Small Wind Electric Systems: a Hawaii Consumer's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Small Wind Electric Systems: a Hawaii Consumer's Guide Small Wind Electric Systems A Hawaii Consumer’s Guide Small Wind Electric Systems Cover photo: The Parker Ranch installation in Kamuela, Hawaii, is the largest hybrid project in the country, covering almost two acres. Five Bergey 10-kW turbines provide 50 kW of wind power. Photo credit — Powerlight Corporation/PIX13822 Small Wind Electric Systems 1 Small Wind Electric Systems A U.S. Consumer’s Guide Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for affordable and reliable sourc- es of electricity. Small wind electric systems can make a significant contribution to our nation’s energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home gen- erally require one acre of property or more, approximately 21 million U.S. homes are built on one-acre and larger sites, and 24% of the U.S. population lives in rural areas. A small wind electric system will work for you if: Bergey Windpower/PIX01476 • There is enough wind where you Homeowners, ranchers, and small businesses can use wind- generated electricity to reduce their utility bills. This grid- live connected system installed for a home in Norman, Oklahoma, • Tall towers are allowed in your reduces the homeowner’s utility bill by $100 per month. neighborhood or rural area • You have enough space Contents • You can determine how much Introduction ...................................... 1 electricity you need or want to First, How Can I Make My Home More Energy Efficient? . 2 produce Is Wind Energy Practical for Me? ...................... 3 • It works for you economically. What Size Wind Turbine Do I Need? .................... 4 The purpose of this guide is to pro- What are the Basic Parts of a Small Wind Electric System? . 5 vide you with the basic information What Do Wind Systems Cost? ........................ 7 about small wind electric systems to Where Can I Find Installation and Maintenance Support?.... 8 help you decide if wind energy will How Much Energy Will My System Generate? ............ 9 work for you. Is There Enough Wind on My Site?.................... 11 Why Should I Choose Wind? How Do I Choose the Best Site for My Wind Turbine? . 14 Wind energy systems are one Can I Connect My System to the Utility Grid? ............ 15 of the most cost-effective home- Can I Go “Off-Grid”? ............................... 19 based renewable energy systems. Glossary of Terms................................. 21 Depending on your wind resource, a For More Information .............................. 22 2 Small Wind Electric Systems small wind energy system can lower Home Energy Use your electricity bill by 50% to 90%, Based on national averages help you avoid the high costs of extending utility power lines to Water remote locations, prevent power heating interruptions, and it is nonpolluting. 14% Heating and How Do Wind Turbines Work? Lighting, cooling Wind is created by the unequal heat- cooking, 44% and other ing of the Earth’s surface by the sun. appliances Wind turbines convert the kinetic 33% energy in wind into mechanical power that runs a generator to 02979309m produce clean electricity. Today’s Refrigerator 9% turbines are versatile modular sources of electricity. Their blades are aero- The largest portion of a utility bill for a typical dynamically designed to capture the house is for heating and cooling. maximum energy from the wind. The wind turns the blades, which spin a • Save money and increase shaft connected to a generator that comfort by properly maintaining makes electricity. and upgrading your heating, First, How Can I Make ventilation, and air-conditioning systems. My Home More Energy Efficient? • Install double-paned, gas-filled windows with low-emissivity Before choosing a wind system for (low-e) coatings to reduce heat your home, you should consider loss in cold climates and spectrally reducing your energy consumption by selective coatings to reduce heat making your home or business more gain in warm climates. energy efficient. Reducing your energy consumption will signifi- • Replace your lights in high-use cantly lower your utility bills and will areas with fluorescents. Replacing reduce the size of the home-based 25% of your lights can save about renewable energy system you need. 50% of your lighting energy bill. To achieve maximum energy effi- • When shopping for appliances, ciency, you should take a whole- look for the ENERGY STAR® label. building approach. View your home ENERGY STAR® appliances have as an energy system with interrelated been identified by the U.S. parts, all of which work synergisti- Environmental Protection Agency cally to contribute to the efficiency and U.S. Department of Energy of the system. From the insulation in as being the most energy-efficient your home’s walls to the light bulbs products in their classes. in its fixtures, there are many ways to • For more information on how to make your home more efficient. make your home energy efficient, • Reduce your heating and see Energy Savers in the For More cooling needs by up to 30% by Information section. investing just a few hundred dollars in proper insulation and weatherization products. Small Wind Electric Systems 3 Is Wind Energy Practical structures permitted in residentially for Me? zoned areas, although variances are A small wind energy system can often obtainable. Most zoning ordi- provide you with a practical and nances have a height limit of 35 feet. economical source of electricity if: You can find out about the zoning restrictions in your area by calling • your property has a good wind the local building inspector, board of resource supervisors, or planning board. They • your home or business is located on can tell you if you will need to obtain at least one acre of land in a rural a building permit and provide you area with a list of requirements. • your local zoning codes or In addition to zoning issues, your covenants allow wind turbines neighbors might object to a wind machine that blocks their view, or • your average electricity bills are they might be concerned about noise. $150 per month or more Most zoning and aesthetic concerns • your property is in a remote can be addressed by supplying objec- location without easy access to tive data. For example, the ambient utility lines noise level of most modern residential • you are comfortable with long-term wind turbines is around 52 to 55 deci- investments. bels. This means that while the sound of the wind turbine can be picked out Zoning Issues of surrounding noise if a conscious Before you invest in a wind energy effort is made to hear it, a residential- system, you should research poten- sized wind turbine is no noisier than tial obstacles. Some jurisdictions, for your average refrigerator. example, restrict the height of the In Clover Valley, Minnesota, this 3-kW Whisper H175 turbine on a 50-foot tower is connected to the utility grid to offset the farm’s utility- supplied electricity. World Power Technology/PIX07168 4 Small Wind Electric Systems What Size Wind Turbine Turbines used in residential applica- Do I Need? tions can range in size from 400 watts The size of the wind turbine you need to 100 kW (100 kW for very large depends on your application. Small loads), depending on the amount of turbines range in size from 20 watts electricity you want to generate. For to 100 kilowatts (kW). The smaller or residential applications, you should “micro” (20- to 500-watt) turbines are establish an energy budget to help used in a variety of applications such define the turbine size you will need. as charging batteries for recreational Because energy efficiency is usually vehicles and sailboats. less expensive than energy produc- tion, making your house more energy One- to 10-kW turbines can be used in efficient first will probably be more applications such as pumping water. cost effective and will reduce the size Wind energy has been used for centu- of the wind turbine you need (see ries to pump water and grind grain. How Can I Make My Home More Although mechanical windmills still Energy Efficient?). Wind turbine provide a sensible, low-cost option manufacturers can help you size for pumping water in low-wind areas, your system based on your electricity farmers and ranchers are finding that needs and the specifics of local wind wind-electric pumping is a little more patterns. versatile and they can pump twice the volume for the same initial A typical home uses approximately investment. In addition, mechanical 10,000 kilowatt-hours (kWh) of elec- windmills must be placed directly tricity per year (about 830 kWh per above the well, which may not take month). Depending on the average the best advantage of available wind wind speed in the area, a wind tur- resources. Wind-electric pumping bine rated in the range of 5 to 15 kW systems can be placed where the wind would be required to make a signifi- resource is the best and connected to cant contribution to this demand. A the pump motor with an electric cable. 1.5- kW wind turbine will meet the needs of a home requiring 300 kWh per month in a location with a 14- This 1-kW Whisper mile-per-hour (6.26-meters-per-sec- turbine provides ond) annual average wind speed. The direct AC power for the water pump for manufacturer can provide you with stock tanks on a the expected annual energy output ranch in Wheeler, of the turbine as a function of annual Texas. average wind speed. The manufac- turer will also provide information on the maximum wind speed at which the turbine is designed to operate safely.
Recommended publications
  • CHAPTER 7 Design and Development of Small Wind Turbines
    CHAPTER 7 Design and development of small wind turbines Lawrence Staudt Center for Renewable Energy, Dundalk Institute of Technology, Ireland. For the purposes of this chapter, “small” wind turbines will be defi ned as those with a power rating of 50 kW or less (approximately 15 m rotor diameter). Small electricity-generating wind turbines have been in existence since the early 1900s, having been particularly popular for providing power for dwellings not yet con- nected to national electricity grids. These turbines largely disappeared as rural electrifi cation took place, and have primarily been used for remote power until recently. The oil crisis of the 1970s led to a resurgence in small wind technology, including the new concept of grid-connected small wind technology. There are few small wind turbine manufacturers with a track record spanning more than a decade. This can be attributed to diffi cult market conditions and nascent technol- ogy. However, the technology is becoming more mature, energy prices are rising and public awareness of renewable energy is increasing. There are now many small wind turbine companies around the world who are addressing the growing market for both grid-connected and remote power applications. The design fea- tures of small wind turbines, while similar to large wind turbines, often differ in signifi cant ways. 1 Small wind technology Technological approaches taken for the various components of a small wind turbine will be examined: the rotor, the drivetrain, the electrical systems and the tower. Of course wind turbines must be designed as a system, and so rotor design affects drivetrain design which affects control system design, etc.
    [Show full text]
  • Technological and Operational Aspects That Limit Small Wind Turbines Performance
    energies Review Technological and Operational Aspects That Limit Small Wind Turbines Performance José Luis Torres-Madroñero 1 , Joham Alvarez-Montoya 1 , Daniel Restrepo-Montoya 1 , Jorge Mario Tamayo-Avendaño 1 , César Nieto-Londoño 1,2,* and Julián Sierra-Pérez 1 1 Grupo de Investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; [email protected] (J.L.T.-M.); [email protected] (J.A.-M.); [email protected] (D.R.-M.); [email protected] (J.M.T.-A.); [email protected] (J.S.-P.) 2 Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín 050031, Colombia * Correspondence: [email protected] Received: 19 October 2020; Accepted: 17 November 2020; Published: 22 November 2020 Abstract: Small Wind Turbines (SWTs) are promissory for distributed generation using renewable energy sources; however, their deployment in a broad sense requires to address topics related to their cost-efficiency. This paper aims to survey recent developments about SWTs holistically, focusing on multidisciplinary aspects such as wind resource assessment, rotor aerodynamics, rotor manufacturing, control systems, and hybrid micro-grid integration. Wind resource produces inputs for the rotor’s aerodynamic design that, in turn, defines a blade shape that needs to be achieved by a manufacturing technique while ensuring structural integrity. A control system may account for the rotor’s aerodynamic performance interacting with an ever-varying wind resource. At the end, the concept of integration with other renewable source is justified, according to the inherent variability of wind generation. Several commercially available SWTs are compared to study how some of the previously mentioned aspects impact performance and Cost of Electricity (CoE).
    [Show full text]
  • Online Course Small Wind Power – Planning
    Online course Small wind power – Planning © Renewables Academy (RENAC) AG This copyrighted course is part of the series of online study programmes offered by the Renewables Academy AG. The course materials are provided exclusively for personal or curriculum and course- related purposes to enrolled students and registered users only. Any further use of this material shall require the explicit consent of the copyright and intellectual property rights holders, Renewables Academy AG. This material or parts of it may neither be reproduced nor in any way used or disclosed or passed on to third parties. Any unauthorised use or violation will be subject to private law and will be prosecuted. Berlin, 2020-03-12 Table of Contents 1 Introduction ..................................................................................................................................... 3 1.1 Learning objectives of the course ........................................................................................... 3 1.2 Introduction to the course ...................................................................................................... 3 2 Project planning .............................................................................................................................. 4 2.1 Environmental impacts............................................................................................................ 4 2.2 Social impacts .........................................................................................................................
    [Show full text]
  • IEA Wind Technology Collaboration Programme
    IEA Wind Technology Collaboration Programme 2017 Annual Report A MESSAGE FROM THE CHAIR Wind energy continued its strong forward momentum during the past term, with many countries setting records in cost reduction, deployment, and grid integration. In 2017, new records were set for hourly, daily, and annual wind–generated electricity, as well as share of energy from wind. For example, Portugal covered 110% of national consumption with wind-generated electricity during three hours while China’s wind energy production increased 26% to 305.7 TWh. In Denmark, wind achieved a 43% share of the energy mix—the largest share of any IEA Wind TCP member countries. From 2010-2017, land-based wind energy auction prices dropped an average of 25%, and levelized cost of energy (LCOE) fell by 21%. In fact, the average, globally-weighted LCOE for land-based wind was 60 USD/ MWh in 2017, second only to hydropower among renewable generation sources. As a result, new countries are adopting wind energy. Offshore wind energy costs have also significantly decreased during the last few years. In Germany and the Netherlands, offshore bids were awarded at a zero premium, while a Contract for Differences auction round in the United Kingdom included two offshore wind farms with record strike prices as low as 76 USD/MWh. On top of the previous achievements, repowering and life extension of wind farms are creating new opportunities in mature markets. However, other challenges still need to be addressed. Wind energy continues to suffer from long permitting procedures, which may hinder deployment in many countries. The rate of wind energy deployment is also uncertain after 2020 due to lack of policies; for example, only eight out of the 28 EU member states have wind power policies in place beyond 2020.
    [Show full text]
  • A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines
    Journal of Power and Energy Engineering, 2019, 7, 27-44 http://www.scirp.org/journal/jpee ISSN Online: 2327-5901 ISSN Print: 2327-588X A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines Palanisamy Mohan Kumar1,2*, Krishnamoorthi Sivalingam2,3, Srikanth Narasimalu3, Teik-Cheng Lim2, Seeram Ramakrishna1, He Wei4 1Department of Mechanical Engineering, National University of Singapore, Singapore City, Singapore 2School of Science and Technology, Singapore University of Social Sciences, Singapore City, Singapore 3Innovation Centre, Nanyang Technological University, Singapore City, Singapore 4Singapore Institute of Manufacturing Technology, Singapore city, Singapore How to cite this paper: Kumar, P.M., Abstract Sivalingam, K., Narasimalu, S., Lim, T.-C., Ramakrishna, S. and Wei, H. (2019) A Re- Wind energy witnessed tremendous growth in the past decade and emerged view on the Evolution of Darrieus Vertical as the most sought renewable energy source after solar energy. Though the Axis Wind Turbine: Small Wind Turbines. Horizontal Axis Wind Turbines (HAWT) is preferred for multi-megawatt Journal of Power and Energy Engineering, power generation, Vertical Axis Wind Turbines (VAWT) is as competitive as 7, 27-44. https://doi.org/10.4236/jpee.2019.74002 HAWT. The current study aims to summarize the development of VAWT, in particular, Darrieus turbine from the past to the project that is underway. The Received: March 31, 2019 reason for the technical challenges and past failures are discussed. Various Accepted: April 25, 2019 configurations of VAWT have been assessed in terms of reliability, compo- Published: April 28, 2019 nents and low wind speed performance. Innovative concepts and the feasibil- Copyright © 2019 by author(s) and ity to scale up for megawatt electricity generation, especially in offshore envi- Scientific Research Publishing Inc.
    [Show full text]
  • Small Wind Turbines
    Small Wind Turbines Harnessing the power of the wind has begun to recapture the imagination of America. Returning to a technology that was prevalent during colonial times has become an intriguing idea to many people including many residents of Montgomery County. The county, with its mix of rural, suburban, and urban areas, provides many opportunities for residents to incorporate wind power into their homes. Wind energy is an emerging technological approach to energy production that can have positive economic and environmental impacts for those committed to the cause of renewable energy. The Technology Today’s wind turbines are a far cry from the large, wooden turbines of colonial times. Modern technology has allowed wind turbines to become smaller, lighter, more durable, and much more efficient. Small wind Vertical axis wind turbine in a residential setting. turbines are defined as having an energy generation capacity of 100 kilowatts per hour (kWhrs) and less. The standard commercial ratings for a wind turbine are determined using the peak production values possible for that size turbine. Actual energy production will fluctuate due to the unpredictable nature of wind. A typical household uses roughly 950 kWhrs a month, so the energy production of a small wind turbine can create a substantial amount of cost savings. Wind turbines come in a wide range of styles and sizes. They typically have a horizontal axis or a vertical axis. The horizontal- axis wind turbine is most commonly used today. It is characterized by the propeller shape of the turbine and usually uses three blades. The vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor, is less common.
    [Show full text]
  • In the Public Interest How and Why to Permit for Small Wind Systems
    In the Public Interest How and Why to Permit for Small Wind Systems A Guide for State and Local Governments American Wind Energy Association September 2008 "We ought to have I N THE P UBLIC I NTEREST: a law that allows homeowners and H OW AND W HY TO P ERMIT small business people to put up photovoltaic FOR S MALL W IND S YSTEMS generators and small windmills and any other new sources of A Guide for State and Local Governments widely distributed generation that they can come up with." The greatest challenges to small-scale renewable energy are not - Al Gore, technical, but rather financial, political, and regulatory. Confusing, March 19, 2007 inconsistent or even absent permitting processes discourage the CNN Glenn Beck Show very people a forward-thinking community would want to enable: those with the motivation and resources to generate their own "Bad zoning not only clean electricity. scares away potential customers, but also dealers - the local Small wind turbines allow homeowners, farmers, small business small businesses that owners, and public facilities to generate their own clean, safe, distribute, install, and maintain small and reliable energy for on-site use. Though thousands of towns wind systems." and counties already do, many have not yet included small wind - Mike Bergey, systems in their zoning codes to allow their use. The reason is Bergey WindPower Co. often no more than a lack of familiarity with the technology, resulting in overabundant care to avoid setting a controversial "Planners can encourage precedent. This often renders the permitting process the single efficient energy use, diversification of energy most daunting obstacle for would-be consumers and prevents supply, and emissions the installation - and associated public benefits - of thousands reductions through their of small wind systems.
    [Show full text]
  • Selection Guidelines for Wind Energy Technologies
    energies Review Selection Guidelines for Wind Energy Technologies A. G. Olabi 1,2,*, Tabbi Wilberforce 2, Khaled Elsaid 3,* , Tareq Salameh 1, Enas Taha Sayed 4,5, Khaled Saleh Husain 1 and Mohammad Ali Abdelkareem 1,4,5,* 1 Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] (T.S.); [email protected] (K.S.H.) 2 Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK; [email protected] 3 Chemical Engineering Program, Texas A & M University at Qatar, Doha P.O. Box 23874, Qatar 4 Centre for Advanced Materials Research, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] 5 Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 615193, Egypt * Correspondence: [email protected] (A.G.O.); [email protected] (K.E.); [email protected] (M.A.A.) Abstract: The building block of all economies across the world is subject to the medium in which energy is harnessed. Renewable energy is currently one of the recommended substitutes for fossil fuels due to its environmentally friendly nature. Wind energy, which is considered as one of the promising renewable energy forms, has gained lots of attention in the last few decades due to its sustainability as well as viability. This review presents a detailed investigation into this technology as well as factors impeding its commercialization. General selection guidelines for the available wind turbine technologies are presented. Prospects of various components associated with wind energy conversion systems are thoroughly discussed with their limitations equally captured in this report.
    [Show full text]
  • Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area
    energies Article Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area Osvaldo Rodriguez-Hernandez 1,*,† , Manuel Martinez 1,† , Carlos Lopez-Villalobos 2,† , Hector Garcia 3 and Rafael Campos-Amezcua 4 1 Instituto de Energías Renovables. Universidad Nacional Autónoma de México, A.P. 34, 62580 Temixco, Mor. México, Mexico; [email protected] 2 Posgrado en Ingeniería (Energía), Universidad Nacional Autónoma de México, A.P. 34, 62580 Temixco, Mor. México, Mexico; [email protected] 3 Independent Researcher, Morelia 58120, Mich., Mexico; [email protected] 4 Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Carr. México-Pachuca km 87.5, Col. Venta Prieta, C.P. 42080, Pachuca, Hgo., Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-(777)-362-0090 (ext. 38009) † These authors contributed equally to this work. Received: 8 January 2019; Accepted: 16 February 2019; Published: 7 March 2019 Abstract: The use of small wind turbines (SWTs) is an alternative energy strategy with increasing potential for satisfying in situ electrical demands and should be studied to promote social penetration. The Valley of Mexico Metropolitan Area (VMMA) has air pollution issues that need to be addressed. This has resulted in programs for monitoring atmospheric variables, such as wind speed. By selecting and using 3 years’ worth of available data, we developed a methodology to study the technical and economic feasibility of using SWTs in the VMMA. To this end, 28 SWT models were assessed at 18 locations to estimate annual energy production. In light of certain data characteristics, an adjustment to the power production was proposed for the specific case of using SWTs.
    [Show full text]
  • Considerations for Small Wind Systems in Wyoming
    Page 4 April 2009 UW College of Agriculture Considerations for small wind systems in Wyoming By Lindsay Taylor one acre, siting a wind turbine in by all lenders. Wind energy is a familiar a place with unobstructed wind Example of wind All of these economic con- technology to many Wyoming flow may be difficult. Typically, a turbine sizing: siderations will vary by situation residents. 100- to 160-foot tower is needed but are factors in the feasibility There was a time wind was for unobstructed and maximum of small wind use on the ranch 750 kW-h average the most common form of potential wind access. Placing a or residence. There are several turbine too low or behind trees monthly use Web calculators available to help energy used at the farmstead. × 12 months = and buildings is like putting solar determine payback periods for Windmills were used to pump 9,000 kW-h annual use panels in the shade. these projects. The U.S. Depart- water and run the first of many w Sizing of the system is the (9,000 kW-h) ÷ ment of Energy’s Wind Power- electrical appliances to come main factor in determining 8,760 h/year) = 1.03 kW ing America Web site has a free into a home. upfront costs. For most grid- payback calculator program While today’s technologies tied systems – those producing (1.03 kW) ÷ available on the “Small Wind are more efficient and utilize .20 capacity factor = electricity that flows onto the Economic Model” link, which electrical rather than mechanical 5.14 power grid – having a turbine can be found at www.windpow- energy, the concept is very much that produces more electricity In this case a 5-kW eringamerica.gov/small_wind.
    [Show full text]
  • Draft Guidelines for Consideration of Bats in Wind Farm Projects – Revision 2014
    Doc.EUROBATS.MoP7.13.Annex Draft Guidelines for consideration of bats in wind farm projects – revision 2014 Notes: - Comments may be sent to Luisa Rodrigues ([email protected]; [email protected]) - Additional data on studies (annex 1) and mortality (annex 2) may still be incorporated. - Sentences/words highlighted in yellow are still missing or need to will be revised after 7MoP. - Suren will check if all references are referred in the text, and uniform the references - Suren will highlight in the text all terms that are included in the Glossary - Authors: Luísa Rodrigues (Portugal), Lothar Bach (Germany), Marie-Jo Dubourg-Savage (SFEPM, France), Branko Karapandža (Serbia), Dina Kovač (Croatia), Thierry Kervyn (Belgium), Jasja Dekker (BatLife Europe, The Netherlands), Andrzej Kepel (Poland), Petra Bach (Germany), Jan Collins (BCT, United Kingdom), Christine Harbusch (NABU, Germany), Kirsty Park (Stirling University, United Kingdom), Branko Micevski (FYR Macedonia), Jeroen Minderman (Stirling University, United Kingdom) Foreword Comment [LR1]: At the end we need to 1 Introduction discuss the level of detail of the index 2 General aspects of the planning process 2.1 Site selection phase 2.2 Construction phase 2.3 Operation phase 2.4 Decommissioning phase 3 Carrying out impact assessments Goals of the impact assessment in relation to bats (EXTRA BOX - Collision risk level for European bat species) 3.1 Pre-survey assessment Collation and review of existing information 3.2 Survey 3.2.1 Survey design 3.2.2 Survey methods 3.2.2.1
    [Show full text]
  • 20.12.14 ACC Minutes
    Ardross Community Council Minutes of Management Meeting 14th December 2020 Held via Zoom Peter Allen (Chair), John Edmondson (Secretary), Alison Gordon (Treasurer), Bill Robins (Vice- Chair), Willie Beattie, Ruaridh Waugh and Bruce Marshall. Cllr Maxine Smith. Kelly Falkiner, Sandra Cunliffe, Jane Smith, Ian Duncan, Gunta Freidenelde, James McTaggart, Calvert and Margaret Stinton. Meeting opened at 8.00pm 09:49 1. Their were apologies from George MacKay. Cllr Mike Finlayson. And Richard Smith. 2. The minutes of the November Management Meeting and the October Public Meeting on the 19th October were proposed by Bruce Marshall and seconded by Peter Allen. 3. The Secretary had distributed the notes from the EnergieKontor meeting, previously and we had heard nothing back from them regarding the index linking of the fund. The Chair informed the Community Council that he had had a telephone conversation with the Chair of the Edderton Community Council Michael Brown regarding the Community Benefit for the Strathrory Wind Farm. Michael explained to Peter that Edderton CC would not be attending any roundtable meetings held by EnergieKontor and that he thought the Ardross CC should be doing the same. Michael thought that it was better to hold one to one meetings. Edderton CC thought that the preferred transport route would be via Edderton and so all the turbines would be coming through their CC area. Michael thought that Ardross and Edderton CC’s should be the main beneficiaries of the Community Benefit and that this was unlikely to be agreed at at a roundtable meeting with the “pack of wolves” made up of all the other CC’s invited to the roundtable meeting.
    [Show full text]