Functional Differential Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Functional Differential Geometry Functional Differential Geometry Functional Differential Geometry Gerald Jay Sussman and Jack Wisdom with Will Farr The MIT Press Cambridge, Massachusetts London, England �c 2013 Massachusetts Institute of Technology This work is licensed under the Creative Commons Attribution- onCommercial-!hareAlike 3"0 #n$orted %icense" To view a co$y of this license& visit creativecommons"org" 'ther than as $rovided by this license& no $art of this book may be re$roduced& transmitted& or dis$layed by any electronic or mechanical means without $ermission from the MIT (ress or as $ermitted by law" MIT (ress books may be $urchased at s$ecial )uantity discounts for business or sales $romotional use" *or information& $lease email special [email protected] or write to !$ecial !ales +e$artment& The MIT (ress& ,, -ayward !treet& Cambridge& MA 021.2" A This book was set in Com$uter Modern by the authors with the %T/0 ty$esetting system and was $rinted and bound in the #nited !tates of America" Library of Congress Cataloging-in-(ublication +ata !ussman& 1erald 2ay" *unctional +i3erential 1eometry 4 1erald 2ay !ussman and 2ack 5isdom6 with 5ill *arr. $" cm" Includes bibliogra$hical references and inde7" I!8 9:;-0-2<2-0193.-: =hardcover > alk" $a$er) 1" 1eometry& +i3erential" 2" *unctional +i3erential /)uations" 3" Mathematical (hysics" I" 5isdom, 2ack" II" *arr, 5ill" III" Title" @C20":"+,2!;: 2013 ,1<"3'<Adc23 2012042107 10987654321 “The author has spared himself no pains in his endeavour to present the main ideas in the simplest and most intelligible form, and on the whole, in the sequence and connection in which they actually originated. In the interest of clearness, it appeared to me inevitable that I should repeat myself frequently, without pay- ing the slightest attention to the elegance of the presentation. I adhered scrupulously to the precept of that brilliant theoretical physicist L. Boltzmann, according to whom matters of elegance ought be left to the tailor and to the cobbler.” Albert Einstein, in Relativity, the Special and General Theory, (1961), p. v Contents Preface xi Prologue xv 1 Introduction 1 2 Manifolds 11 2.1 Coordinate Functions 12 2.2 Manifold Functions 14 3 Vector Fields and One-Form Fields 21 3.1 Vector Fields 21 3.2 Coordinate-Basis Vector Fields 26 3.3 Integral Curves 29 3.4 One-Form Fields 32 3.5 Coordinate-Basis One-Form Fields 34 4 Basis Fields 41 4.1 Change of Basis 44 4.2 Rotation Basis 47 4.3 Commutators 48 5 Integration 55 5.1 Higher Dimensions 57 5.2 Exterior Derivative 62 5.3 Stokes’s Theorem 65 viii Contents 5.4 Vector Integral Theorems 67 6OveraMap 71 6.1 Vector Fields Over a Map 71 6.2 One-Form Fields Over a Map 73 6.3 Basis Fields Over a Map 74 6.4 Pullbacks and Pushforwards 76 7 Directional Derivatives 83 7.1 Lie Derivative 85 7.2 Covariant Derivative 93 7.3 Parallel Transport 104 7.4 Geodesic Motion 111 8 Curvature 115 8.1 Explicit Transport 116 8.2 Torsion 124 8.3 Geodesic Deviation 125 8.4 Bianchi Identities 129 9 Metrics 133 9.1 Metric Compatibility 135 9.2 Metrics and Lagrange Equations 137 9.3 General Relativity 144 10 Hodge Star and Electrodynamics 153 10.1 The Wave Equation 159 10.2 Electrodynamics 160 11 Special Relativity 167 11.1 Lorentz Transformations 172 11.2 Special Relativity Frames 179 Contents ix 11.3 Twin Paradox 181 A Scheme 185 B Our Notation 195 C Tensors 211 References 217 Index 219 Preface Learning physics is hard. Part of the problem is that physics is naturally expressed in mathematical language. When we teach we use the language of mathematics in the same way that we use our natural language. We depend upon a vast amount of shared knowledge and culture, and we only sketch an idea using mathematical idioms. We are insufficiently precise to convey an idea to a person who does not share our culture. Our problem is that since we share the culture we find it difficult to notice that what we say is too imprecise to be clearly understood by a student new to the subject. A student must simultaneously learn the mathematical language and the content that is expressed in that language. This is like trying to read Les Mis´erables while struggling with French grammar. This book is an effort to ameliorate this problem for learn- ing the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory. Our approach differs from the traditional one in several ways. Our cov- erage is unusual. We do not prove the general Stokes’s Theorem— this is well covered in many other books—instead, we show how it works in two dimensions. Because our target is relativity, we put lots of emphasis on the development of the covariant derivative, and we erect a common context for understanding both the Lie derivative and the covariant derivative. Most treatments of differ- ential geometry aimed at relativity assume that there is a metric (or pseudometric). By contrast, we develop as much material as possible independent of the assumption of a metric. This allows us to see what results depend on the metric when we introduce it. We also try to avoid the use of traditional index notation for tensors. Although one can become very adept at “index gymnas- tics,” that leads to much mindless (though useful) manipulation without much thought to meaning. Instead, we use a semantically richer language of vector fields and differential forms. But the single biggest difference between our treatment and others is that we integrate computer programming into our expla- nations. By programming a computer to interpret our formulas we soon learn whether or not a formula is correct. If a formula is not clear, it will not be interpretable. If it is wrong, we will get a wrong answer. In either case we are led to improve our xii Preface program and as a result improve our understanding. We have been teaching advanced classical mechanics at MIT for many years using this strategy. We use precise functional notation and we have students program in a functional language. The students enjoy this approach and we have learned a lot ourselves. It is the experience of writing software for expressing the mathematical content and the insights that we gain from doing it that we feel is revolutionary. We want others to have a similar experience. Acknowledgments We thank the people who helped us develop this material, and especially the students who have over the years worked through the material with us. In particular, Mark Tobenkin, William Throwe, Leo Stein, Peter Iannucci, and Micah Brodsky have suf- fered through bad explanations and have contributed better ones. Edmund Bertschinger, Norman Margolus, Tom Knight, Re- becca Frankel, Alexey Radul, Edwin Taylor, Joel Moses, Kenneth Yip, and Hal Abelson helped us with many thoughtful discussions and advice about physics and its relation to mathematics. We also thank Chris Hanson, Taylor Campbell, and the com- munity of Scheme programmers for providing support and advice for the elegant language that we use. In particular, Gerald Jay Sussman wants to thank Guy Lewis Steele and Alexey Radul for many fun days of programming together—we learned much from each other’s style. Matthew Halfant started us on the development of the Scmutils system. He encouraged us to get into scientific computation, using Scheme and functional style as an active way to explain the ideas, without the distractions of imperative languages such as C. In the 1980s he wrote some of the early Scheme procedures for numerical computation that we still use. Dan Zuras helped us with the invention of the unique organi- zation of the Scmutils system. It is because of his insight that the system is organized around a generic extension of the chain rule for taking derivatives. He also helped in the heavy lifting that was required to make a really good polynomial GCD algorithm, based on ideas we learned from Richard Zippel. A special contribution that cannot be sufficiently acknowledged is from Seymour Papert and Marvin Minsky, who taught us that Preface xiii the practice of programming is a powerful way to develop a deeper understanding of any subject. Indeed, by the act of debugging we learn about our misconceptions, and by reflecting on our bugs and their resolutions we learn ways to learn more effectively. Indeed, Turtle Geometry [2], a beautiful book about discrete differential geometry at a more elementary level, was inspired by Papert’s work on education. [13] We acknowledge the generous support of the Computer Sci- ence and Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. The laboratory provides a stimulating environment for efforts to formalize knowledge with computational methods. We also acknowledge the Panasonic Corporation (for- merly the Matsushita Electric Industrial Corporation) for support of Gerald Jay Sussman through an endowed chair. Jack Wisdom thanks his wife, Cecile, for her love and support. Julie Sussman, PPA, provided careful reading and serious criticism that inspired us to reorganize and rewrite major parts of the text. She has also developed and maintained Gerald Jay Sussman over these many years. Gerald Jay Sussman & Jack Wisdom Cambridge, Massachusetts, USA August 2012 Prologue Programming and Understanding One way to become aware of the precision required to unam- biguously communicate a mathematical idea is to program it for a computer. Rather than using canned programs purely as an aid to visualization or numerical computation, we use computer programming in a functional style to encourage clear thinking.
Recommended publications
  • Reflexive Interpreters 1 the Problem of Control
    Reset reproduction of a Ph.D. thesis proposal submitted June 8, 1978 to the Massachusetts Institute of Technology Electrical Engineering and Computer Science Department. Reset in LaTeX by Jon Doyle, December 1995. c 1978, 1995 Jon Doyle. All rights reserved.. Current address: MIT Laboratory for Computer Science. Available via http://www.medg.lcs.mit.edu/doyle Reflexive Interpreters Jon Doyle [email protected] Massachusetts Institute of Technology, Artificial Intelligence Laboratory Cambridge, Massachusetts 02139, U.S.A. Abstract The goal of achieving powerful problem solving capabilities leads to the “advice taker” form of program and the associated problem of control. This proposal outlines an approach to this problem based on the construction of problem solvers with advanced self-knowledge and introspection capabilities. 1 The Problem of Control Self-reverence, self-knowledge, self-control, These three alone lead life to sovereign power. Alfred, Lord Tennyson, OEnone Know prudent cautious self-control is wisdom’s root. Robert Burns, A Bard’s Epitath The woman that deliberates is lost. Joseph Addison, Cato A major goal of Artificial Intelligence is to construct an “advice taker”,1 a program which can be told new knowledge and advised about how that knowledge may be useful. Many of the approaches towards this goal have proposed constructing additive formalisms for trans- mitting knowledge to the problem solver.2 In spite of considerable work along these lines, formalisms for advising problem solvers about the uses and properties of knowledge are rela- tively undeveloped. As a consequence, the nondeterminism resulting from the uncontrolled application of many independent pieces of knowledge leads to great inefficiencies.
    [Show full text]
  • A Short Introduction to the Quantum Formalism[S]
    A short introduction to the quantum formalism[s] François David Institut de Physique Théorique CNRS, URA 2306, F-91191 Gif-sur-Yvette, France CEA, IPhT, F-91191 Gif-sur-Yvette, France [email protected] These notes are an elaboration on: (i) a short course that I gave at the IPhT-Saclay in May- June 2012; (ii) a previous letter [Dav11] on reversibility in quantum mechanics. They present an introductory, but hopefully coherent, view of the main formalizations of quantum mechanics, of their interrelations and of their common physical underpinnings: causality, reversibility and locality/separability. The approaches covered are mainly: (ii) the canonical formalism; (ii) the algebraic formalism; (iii) the quantum logic formulation. Other subjects: quantum information approaches, quantum correlations, contextuality and non-locality issues, quantum measurements, interpretations and alternate theories, quantum gravity, are only very briefly and superficially discussed. Most of the material is not new, but is presented in an original, homogeneous and hopefully not technical or abstract way. I try to define simply all the mathematical concepts used and to justify them physically. These notes should be accessible to young physicists (graduate level) with a good knowledge of the standard formalism of quantum mechanics, and some interest for theoretical physics (and mathematics). These notes do not cover the historical and philosophical aspects of quantum physics. arXiv:1211.5627v1 [math-ph] 24 Nov 2012 Preprint IPhT t12/042 ii CONTENTS Contents 1 Introduction 1-1 1.1 Motivation . 1-1 1.2 Organization . 1-2 1.3 What this course is not! . 1-3 1.4 Acknowledgements . 1-3 2 Reminders 2-1 2.1 Classical mechanics .
    [Show full text]
  • A Critique of Abelson and Sussman Why Calculating Is Better Than
    A critique of Abelson and Sussman - or - Why calculating is better than scheming Philip Wadler Programming Research Group 11 Keble Road Oxford, OX1 3QD Abelson and Sussman is taught [Abelson and Sussman 1985a, b]. Instead of emphasizing a particular programming language, they emphasize standard engineering techniques as they apply to programming. Still, their textbook is intimately tied to the Scheme dialect of Lisp. I believe that the same approach used in their text, if applied to a language such as KRC or Miranda, would result in an even better introduction to programming as an engineering discipline. My belief has strengthened as my experience in teaching with Scheme and with KRC has increased. - This paper contrasts teaching in Scheme to teaching in KRC and Miranda, particularly with reference to Abelson and Sussman's text. Scheme is a "~dly-scoped dialect of Lisp [Steele and Sussman 19781; languages in a similar style are T [Rees and Adams 19821 and Common Lisp [Steele 19821. KRC is a functional language in an equational style [Turner 19811; its successor is Miranda [Turner 1985k languages in a similar style are SASL [Turner 1976, Richards 19841 LML [Augustsson 19841, and Orwell [Wadler 1984bl. (Only readers who know that KRC stands for "Kent Recursive Calculator" will have understood the title of this There are four language features absent in Scheme and present in KRC/Miranda that are important: 1. Pattern-matching. 2. A syntax close to traditional mathematical notation. 3. A static type discipline and user-defined types. 4. Lazy evaluation. KRC and SASL do not have a type discipline, so point 3 applies only to Miranda, Philip Wadhr Why Calculating is Better than Scheming 2 b LML,and Orwell.
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • Functional Integration on Paracompact Manifods Pierre Grange, E
    Functional Integration on Paracompact Manifods Pierre Grange, E. Werner To cite this version: Pierre Grange, E. Werner. Functional Integration on Paracompact Manifods: Functional Integra- tion on Manifold. Theoretical and Mathematical Physics, Consultants bureau, 2018, pp.1-29. hal- 01942764 HAL Id: hal-01942764 https://hal.archives-ouvertes.fr/hal-01942764 Submitted on 3 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Functional Integration on Paracompact Manifolds Pierre Grangé Laboratoire Univers et Particules, Université Montpellier II, CNRS/IN2P3, Place E. Bataillon F-34095 Montpellier Cedex 05, France E-mail: [email protected] Ernst Werner Institut fu¨r Theoretische Physik, Universita¨t Regensburg, Universita¨tstrasse 31, D-93053 Regensburg, Germany E-mail: [email protected] ........................................................................ Abstract. In 1948 Feynman introduced functional integration. Long ago the problematic aspect of measures in the space of fields was overcome with the introduction of volume elements in Probability Space, leading to stochastic formulations. More recently Cartier and DeWitt-Morette (CDWM) focused on the definition of a proper integration measure and established a rigorous mathematical formulation of functional integration. CDWM’s central observation relates to the distributional nature of fields, for it leads to the identification of distribution functionals with Schwartz space test functions as density measures.
    [Show full text]
  • Performance Engineering of Proof-Based Software Systems at Scale by Jason S
    Performance Engineering of Proof-Based Software Systems at Scale by Jason S. Gross B.S., Massachusetts Institute of Technology (2013) S.M., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2021 © Massachusetts Institute of Technology 2021. All rights reserved. Author............................................................. Department of Electrical Engineering and Computer Science January 27, 2021 Certified by . Adam Chlipala Associate Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 2 Performance Engineering of Proof-Based Software Systems at Scale by Jason S. Gross Submitted to the Department of Electrical Engineering and Computer Science on January 27, 2021, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Formal verification is increasingly valuable as our world comes to rely more onsoft- ware for critical infrastructure. A significant and understudied cost of developing mechanized proofs, especially at scale, is the computer performance of proof gen- eration. This dissertation aims to be a partial guide to identifying and resolving performance bottlenecks in dependently typed tactic-driven proof assistants like Coq. We present a survey of the landscape of performance issues in Coq, with micro- and macro-benchmarks. We describe various metrics that allow prediction of performance, such as term size, goal size, and number of binders, and note the occasional surprising lack of a bottleneck for some factors, such as total proof term size.
    [Show full text]
  • Reading List
    EECS 101 Introduction to Computer Science Dinda, Spring, 2009 An Introduction to Computer Science For Everyone Reading List Note: You do not need to read or buy all of these. The syllabus and/or class web page describes the required readings and what books to buy. For readings that are not in the required books, I will either provide pointers to web documents or hand out copies in class. Books David Harel, Computers Ltd: What They Really Can’t Do, Oxford University Press, 2003. Fred Brooks, The Mythical Man-month: Essays on Software Engineering, 20th Anniversary Edition, Addison-Wesley, 1995. Joel Spolsky, Joel on Software: And on Diverse and Occasionally Related Matters That Will Prove of Interest to Software Developers, Designers, and Managers, and to Those Who, Whether by Good Fortune or Ill Luck, Work with Them in Some Capacity, APress, 2004. Most content is available for free from Spolsky’s Blog (see http://www.joelonsoftware.com) Paul Graham, Hackers and Painters, O’Reilly, 2004. See also Graham’s site: http://www.paulgraham.com/ Martin Davis, The Universal Computer: The Road from Leibniz to Turing, W.W. Norton and Company, 2000. Ted Nelson, Computer Lib/Dream Machines, 1974. This book is now very rare and very expensive, which is sad given how visionary it was. Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography, Anchor, 2000. Douglas Hofstadter, Goedel, Escher, Bach: The Eternal Golden Braid, 20th Anniversary Edition, Basic Books, 1999. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall, 2003.
    [Show full text]
  • Well-Defined Lagrangian Flows for Absolutely Continuous Curves of Probabilities on the Line
    Graduate Theses, Dissertations, and Problem Reports 2016 Well-defined Lagrangian flows for absolutely continuous curves of probabilities on the line Mohamed H. Amsaad Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Amsaad, Mohamed H., "Well-defined Lagrangian flows for absolutely continuous curves of probabilities on the line" (2016). Graduate Theses, Dissertations, and Problem Reports. 5098. https://researchrepository.wvu.edu/etd/5098 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Well-defined Lagrangian flows for absolutely continuous curves of probabilities on the line Mohamed H. Amsaad Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Adrian Tudorascu, Ph.D., Chair Harumi Hattori, Ph.D. Harry Gingold, Ph.D. Tudor Stanescu, Ph.D. Charis Tsikkou, Ph.D. Department Of Mathematics Morgantown, West Virginia 2016 Keywords: Continuity Equation, Lagrangian Flow, Optimal Transport, Wasserstein metric, Wasserstein space.
    [Show full text]
  • Introduction to Vector and Tensor Analysis
    Introduction to vector and tensor analysis Jesper Ferkinghoff-Borg September 6, 2007 Contents 1 Physical space 3 1.1 Coordinate systems . 3 1.2 Distances . 3 1.3 Symmetries . 4 2 Scalars and vectors 5 2.1 Definitions . 5 2.2 Basic vector algebra . 5 2.2.1 Scalar product . 6 2.2.2 Cross product . 7 2.3 Coordinate systems and bases . 7 2.3.1 Components and notation . 9 2.3.2 Triplet algebra . 10 2.4 Orthonormal bases . 11 2.4.1 Scalar product . 11 2.4.2 Cross product . 12 2.5 Ordinary derivatives and integrals of vectors . 13 2.5.1 Derivatives . 14 2.5.2 Integrals . 14 2.6 Fields . 15 2.6.1 Definition . 15 2.6.2 Partial derivatives . 15 2.6.3 Differentials . 16 2.6.4 Gradient, divergence and curl . 17 2.6.5 Line, surface and volume integrals . 20 2.6.6 Integral theorems . 24 2.7 Curvilinear coordinates . 26 2.7.1 Cylindrical coordinates . 27 2.7.2 Spherical coordinates . 28 3 Tensors 30 3.1 Definition . 30 3.2 Outer product . 31 3.3 Basic tensor algebra . 31 1 3.3.1 Transposed tensors . 32 3.3.2 Contraction . 33 3.3.3 Special tensors . 33 3.4 Tensor components in orthonormal bases . 34 3.4.1 Matrix algebra . 35 3.4.2 Two-point components . 38 3.5 Tensor fields . 38 3.5.1 Gradient, divergence and curl . 39 3.5.2 Integral theorems . 40 4 Tensor calculus 42 4.1 Tensor notation and Einsteins summation rule .
    [Show full text]
  • Functional Derivative
    Appendix Functional Derivative Appendix A: Calculus of Variation Consider a mapping from a vector space of functions to real number. Such mapping is called functional. One of the most representative examples of such a mapping is the action functional of analytical mechanics, A ,which is defined by Zt2 A½xtðÞ Lxt½ðÞ; vtðÞdt ðA:1Þ t1 where t is the independent variable, xtðÞis the trajectory of a particle, vtðÞ¼dx=dt is the velocity of the particle, and L is the Lagrangian which is the difference of kinetic energy and the potential: m L ¼ v2 À uxðÞ ðA:2Þ 2 Calculus of variation is the mathematical theory to find the extremal function xtðÞwhich maximizes or minimizes the functional such as Eq. (A.1). We are interested in the set of functions which satisfy the fixed boundary con- ditions such as xtðÞ¼1 x1 and xtðÞ¼2 x2. An arbitrary element of the function space may be defined from xtðÞby xtðÞ¼xtðÞþegðÞt ðA:3Þ where ε is a real number and gðÞt is any function satisfying gðÞ¼t1 gðÞ¼t2 0. Of course, it is obvious that xtðÞ¼1 x1 and xtðÞ¼2 x2. Varying ε and gðÞt generates any function of the vector space. Substitution of Eq. (A.3) to Eq. (A.1) gives Zt2 dx dg aðÞe A½¼xtðÞþegðÞt L xtðÞþegðÞt ; þ e dt ðA:4Þ dt dt t1 © Springer Science+Business Media Dordrecht 2016 601 K.S. Cho, Viscoelasticity of Polymers, Springer Series in Materials Science 241, DOI 10.1007/978-94-017-7564-9 602 Appendix: Functional Derivative From Eq.
    [Show full text]
  • Beyond Scalar, Vector and Tensor Harmonics in Maximally Symmetric Three-Dimensional Spaces
    Beyond scalar, vector and tensor harmonics in maximally symmetric three-dimensional spaces Cyril Pitrou1, ∗ and Thiago S. Pereira2, y 1Institut d'Astrophysique de Paris, CNRS UMR 7095, 98 bis Bd Arago, 75014 Paris, France. 2Departamento de F´ısica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, Km 380, 86057-970, Londrina, Paran´a,Brazil. (Dated: October 1, 2019) We present a comprehensive construction of scalar, vector and tensor harmonics on max- imally symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal tools to decompose harmonics into their radial and angular dependencies. We provide a thorough and self-contained set of expressions and relations for these harmonics. Being gen- eral, our formalism also allows to build harmonics of higher tensor type by recursion among radial functions, and we collect the complete set of recursive relations which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we also collect explicit forms of the radial harmonics which are needed for other cosmological ob- servables. Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements in the literature. 1. INTRODUCTION ables. Indeed, on cosmological scales, where lin- ear perturbation theory successfully accounts for the formation of structures, perturbation modes, Tensor harmonics are ubiquitous tools in that is the components in an expansion on tensor gravitational theories. Their applicability reach harmonics, evolve independently from one an- a wide spectrum of topics including black-hole other.
    [Show full text]
  • 35 Nopw It Is Time to Face the Menace
    35 XIV. CORRELATIONS AND SUSCEPTIBILITY A. Correlations - saddle point approximation: the easy way out Nopw it is time to face the menace - path integrals. We were tithering on the top of this ravine for long enough. We need to take the plunge. The meaning of the path integral is very simple - tofind the partition function of a system locallyfluctuating, we need to consider the all the possible patterns offlucutations, and the only way to do this is through a path integral. But is the path integral so bad? Well, if you believe that anyfluctuation is still quite costly, then the path integral, like the integral over the exponent of a quadratic function, is pretty much determined by where the argument of the exponent is a minimum, plus quadraticfluctuations. These belief is translated into equations via the saddle point approximation. Wefind the minimum of the free energy functional, and then expand upto second order in the exponent. 1 1 F [m(x),h] = ddx γ( m (x))2 +a(T T )m (x)2 + um (x)4 hm + ( m (x))2 ∂2F (219) L ∇ min − c min 2 min − min 2 − min � � � I write here deliberately the vague partial symbol, in fact, this should be the functional derivative. Does this look familiar? This should bring you back to the good old classical mechanics days. Where the Lagrangian is the only thing you wanted to know, and the Euler Lagrange equations were the only guidance necessary. Non of this non-commuting business, or partition function annoyance. Well, these times are back for a short time! In order tofind this, we do a variation: m(x) =m min +δm (220) Upon assignment wefind: u F [m(x),h] = ddx γ( (m +δm)) 2 +a(T T )(m +δm) 2 + (m +δm) 4 h(m +δm) (221) L ∇ min − c min 2 min − min � � � Let’s expand this to second order: d 2 2 d x γ (mmin) + δm 2γ m+γ( δm) → ∇ 2 ∇ · ∇ ∇ 2 +a (mmin) +δm 2am+aδm � � ∇ u 4 ·3 2 2 (222) + 2 mmin +2umminδm +3umminδm hm hδm] − min − Collecting terms in power ofδm, thefirst term is justF L[mmin].
    [Show full text]