Entropy power inequalities The American Institute of Mathematics The following compilation of participant contributions is only intended as a lead-in to the AIM workshop “Entropy power inequalities.” This material is not for public distribution. Corrections and new material are welcomed and can be sent to
[email protected] Version: Fri Apr 28 17:41:04 2017 1 2 Table of Contents A.ParticipantContributions . 3 1. Anantharam, Venkatachalam 2. Bobkov, Sergey 3. Bustin, Ronit 4. Han, Guangyue 5. Jog, Varun 6. Johnson, Oliver 7. Kagan, Abram 8. Livshyts, Galyna 9. Madiman, Mokshay 10. Nayar, Piotr 11. Tkocz, Tomasz 3 Chapter A: Participant Contributions A.1 Anantharam, Venkatachalam EPIs for discrete random variables. Analogs of the EPI for intrinsic volumes. Evolution of the differential entropy under the heat equation. A.2 Bobkov, Sergey Together with Arnaud Marsliglietti we have been interested in extensions of the EPI to the more general R´enyi entropies. For a random vector X in Rn with density f, R´enyi’s entropy of order α> 0 is defined as − 2 n(α−1) α Nα(X)= f(x) dx , Z 2 which in the limit as α 1 becomes the entropy power N(x) = exp n f(x)log f(x) dx . However, the extension→ of the usual EPI cannot be of the form − R Nα(X + Y ) Nα(X)+ Nα(Y ), ≥ since the latter turns out to be false in general (even when X is normal and Y is nearly normal). Therefore, some modifications have to be done. As a natural variant, we consider proper powers of Nα.