Phenothiazines Modified with the Pyridine Ring As Promising
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Organometallic Reactions with Heterocyclic Compounds Justin Ward Diehl Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1959 Some organometallic reactions with heterocyclic compounds Justin Ward Diehl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Diehl, Justin Ward, "Some organometallic reactions with heterocyclic compounds " (1959). Retrospective Theses and Dissertations. 2574. https://lib.dr.iastate.edu/rtd/2574 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. SOME ORGANOMETALLIC REACTIONS WITH HETEROCYCLIC COMPOUNDS Justin Ward Diehl A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. D ! College Iowa State University Of Science and Technology Ames, Iowa 1959 11 TABLE OF CONTENTS Page I. INTRODUCTION 1 II. HISTORICAL 4 A. Thlaxanthene Chemistry 4 1. Introduction 4 2. Thlaxanthene 6 3. 10-Thiaxanthenol 8 4. 10-Thlaxanthenone 9 B. Reactions of Organosllylmetalllc Reagents. 13 1. With carbonyls 13 2. In metalation reactions 15 3. With organic halldes 17 C. Aromatic Heterocyclic Silicon Systems. ... 23 1. Organosilanes containing heterocyclic groups 23 a. Furan. 23 b. Thiophene 24 c. Benzothiophene 26 d. Dibenzothiophene 26 e. Dibenzofuran 27 f. Benzothiazole 27 g. -
Alder Reactions of [60]Fullerene with 1,2,4,5-Tetrazines and Additions to [60]Fullerene-Tetrazine Monoadducts
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2002 Diels -Alder reactions of [60]fullerene with 1,2,4,5-tetrazines and additions to [60]fullerene-tetrazine monoadducts Mark Christopher Tetreau University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Tetreau, Mark Christopher, "Diels -Alder reactions of [60]fullerene with 1,2,4,5-tetrazines and additions to [60]fullerene-tetrazine monoadducts" (2002). Doctoral Dissertations. 81. https://scholars.unh.edu/dissertation/81 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Cycloaddition
molecules Review Review IndolizinesIndolizines andand TheirTheir Hetero/BenzoHetero/Benzo DerivativesDerivatives inin ReactionsReactions ofof [8+2][8+2] Cycloaddition EugeneEugene V.V. BabaevBabaev1,2,3, 1,2,3,** andand Ivan Ivan A. A.Shadrin Shadrin 1 1 11 ChemistryChemistry Department, Department, Moscow Moscow State State University, University, Leninskie Leninskie gory, Gory, 1 1 str.3, Str. 3, 119899 119899 Moscow, Moscow, Russia; Russia; [email protected]@gmail.com 22 HigherHigher School School of of Economics, Economics, National National Research Research University, University, 7 7 Vavilova Vavilova Str., 117312 Moscow, RussiaRussia 33 N.N. D. D. Zelinsky Zelinsky Institute Institute of of Or Organicganic Chemistry, Chemistry, Russian Russian Academy Academy of of Sciences, Sciences, 47 Leninsky Ave., 119991119991 Moscow, Moscow, Russia Russia ** Correspondence:Correspondence: [email protected]; [email protected]; Tel.: Tel.: +7-985-997-94-75 +7-985-997-94-75 Abstract: PeculiaritiesPeculiarities ofof [8+2][8+2] cycloaddition of acetylenesacetylenes toto indolizinesindolizines areare reviewed.reviewed. EspeciallyEspecially mentioned are are indolizines indolizines with with leaving leaving groups groups at positions at positions 3 and 3 and 5. Cycloaddition 5. Cycloaddition to aza- to and aza- benzo and benzoderivatives derivatives are reviewed, are reviewed, as well as 1,10-cyclizations well as 1,10-cyclizations and processe ands processes leading to leading cyclazines to cyclazines where in- wheredolizines indolizines are intermediates. are intermediates. Mechanistic Mechanistic features features(adducts (adducts and cycloadducts) and cycloadducts) and theoretical and theoretical aspects aspects(one- or (one- two-steps or two-steps mechanism) mechanism) are reviewed. are reviewed. Keywords: indolizine; azaindolizines; benzoindolizines;benzoindolizines; cyclazine; [8+2] cycloaddition; mechanism; 1,10-cyclizations;1,10-cyclizations; catalystscatalysts 1. -
Lnm- NWN-Mln Hunter, A
Organometallics 1991, 10, 2141-2152 2141 iterations, X:wA2[w = ~/U(F~)~,A = (IFo( - (FC()3was minimized. Note Added in Proof. After submission of this paper, Bond lengths and angles are listed in Table I. Tables I1 and I11 extended Huckel calculations on a series of binuclear represent the atomic coordinates. Further details of data collection complexes of Zr(II1) exhibiting Zr-Zr distances ranging and refinement are represented in Table 1V.- from 3.05 to 4.25 A were carried out. These calculations Acknowledgment. We thank the Alexander von suggest the existence of "a substantial amount of Humboldt Foundation for a research grant (B.M.) and the through-space metal-metal interaction at distances larger Deutsche Forschungsgemeinschaft for financial support than 3.5 A". This conclusion strongly supports ours, (Leibniz program, W.A.H.). thereby reinforcing it.% Supplementary Material Available: For 3 and 4, lists of bond lengths and angles, least-squares planes, atomic fractional (63) Kiprof, P.; Herdtweck, E.; Schmidt, R. E.; Birkhahn, M.; Maaaa, coordinates, and thermal parameters and ORTEP stereo plots (35 W. STRUX-11. A System of Computer Programs To Handle X-ray Dif- fraction Data, Technieche UniversitAt Mihchen, 1987, and Universitit pages); listings of observed and calculated structure factors (42 Marburg, 1978. pages). Ordering information is given on any current masthead (64) Frenz, B. A. ENRAF-NONIUSSDP-Plus Structure Determina- page. tion Package, version 4.0; Enraf-Nonius: Delft, Holland, 1988. (65) Keller, E. SCHAKAL. A Plot Program for Crystal Structure Illus- trations. University of Freiburg, 1988. (66) Rohmer, M.-M.; BBnard, M. Organometallics 1991, 10, 157. -
Non-Empirical Calculations on the Electronic Structure of Olefins and Aromatics
NON-EMPIRICAL CALCULATIONS ON THE ELECTRONIC STRUCTURE OF OLEFINS AND AROMATICS by Robert H. Findlay, B.Sc. Thesis presented for the Degree of Doctor of philosophy University of Edinburgh December 1973 U N /),, cb CIV 3 ACKNOWLEDGEMENTS I Wish to express my gratitude to Dr. M.H. Palmer for his advice and encouragement during this period of study. I should also like to thank Professor J.I.G. Cadogan and Professor N. Campbell for the provision of facilities, and the Carnegie Institute for the Universities of Scotland for a Research Scholarship. SUMMARY Non-empirical, self-consistent field, molecular orbital calculations, with the atomic orbitals represented by linear combinations of Gaussian-type functions have been carried out on the ground state electronic structures of some nitrogen-, oxygen-, sulphur- and phosphorus-containing heterocycles. Some olefins and olefin derivatives have also been studied. Calculated values of properties have been compared with the appropriate experimental quantities, and in most cases the agreement is good, with linear relationships being established; these are found to have very small standard deviations. Extensions to molecules for which there is no experimental data have been made. In many cases it has been iôtrnd possible to relate the molecular orbitals to the simplest member of a series, or to the hydrocarbon analogue. Predictions of the preferred geometry of selected molecules have been made; these have been used to predict inversion barriers and reaction mechanisms. / / The extent of d-orbital participation in molecules containing second row atoms has been investigated and found to be of trivial importance except in molecules containing high valence states of the second row atoms. -
Chemical and Pharmacological Potential of Various Substituted Thiazine Derivatives
J. Pharm. Appl. Chem., 1, No. 2, 49-64 (2015) 49 Journal of Pharmaceutical and Applied Chemistry An International Journal http://dx.doi.org/10.12785/jpac/010203 Chemical and Pharmacological Potential of Various Substituted Thiazine Derivatives Mohammad Asif*. Department of Pharmacy, GRD (PG) Institute of Management & Technology, 248009, Dehradun, (Uttarakhand), India. Received: 20 May 2015, Revised: 13 Jul. 2015, Accepted: 23 Jul. 2015. Published online: 1 Sep. 2015. Abstract: Heterocyclic compounds have strong interest in pharmaceutical research area because of their useful pharmacological activities. Heterocyclic compounds are abundant in nature and have acquired more importance because their structural subunits are exhibit in various natural products such as vitamins, hormones, antibiotics etc. The multifaceted chemical potential of 1,3-thiazine- a six membered species containing nitrogen and sulphur in the ring has led to unabated research in their synthetic methodologies. Thiazines are six membered heterocyclic compounds which have promising pharmacological activities which have drawn the attention of scientists and researchers. It is present in the fused form with β-lactam ring in major class of antibiotics like cephalosporins which shows the prevalence of thiazines. Thiazine compounds possess variety of pharmacological activities like anti-microbial, anti-mycobacterial, antifungal, antiviral, antitumor, antipsychotic, anti-inflammatory etc. The significance of thiazine derivatives has potential pharmacological moiety and future of these derivatives in the field of drug research. Some of the pharmacological activities are briefly summarized. This article summarizes various chemical reactions like condensation, cyclo-addition, ring transformations etc. The review focuses on thethiazine derivatives with potential activities that are now in development. Keywords: 1,3-Thiazine, antimicrobial, biological activities, heterocyclic compounds, β-lactam ring, cephalosporins. -
Nomenclature of Heterocyclic Compounds
Nomenclature of Heterocyclic Compounds Dr. Solomon Derese SCH 402 13 The IUPAC rules allow three nomenclatures. I. The Hantzsch-Widman Nomenclature. II. Common Names III. The Replacement Nomenclature Dr. Solomon Derese SCH 402 14 I. Hantzsch-Widman Nomenclature n = 1,2,3, …… The Hantzsch-Widman nomenclature is based on the type (Z) of the heteroatom; the ring size (n) and nature of the ring, whether it is saturated or unsaturated . This system of nomenclature applies to monocyclic three-to-ten-membered ring heterocycles. Dr. Solomon Derese SCH 402 15 I. Type of the heteroatom The type of heteroatom is indicated by a prefix as shown below for common hetreroatoms: Hetreroatom Prefix O Oxa N Aza S Thia P Phospha Dr. Solomon Derese SCH 402 16 II. Ring size (n) The ring size is indicated by a suffix according to Table I below. Some of the syllables are derived from Latin numerals, namely ir from tri, et from tetra, ep from hepta, oc from octa, on from nona, ec from deca. Table I: Stems to indicate the ring size of heterocycles Ring size Suffix Ring size Suffix 3 ir 7 ep 4 et 8 oc 5 ol 9 on Dr. Solomon Derese6 in SCH 40210 ec 17 The endings indicate the size and degree of unsaturation of the ring. Table II: Stems to indicate the ring size and degree of unsaturation of heterocycles Ring size Saturated Unsaturated Saturated (With Nitrogen) 3 -irane -irine -iridine 4 -etane -ete -etidine 5 -olane -ole -olidine 6 -inane -ine 7 -epane -epine 8 -ocane -ocine 9 -onane -onine 10 -ecane -ecine Dr. -
October 2004 CLASSIFICATION DEFINITIONS 544 - 1
October 2004 CLASSIFICATION DEFINITIONS 544 - 1 CLASS 544, ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES 9 This subclass is indented under subclass 8. Compounds wherein the thiadiazine ring is one of the cyclos of a polycyclo ring system. SUBCLASSES 10 This subclass is indented under subclass 9. 1 This subclass is indented under subclass 1. Compounds wherein the polycyclo ring system Compounds under Class 540, ... which contain consists of two rings, one of which is the thia- a six-membered hetero ring having two or diazine ring. more ring hetero atoms of which at least one is nitrogen. 11 This subclass is indented under subclass 10. Compounds wherein the bicyclo ring system SEE OR SEARCH CLASS: consists of the thiadiazine ring and a benzene 588, Hazardous or Toxic Waste Destruc- ring. tion or Containment, appropriate sub- classes for the chemical destruction of 12 This subclass is indented under subclass 11. hazardous or toxic waste. Compounds wherein the sulfur atom is in the 1- position and the nitrogen atoms are in the 2- 2 This subclass is indented under subclass 1. and 4-positions of the six-membered hetero Compounds wherein the six- membered hetero ring. ring includes at least one atom each of oxygen, sulfur, nitrogen and carbon and contains no (1) Note. An example of a structure pro- other elements as ring members. vided for herein is: 3 This subclass is indented under subclass 1. Compounds wherein the six- membered hetero ring includes at least one atom each of sulfur, nitrogen and carbon and contains no other ele- ments as ring members. -
Some Reactions of Phenothiazine and Certain Benzophenothiazines
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-1961 Some Reactions of Phenothiazine and Certain Benzophenothiazines John Charles Gilmer University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons, and the Other Medical Sciences Commons Recommended Citation Gilmer, John Charles, "Some Reactions of Phenothiazine and Certain Benzophenothiazines. " PhD diss., University of Tennessee, 1961. https://trace.tennessee.edu/utk_graddiss/3056 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by John Charles Gilmer entitled "Some Reactions of Phenothiazine and Certain Benzophenothiazines." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. David A. Shirley, Major Professor We have read this dissertation and recommend its acceptance: J. Robertson, J.F.E., John W. Heuherger Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Decem�r 4, 1961 To the Graduate Council: I am submitting herewith a dissertat ion written by John Charles Gilmer entit led "Some Reactions. of Phenothiazine �nd Certain Benzo phenothiazines." l recommend that it be accepted in partial fulfill ment of the req�ir.ements for the degree of Doctor of Philosophy, with a major in Chemistry. -
United States Patent (19) 11) 3,888,822 Gilleo Et Al
United States Patent (19) 11) 3,888,822 Gilleo et al. (45) June 10, 1975 54) PROCESS FOR INCREASING FLAME 56) References Cited RESISTANCE OF NYLON AND RESULTING UNITED STATES PATENTS FLAME RESISTANT NYLON 3,250,772 5/1966 Dexter et al................. 260/45.8 NT COMPOSITION 3,293,249 12/1966 Biland et al................. 260/45.8 NT (75) Inventors: Kenneth B. Gilleo, Depew, Francis 3,415,824 12/1968 Biland et al................. 260/45.8 NT 3,444, 142 5/1969 Kolyer et al................. 260/45.8 NT E. Evans, Hamburg; Allen W. Sogn, 3,538,092 1 1/1970 Dexter et al................. 260/45.8 NT Williamsville, all of N.Y. 3,709,883 1/1973 Dexter et al................. 260/45.8 NT 73. Assignee: Allied Chemical Corporation, New 3,793,289 2/1974 Koch et al................... 260/45.8 NT York, N.Y. Primary Examiner-Melvyn I. Marquis 22 Filed: Dec. 17, 1973 Attorney, Agent, or Firm-Michael L. Dunn; Jay P. 21 Appl. No.: 425,488 Friedenson 52) U.S. Cl................... 260/45.8 NT, 260/45.75 R, 57 ABSTRACT 26045.75 C, 260/45.8 N A process for increasing the flame resistance of nylon 51) Int. Cl. ............................................ C08f 45/58 comprising treating the nylon with a heterocyclic ring (58) Field of Search 260/45.8 NT, 45.8 N, 45.75 R, compound which contains both sulfur and nitrogen 260/45.75 C and the resulting flame resistant nylon composition. 41 Claims, No Drawings 3,888,822 1. 2 PROCESS FOR INCREASING FLAME RESISTANCE bonded to a carbon atom and no phosphorous or arse OF NYLON AND RESULTING FLAME RESISTANT nic. -
An Introduction to Heterocyclic Chemistry
An Introduction to Heterocyclic Chemistry Reference: A Textbook of Organic Chemistry, Tewari and Vishnoi This is only the introduction part of the unit on heterocyclic chemistry. Please refer textbook for detailed information. Introduction Cyclic compound having only carbons as the ring members, such as benzene are called carbocyclic compounds. As only carbon forms the backbone of the ring, it is also a homocyclic compound. H H γ H H H H C C C C 4 β' C C β Heterocyclic Pyridine Carbocyclic Benzene 5 3 with one α' 6 2 α C C C 1 C Nitrogen Heteroatom C N H H H H H Figure 1: Structure of Homocyclic Benzene and Heterocyclic Pyridine In contrast, cyclic compounds having at least one atom other than carbon as ring members, (e.g. Pyridine with nitrogen replacing one of the carbon atom) may be termed as heterocyclic compounds . These atoms are termed as heteroatoms . The structure of benzene and pyridine are provided in figure 1 above. Nomenclature of Heterocyclic Compounds Heterocyclic compounds are popularly known by their common names. However, IUPAC has provided a systematic nomenclature with prefix and suffix as discussed below. According to IUPAC, the numbering starts with the heteroatom as shown in figure 1. According to common names, the greek letters, α, β, γ etc are followed as shown in figure 1. Order of Seniority Prefix Suffix 1 Oxa for oxygen 2 Thia for sulfur -ole for 5 membered rings 3 Aza for nitrogen -ine for 6 membered rings 4 Phoshpha for phosphorus -epine for 7 membered rings 5 Bora for boron Table 1: Nomenclature of Heterocyclic compounds When more than one heteroatom is present in a molecule, an order of seniority exists for the naming and numbering system, with the number preference given for oxygen first followed by 1 other atoms as shown. -
Review in Heterocyclic Compounds 51
Journal of Plastic and Polymer Technology (JPPT) Vol. 1, Issue 1, Jun 2015, 49-64 © TJPRC Pvt. Ltd. REVIEW PAPER IN HETEROCYCLIC COMPOUNDS NAGHAM MAHMOOD ALJAMALI Organic Chemistry, Chemistry Department, College of Education ABSTRACT In this review paper, information about heterocyclic compounds, methods of synthesis, reactions , properties , stability, saturated and unsaturated cycles , aliphatic and aromatic cycles have been thoroughly reviewed and discussed. KEYWORDS : Heterocyclic, Three Membered, Seven, Cyclization, Sulfur,Nitrogen INTRODUCTION Three Membered Rings Heterocycles with three atoms in the ring are more reactive because of ring strain. Those containing one heteroatom are, in general, stable. Those with two heteroatoms are more likely to occur as reactive intermediates. Table 1: Common 3-Membered Heterocycles with One Heteroatom Are Heteroatom Saturated Unsaturated Nitrogen Aziridine Azirine Oxygen Oxirane (ethylene oxide, epoxides) Oxirene Sulfur Thiirane (episulfides) Thiirene Tabli 2: Those with Two Heteroatoms Include Heteroatom Saturated Unsaturated Nitrogen Diazirine Nitrogen/oxygen Oxaziridine Oxygen Dioxirane MEMBERED RINGS Table 3: Compounds with One Heteroatom Heteroatom Saturated Unsaturated Nitrogen Azetidine Azete Oxygen Oxetane Oxete Sulfur Thietane Thiete Table 4: Compounds with Two Heteroatoms Heteroatom Saturated Unsaturated Nitrogen Diazetidine Oxygen Dioxetane Dioxete Sulfur Dithietane Dithiete www.tjprc.org [email protected] 50 Nagham Mahmood Aljamali MEMBERED RINGS With heterocycles containing five