservation of hydrocarbon in southeastern Sichuan Basin, China 1,2 1,3 1 4 Huaiqing Liu • Yong Tang • Kongquan Chen • Wenjun Tang Received: 8 October 2016 / Accepted: 27 November 2016 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Tectonic uplift is the most direct manifestation maximally achieve 3813 m. Denudation quantity from of tectonic activity, and tectonic deformation strength can Sichuan Basin to Qiyushang is gradually increased, and be quantitatively shown through uplift height and speed. In region with greater erosion thickness is above 2800 m. this study, balanced rebound and oxygen isotope method Since the Late Cretaceous, southeastern Sichuan stratum are adopted to calculate maximum paleoelevation of stra- uplift makes oil and gas in Dingshan block gradually dis- tum uplift of southeastern area of Sichuan Basin since Late sipate. Also, overlying rock unloading results in fault Cretaceous due to tectonic activities. And based on current development, early fault activation, and expansion, which surface elevation of the target area, stratum erosion thick- further exacerbates destroy of oil and gas reservoir in ness of southeastern Sichuan during this period is calcu- Dingshan block of southeastern Sichuan, China. lated, thereby providing technical support for evaluation of the regional oil and gas exploration. Studies have shown Keywords Tectonic uplift Á Paleoelevation Á Erosion Á that maximum paleoelevation of southeastern Sichuan Southeastern Sichuan Basin Á Oil and gas uplift is gradually increased from NW to SE, which can The original version of this article was revised: Some of the Introduction affiliations were incorrectly indicated.
    [Show full text]
  • Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China
    International Journal of Environmental Research and Public Health Article Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China Wanxu Chen 1, Guangqing Chi 2,* and Jiangfeng Li 3,* 1 Department of Geography, School of Geography and Information Engineering, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, China; [email protected] 2 Department of Agricultural Economics, Sociology, and Education, Population Research Institute, and Social Science Research Institute, The Pennsylvania State University, 112E Armsby, University Park, PA 16802, USA 3 Department of Land Resource Management, School of Public Administration, China University of Geosciences, Wuhan 430074, China * Correspondence: [email protected] (G.C.); jfl[email protected] (J.L.) Received: 22 January 2020; Accepted: 3 February 2020; Published: 25 May 2020 Abstract: The impact of human activities on ecosystems can be measured by ecosystem services. The study of ecosystem services is an essential part of coupled human and natural systems. However, there is limited understanding about the driving forces of ecosystem services, especially from a spatial perspective. This study attempts to fill the gap by examining the driving forces of ecosystem services with an integrated spatial approach. The results indicate that more than US$430 billion of ecosystem services value (ESV) is produced annually in the Middle Reaches of the Yangtze River Urban Agglomerations (MRYRUA), with forestland providing the largest proportion of total ESV ( 75%) and hydrological regulation function accounting for the largest proportion of total ESV ≥ ( 15%). The average ESV in the surrounding areas is obviously higher than those in the metropolitan ≥ areas, in the plains areas, and along major traffic routes.
    [Show full text]
  • Late Quaternary Climatic and Tectonic Mechanisms Driving River Terrace
    ÔØ ÅÒÙ×Ö ÔØ Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, northern China Liyun Jia, Xujiao Zhang, Zexin He, Xiangli He, Fadong Wu, Yiqun Zhou, Lianzhen Fu, Junxiang Zhao PII: S0169-555X(15)00028-8 DOI: doi: 10.1016/j.geomorph.2014.12.043 Reference: GEOMOR 5060 To appear in: Geomorphology Received date: 22 July 2014 Revised date: 22 December 2014 Accepted date: 24 December 2014 Please cite this article as: Jia, Liyun, Zhang, Xujiao, He, Zexin, He, Xiangli, Wu, Fadong, Zhou, Yiqun, Fu, Lianzhen, Zhao, Junxiang, Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, northern China, Geomorphology (2015), doi: 10.1016/j.geomorph.2014.12.043 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: a case study in the Langshan area, Inner Mongolia, northern China Liyun Jiaa, Xujiao Zhang, a,*, Zexin Hea, Xiangli Hea, Fadong Wua, Yiqun Zhoua, Lianzhen Fua, Junxiang Zhaob a School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China b The Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China *Corresponding author.
    [Show full text]
  • A Suitability and Connectivity Analysis of North Chinese Leopards NORTH CHINESE LEOPARDS
    T AKE T HE L EOPARD H OME A Suitability and Connectivity Analysis of North Chinese Leopards NORTH CHINESE LEOPARDS... ... (Panthera pardus japonensis) used to be distributed across northern and eastern China. Because of human disturbances, habitat loss, and Lingqiuqingtun 灵丘青屯 reduced prey abundance, the number of the species has drastically Nature Reserve declined, and the remaining populations are usually present in small, Lingqiuqingtun is a national isolated areas. nature reserve in Shanxi, China since 1993. Its area is 10 km2, small for leopards but can sustain the prey TAIHANG MOUNTAINS ARE ... populations and provides a stop connecting the two distant habitats. ... a mountain range extends along the northeast to the southwest, stretching along provinces Henan, Shanxi, and Hebei. Although leopards are generalists adaptable to multiple habitat types, the current leopard populations are only found in the forests in the Taihang Mountains, to avoid human activities. CHINESE FELID CONSERVATION ALLIANCE... ... launched an initiative in summer 2017 to reintroduce North-Chinese leopards to more areas in the Taihang Mountains and connect the isolated habitats. This project will assess the potential habitats and corridors HenanLuanchuan 河南栾川 for the leopards, and the results will be presented to Luanchuan is a county in Henan Province that is highly suitable for the CFCA as a reference to their field research area selection. leopards with a few adjacent protected areas. Reintroduction in the METHODS mountains should be considered. Suitability Analysis: Factors critical to leopard habitat suitability are identified from peer-reviewed literature. Spatial analyst tools were used to perform a CONCLUSIONS weighted suitability analysis. Weight and reclassification criteria are listed in the reclassification table below.
    [Show full text]
  • Taxus Chinensis Var. Mairei in the Taihang Mountains Características Y Protección De La Especie En Peligro De Extinción Taxus Chinensis Var
    Nutrición Hospitalaria ISSN: 0212-1611 [email protected] Sociedad Española de Nutrición Parenteral y Enteral España Zaiyou, Jian; Li, Meng; Ning, Wang; Guifang, Xu; Jingbo, Yu; Lei, Dai; Yanhong, Shi Characteristic and protection of rare and endangered Taxuschinensis var. mairei in the Taihang Mountains Nutrición Hospitalaria, vol. 33, núm. 3, 2016, pp. 698-702 Sociedad Española de Nutrición Parenteral y Enteral Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=309246400029 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Nutr Hosp. 2016; 33(3):698-702 ISSN 0212-1611 - CODEN NUHOEQ S.V.R. 318 Nutrición Hospitalaria Trabajo Original Otros Characteristic and protection of rare and endangered Taxus chinensis var. mairei in the Taihang Mountains Características y protección de la especie en peligro de extinción Taxus chinensis var. mairei en las montañas de Taihang Jian Zaiyou1,2, Meng Li1, Wang Ning3, Xu Guifang1, Yu Jingbo4, Dai Lei1 and Shi Yanhong1 1Henan Institute of Science and Technology. Xinxiang, China. 2Collaborative Innovation Center of Modern Biological Breeding. Xinxiang, China. 3Tongbai County Seed Management Station. Tongbai, China. 4Kangmei Pharmaceutical CO. LTD. Puning, China Abstract The endangered causes of Taxus chinensis var. mairei in the Taihang Mountains are analyzed in three sides in connection with the situation that is resources increasing attenuation. The fi rst is biological factors such as pollination barriers, deeply dormancy seed, cannot vegetative propagation under natural conditions, poor Key words: adaptability of seedling to environment and slow growth.
    [Show full text]
  • Origin and Time Evolution of Subduction Polarity Reversal
    1 Origin and time evolution of subduction polarity reversal 2 from plate kinematics of Southeast Asia 3 Christoph von Hagke1,2*, Mélody Philippon3, Jean-Philippe Avouac2, and Michael 4 Gurnis4 5 1Institute of Structural Geology, Tectonics, and Geomechanics, RWTH Aachen, 6 Lochnerstraße 4-20, 52056 Aachen, Germany 7 2Division of Geological and Planetary Sciences, California Institute of Technology, 8 Pasadena, California, USA 9 3 Géosciences Montpellier UMR CNRS 5243, Université des Antilles, Campus de 10 Fouillole, 97100 Point à Pitre, France 11 4Seismological Laboratory, California Institute of Technology, Pasadena, California, 12 USA 13 *E-mail: [email protected] 14 15 This is a preprint of the article published in Geology. Please cite as: 16 von Hagke, C., Philippon, M., Avouac, J.-P., Gurnis, M. (2016): Origin and time 17 evolution of subduction polarity reversal from plate kinematics of Southeast Asia, 18 Geology v. 44, p. 659-662 19 20 21 ABSTRACT 22 We present a regional model of plate geometry and kinematics of southeast Asia 23 since the Late Cretaceous, embedded in a global plate model. The model involves 24 subduction polarity reversals and sheds new light on the origin of the subduction polarity 25 reversal presently observed in Taiwan. We show that this subduction zone reversal is 26 inherited from subduction of the Proto South China Sea plate and owes its current 27 location to triple junction migration and slab rollback. This analysis sheds new light on 28 the plate tectonic context of the Taiwan orogeny and questions the hypothesis that 29 northern Taiwan can be considered as an older, more mature equivalent, of southern 30 Taiwan.
    [Show full text]
  • 1 Desorption and Adsorption of Subsurface Shale Gas
    Desorption and Adsorption of Subsurface Shale Gas DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Fengyang Xiong, M.S. Graduate Program in School of Earth Sciences The Ohio State University 2020 Dissertation Committee: Joachim Moortgat, Advisor David Cole Tom Darrah Derek Sawyer 1 Copyrighted by Fengyang Xiong 2020 2 Abstract Storage of subsurface shale gas is challenging to characterize because nanoporous shales consist of almost all commonly observed minerals and develop a wide pore size distribution of 0.4 nm to 1 ��. Petroleum geoscientists classify the subsurface shale gas into three components: free gas in the pore space, adsorbed gas on mineral surfaces, and dissolved gas in formation fluids and organic matter. Based on investigations of shale gas plays in the United States, the adsorbed gas can contribute up to 85% of the total shale gas- in-place (GIP). And the storage of adsorbed shale gas, which mainly consists of methane, is determined by multiple geological properties, e.g., pore structure, mineral composition, temperature, pressure, and water saturation. These complex multivariate relationships complicate the assessment of subsurface adsorbed gas, which is still challenging for exploration geoscientists to quantitatively characterize. In this dissertation, we investigate the pore structure of shales, including the roles of organic matter, mainly insoluble kerogen, and inorganic minerals in pore development using Soxhlet extraction and low-pressure nitrogen and carbon dioxide adsorption isotherms. We then study the relationship between in-situ desorbed gas and mineralogy on large core samples. Most importantly, we propose an experimental procedure to estimate the pressure-dependent density of adsorption, which will significantly improve future estimates of adsorbed gas in shale GIP assessment.
    [Show full text]