KINEMATIC ANALYSIS OF THE SOUTHERN ,

DEATH VALLEY, : IMPLICATIONS FOR CENOZOIC

EXTENSIONAL TECTONICS

By

BRANDON LUTZ

IBRAHIM ҪEMEN, COMMITTEE CHAIR DELORES M. ROBINSON RICHARD H. GROSHONG IAN O. NORTON

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geological Sciences in the Graduate School of the University of Alabama

TUSCLAOOSA, ALABAMA

2013

Copyright Brandon Lutz 2013 ALL RIGHTS RESERVED ABSTRACT

Map-view area balance of extensional strain in the west-central Basin and Range indicates that the area has undergone 250-300 km of upper crustal extension. Consistent 25-30 km moho depth across the area suggests that the ductile lower crust has uniformly thinned in response to the extension. These strain estimates are based on the palinspastic realignment of various compressional structures developed within the Late Proterozoic to Mesozoic passive margin and foreland basin rocks of the North American Cordillera. The type example of correlations used to reconstruct the west-central Basin and Range lay in . The magnitude, order, spacing, and vergence pattern of compressional structures in the Cottonwood and Funeral Mountains indicates that the two range blocks, now separated by ~70 km along the

Death Valley-Furnace Creek fault zone, were once adjoined.

However, the original structural architecture in the Funeral Mountains has been aliased by extensional faulting. Thus, the correlation of the Cottonwood and Funeral Mountains is contingent on determining the true pre-extensional spacing between the compressional structures. I reconstruct one NW-SE cross section through the Funeral Mountains to determine the pre-extensional geometry of the fold-thrust belt and compare the geometry to the

Cottonwood Mountains.

The reconstruction indicates that the interior of the Funeral Mountains has been extended by 8 km (40%) of its pre-Miocene length. The derived pre-extensional spacing between compressional structures within the range matches that previously determined for structures in the Cottonwood Mountains. Thus, these results support reconstructions that indicate ~ 70 km

ii across the Death Valley-Furnace Creek fault zone. Finally, the Funeral and Cottonwood

Mountains are interpreted to be correlative range blocks.

iii

DEDICATION

For Taylor.

iv

LIST OF ABBREVIATIONS AND SYMBOLS

2D Two dimensional

B Black Mountains

BC British Columbia

C Cottonwood Mountains

COCORP Consortium on continental reflection profiling

CT Clery thrust

DV Death Valley

F Funeral Mountains

G

LT Lemoigne thrust

MCT Marble Canyon thrust

ND Death Valley- Furnace Creek fault zone

NW northwest

SE southeast

SPT Schwaub Peak thrust

WPA Winters Peak anticline

WTB White Top backfold

P Panamint Mountains

v

ACKNOWLEDGEMENTS

I am pleased to have this opportunity to thank many of my colleagues, friends, and professors who have helped me with this research endeavor. Professor Ҫemen allowed me academic freedom and the encouragement to do field work in Death Valley, California, a beautiful place. My thanks go out to the rest of my committee members- Delores Robinson,

Richard Groshong, and Ian Norton for their valuable inputs to this research project. Dr. Robinson taught me valuable lessons in constructing the cross sections. Richard Groshong went out of his way to attend my presentations and provide expert advice on how to make them better. Ian

Norton was kind to serve as my external committee member and ask important questions during my defenses. Thank you to Dr. William Gary Hooks for setting up the Hooks fund and The

Geological Sciences Advisory Board, which financially supported the field work and data analysis for this thesis. Don Yezerski, John Pfeiffer, and Ryan Jeffcoat deserve special thanks for their fruitful discussions and advice on the project. I thank Harold Stowell for his valuable lessons in life and field geology and for providing me with a means of supporting myself financially during the summers.

This research would not have been completed without the hospitality of Marli Miller and

Darrel Cowen. They allowed me to take showers at their trailer in Shoshone, California. The support of my family and friends was invaluable during my time here in Tuscaloosa. My family encouraged me through the most doubtful times when success seemed so far away, and my friends helped my sanity through outlets such as canoeing, fishing, playing music, and horseshoes.

vi

CONTENTS

ABSTRACT ...... ii

DEDICATION ...... iv

LIST OF ABBREVIATIONS AND SYMBOLS ...... v

ACKNOWLEDGEMENTS ...... vi

LIST OF FIGURES ...... viii

1. INTRODUCTION ...... 1 a. Basin and Range extension: Death Valley ...... 4

2. MODEL CONSTRUCTION ...... 10 a. Data ...... 10 c. Methods used in drawing cross section ...... 15 b. Validation ...... 15 c. Structural cross section of the Funeral Mountains ...... 17 d. Restoration ...... 19

3. DISCUSSION ...... 22 a. Percent and amount of extension ...... 22 b. Shortening in the southern Sevier thrust belt ...... 23

4. CONCLUSIONS ...... 26

REFERENCES ...... 28

APPENDIX ...... 34

vii

LIST OF FIGURES

1. Tectonic map of western North America ...... 2

2. Palinspastic map and reconstruction of the west-central Basin and Range ...... 3

3. Structural correlations across central and northern Death Valley ...... 5

4. Structural characteristics of the Funeral and Cottonwood Mountains ...... 6

5. Structural cross section and restoration of the Cottonwood Mountains ...... 7

6. Geologic map and stratigraphy of the Funeral Mountains ...... 11

7. Structural cross section through Funeral Mountains (preliminary) ...... 12

8. Table of structural data used in Fig. 7 ...... 13

9. Structural cross section through the Funeral Mountains (final) ...... 16

10.Kinematic restorations of the Funeral Mountains ...... 20

11.Along-strike comparisons of Cordilleran fold-thrust belt ...... 24

12.Simple Shear algorithm ...... 34

13.Fault Parallel Flow algorithm ...... 35

14.Assymetrical Trishear algorithm ...... 36

viii

INTRODUCTION

Because the Death Valley region provides excellent exposure, it is a locus for studying late Cenozoic extension of western North America. Southeastern California and southern

(Fig. 1) contain fragmented pieces of the southern Sevier fold-thrust belt (Wernicke et al., 1988;

Çemen and Wright 1990). The Sevier fold-thrust belt was reactivated and/or crosscut by normal and strike slip faults during Miocene extension (Ҫemen et al., 1999; Wright et al., 1999); thus, a kinematically valid model of extension must be applied before the restored compressional structures are revealed. Thrust systems exposed in the Funeral Mountains are the piercing points of extensional reconstructions (Snow and Wernicke, 1989, 2000), and detailed analysis of these structures is confined to localized areas.

I have reconstructed one NW-SE cross section to show the possible geometry of the area prior to extension. This reconstruction determines the magnitude of extension within the southern Funeral Mountains and provides a base geometry for interpreting the structure of the

Sevier belt. The pre-extensional cross section is also used to test the validity of geological correlations in the Death Valley region.

In the Funeral Mountains, a 6000-meter section of well-exposed Proterozoic-Devonian rocks provides an excellent site for reconstructing the brittle extension of a range block interior.

This reconstruction constrains ‘intra-block’ extension with a balanced and restored cross section that does not intersect any major range bounding faults or ductile detachment surfaces. The

1

Figure 1: Modified from DeCelles (2004). Tectonic map of western North America. Note the location of section lines in blue and thrust systems of the southern Sevier belt.

2 results reported herein are used to test extensional reconstructions across Death Valley and add detail to the structure and kinematics of the southern Sevier fold-thrust belt.

The main objectives of this paper are to 1) delineate the geometry and kinematics of upper crustal deformation in the southern Funeral Mountains and 2) discuss the implications of the restoration for extension in Death Valley region of the west-central Basin and Range.

Figure 2: Redrawn from Snow and Wernicke (2000). Palinspastic map and reconstruction of the west-central Basin and Range province showing various thrust plates and other structural components traced across range blocks, now separated by normal and strike-slip faults.

3

Basin and Range extension: Death Valley

The west-central Basin and Range has been reconstructed to its pre-Cenozoic state by realigning compressional structures developed within late Proterozoic-Mesozoic passive margin and foreland basin rocks (Fig. 2) (Snow and Wernicke, 1989, 2000, Snow, 1990a, b, 1992).

Previous workers (Stewart, 1983; Snow and Wernicke, 2000) proposed 80-100 km of displacement on regional detachment faults linked by strike-slip fault systems to account for the misalignment of compressional structures. Reconstruction of the displacement along extensional features indicates that the Sierra Nevada has an average relative motion vector 250-300 km N 73

W away from the Colorado Plateau during Cenozoic extension (Snow and Wernicke, 2000).

The type example used in this regional reconstruction is located in Death Valley (Fig. 3), where a regionally traceable, kinematically unique pair of compressional structures was first identified in the Funeral and Cottonwood Mountains (Snow and Wernicke, 1989; 2000). The compressional structures are the White Top backfold/Marble Canyon thrust/Lemoigne thrust in the Cottonwood Mountains and the Winters Peak anticline/Schwaub Peak thrust/Clery thrust in the Funeral Mountains (Fig. 4). Snow and Wernicke (1989) calculated that the magnitude

(throw), ordering (anticline-thrust-thrust), spacing (present-day, map view), and vergence pattern of three compressional structures contained within both ranges has a less than 0.001 probability of being randomly repeated in two unrelated places. Thus, the Funeral and Cottonwood

Mountains range blocks were once adjoined, and the magnitude of strike slip displacement of the northern Death Valley-Furnace Creek fault zone is ~70 km (Snow and Wernicke, 1989).

However, their correlations do not account for extension within the Funeral Mountains, which has separated the Winter’s Peak anticline and Schwaub Peak thrust from the Clery thrust such that their present-day map view spacing does not represent the original structural architecture of

4 the thrust belt. In this paper, I test the validity of this geological correlation by determining the true pre-extensional spacing between thrust structures in the Funeral Mountains and comparing it to pre-determined original spacing between thrust structures in the Cottonwood Mountains.

Figure 3: Digital elevation model of Death Valley showing correlation of compressional features (Snow and Wernicke, 1989) in central and northern Death Vallley (DV). Note the location of section lines for Figure 5 and the map area for Figure 6.

5

Figure 4: Table describing the structural characteristics used to correlate the Funeral and

Cottonwood Mountains (Snow and Wernicke, 1989).

Cottonwood Mountains

Normal faulting has exhumed the compressional structures in the Cottonwood

Mountains. Snow (1990a) published geologic map and restored pre-Cenozoic geometry of the

White Top backfold (WTB) and Marble Canyon thrust (MCT) (Fig. 5). In the southwestern segment, Carboniferous-Permian strata in the footwall syncline of the MCT have intrusive contact with the Dry Bone stock. In the northeastern segment, the hanging wall of the MCT,

Silurian-Devonian strata have intrusive contact with the Dry Bone stock. The Dry Bone Stock is interpreted to be a vertical piercing point offset by the Dry Bone fault. This assumption allows for restoration of extensional hanging wall rollover along the Dry Bone fault and connection of the two segments of the section (Fig. 3 and 5). Connecting the two nonconformities yields a pre- extensional reverse throw of 3000 ±300 m. along the MCT.

In Snow’s (1990a) kinematic model, the White Top Backfold is a box fold resulting from back thrusting during the Sevier Orogeny. At the Eureka Quartzite structural level, the spacing

6 between the west-vergent axis of the backfold and the MCT is 6 km (Fig. 5). The Lemoigne thrust (Fig. 5) emplaces Cambrian Bonanza King Formation above Pennsylvanian to Permian

Keeler Canyon and Owens Valley Formations (Hall, 1971). This structural relationship indicates a reverse throw of 3000 m.

Figure 5: Structural cross section and restoration of the White Top backfold and Marble

Canyon thrust (Snow, 1990a, b). The Dry Bone Stock on the right side of the figure is used as a vertical piercing point to restore reactivation of the Marble Canyon thrust and connect the two lines of section (Fig. 3). Restoration indicates ~ 32% extension. Reconstruction indicates that at the base of the Cambrian hanging wall cutoffs, the WTB and MCT were spaced at 6 km prior to extension.

Funeral Mountains

The geology of the Funeral Mountains was originally mapped by McAllister (1970, 1971,

1973), Ҫemen (1983), Ҫemen et al. (1985), and Wright and Troxel (1993). Original map details

7 diminished toward the edges of particular study areas, and a refined compilation map was published by Fridrich et al. (2008) (Fig. 6).

Detailed kinematic analysis of the structures in the Funeral Mountains has been limited to the area around the Clery thrust, where Ҫemen and Wright (1990) incorporated cross cutting fault relationships and unconformities in Miocene extensional basin-fill to determine a pre- extensional geometry. Their work also revealed that the west vergent axis of the Winters Peak anticline has been detached and transported 5 km to the northwest along the Keane Wonder fault

(Fig. 6).

The Clery thrust contains a duplex structure that emplaces the Cambrian Bonanza King

Formation on top of the Ordovician Pogonip Group (Ҫemen and Wright, 1990), both of which are structurally above the stratigraphically youngest Ordovician Ely Springs Dolomite. These relationships only indicate 1200 m of older on younger reverse throw. Re-activation of the Clery thrust as an extensional structure has aliased its true pre-extensional dip separation. Extensional restorations show at least 2000 m of normal dip separation north of the section line, suggesting that the thrust had an original reverse dip separation of 3200 ± 200 m (Ҫemen and Wright, 1990).

In addition to magnitude, the pre-Cenozoic spacing between compressional structures has also been aliased by more recent normal faulting. The Amphitheatre fault, Pyramid Peak fault system, and many smaller faults form a northwest-stepping half-graben system that has extended the interior of the Funeral Mountains significantly. This extension has displaced the bivergent fold-thrust pair (WPA & SPT) in the northwestern part of the range from the Clery thrust in the southeastern part by an unknown magnitude.

Thus, while the magnitude, order, and vergence of the compressional structures in the

Funeral and Cottonwood Mountains range blocks are compatible, present-day map view spacing

8 between structures cannot be used to determine the validity of the correlation. Unless the two range interiors are assumed to have undergone the same magnitude of extension, this calculation requires that a true pre-extensional spacing between the compressional structures in the Funeral

Mountains is known.

In this study, I modeled the extension within the Funeral Mountains to determine the pre- extensional spacing. The model is a balanced and restored 2D cross section. Restoration of fault displacements within the range block not only allows validation of the Death Valley extensional reconstructions but also provides a base geometry for interpreting the subsurface structure of the

Sevier fold-thrust belt at this location.

9

MODEL CONSTRUCTION

Data

Data for this model come from a compiled geologic map of the southern Funeral

Mountains (Fig. 6), measured stratigraphic sections, structural measurements, a COCORP reflection profile, and gravity modeling. The cross-section line of N50W was chosen because it is approximately parallel to the extension direction indicated by the majority of normal faults, and parallel to the direction of shortening indicated by compressional faults and folds within the

Funeral Mountains range block. This line of section intersects the maximum number of normal faults, which provides a maximum estimate of the amount of extension between the Schwaub

Peak and Clery thrusts. In total, the line of section intersects 28 normal faults, 4 of which are antithetic and were ignored for this study. Seven others were ignored or combined with neighboring faults because they had dip separations that could not be calculated from the surface relationships.

The topographic profile was generated by extracting 1/3 arc second digital elevation data, normalizing it, and plotting to a grid with no vertical exaggeration. Structure contours and measured strike/dip data were projected to the section line to determine the apparent dip of bedding and fault surfaces (Fig. 7). Dip separations on faults were estimated by projecting apparent dips of surface contacts in the hanging wall and footwall of the fault planes (Fig. 8).

10

116°45'0"W 116°37'30"W

o

30 o 45

o Winter’s Peak

Y o 35

: 70

o o 44 F

o o o o 60 44 :

QTa o 50

50 o

QTa 15

Tf Qai : o

44 15 25

44 Zju o o

QTa Qai Zsb

QTa 60 55 Anticline

o F o o o

o o

40 o

44

44 30 o

Qao 70

20 Qao 60

44 o

: 15 60 o o o

44

20 o F o

30 QTa

o 45 o Zsa 75 o o

: : 40 o

Zju 40 o 80

44 o 50 80 QTa o

Qai QTa 60 Zsb

: : o 50

35 t Zse

o 50 o Qai 44 15 70 o

M M F o

10 o : 80 F

F 85

35 Zsa o o

Tf Zsb : 75 50 o o o

44 o M

Zsc 40 o : 40 60 o

o QTa

20 Zsa : o o 15 Zwl

o

o 60

20 o o o

o (( 44 20 o o o

Zju Zsd 55 o o :

35 o

Tf 55 F Zsa Zsc 55 50 55 25

o

30 o

o o : 20

44 o F (( o

o Tf Qai 50 60 Zsb 35 (( 35 o

o (( Qay(( : F

25 Zwl ((

Zsa o 20 (( ((

o 20

((

20 Qao (( o o

F 35 o 60 o 40 o

44 o

o ((

F ((

30 20 60 Qai M F : o 45

o 40 o o ((

Zsb o

M ((

44

Qay : o 55 Qay

o 55 ((

: : 44 o 60 44 : o

M (( 44

44 44 Schwaub Peak

: : o Zwl

44 70 ((

: : 15 50

44 20 20 o

o F : : 44 44 o (( o

Qai o : F

50 Zsb 40 F

Qai o DSh(( M 60

Qai : 44 80 50 65

55

Qai 44

: 44 Zwl

Zsa o F o o o (( 44 10 o o o :

o

o DSh ((

o 20 o Thrust

Zsb 70

v Zju o o o o

44 35 35

40 40 (( o 25 Tf o 40

44 o Qc o 30

60 : o

o : DSh o o 15

o 30 60 (( 55 44 DSh

50 30 o o

v Zwm 30

44 20

QTa QTa o ((

(( ((

10 o : (( o

44

((

25 o

o 40 o 15 (( 44 44 44 ((

Qai 60 Zse 10

: 40

Zsa Zsb 44 Zsa

((

: : o ((

30 20 44

35 (( t :

F o t

Zsb Zse Qc 60 : (( : o o : 10

o 44

: o 60

QTa 20

20 50

: 60

(( (( Qai o

o o

35 t

44 (( o o o

Zwl 30 :

F o ((

o : 60

o

o 50

50

55 o 20 ((

o

o :

: Opa :

o

Qai 30 o

10 : :

F ((

30 :

Zse 44

: 60 ((

o o 40

: o Zwl : DSh

40 ((

(( :

o o o

o 44

o o

QTa o : (( :

Tf 40 Zwm o o Zwl ((

45 :

60 : ((

70

45

: ((

A (~24.8Ma) o : 60

45 50

: : o o 40 (( o o o o (( o o :

:

: o 50

ez 60 ((

Zwl (( (( o 70 :

o o o

o Qao

40 (( o

o (( o 60 55

: 40 30 o

:

Zsc :

44 Qc F ((

ez e 45 Qay ((

: 60 25

o 50 : 30 o Zsd

o 30

: : o o o : 30

wu (( :

: : ((

o

o ec : Qay nc

o o 40

Nevares : Spring ((

65 F 55 Zwm 70 o o

: o (( v :

: :

o : o z Amphitheatre

55 44 :

o

o 40 z ((

o o

o

o : Qc o Qao :

30 Zsa o

Qai bp 25 Zsc (((( Zsc : 40 : 55 :

:

45 : :

: bp 45 Oes

o

: o

: o

: ((

o o o

o 25

o o

o

: o Zse ((

o

o o : 44 : : t o

o DSh

o Qao

70 : o o

o Qao o :

F 45 40

:

o 60 Zsa o Zsd : o 50 o 50

o o 25

: : 70 o

: Qc o

bbl 60 40 25

: 35 45 60 (( (( o o

o

o : : : ((

44 : Fault

: 75 : 15 50 60 : ((

70 : 50 50 30 o Qao o o o o o o

: o

o o

o : 40 o

: 50

o :

QTa : : Zsa Zju

: : :

bp F :

F o Zwl : :

: 30 : 40 60 o

bbl o : 35

: 30 20 20 :

: ((

: Zse 30

: o

: wu ((

: : 60 Zsb : o

: : wu o

: 44

o

o 30 Zwm z 65 : :

o o 40

: :

o

o 30 DSh 70 o

: o 40 : :

o

bbl : 35 : :

: Zsa Qay ((

o o

70 Zwm : ((

o

o :

: : 45 : :

: 60

o ((

o Qc : :

20

: : o F

: 15 : : 55 Qay 35 : Zju

: :

: 15

o 15

: o (( :

: 45o :

: : t

:

o 65

Zwm o : v

o

: F v

o :

Zwl v

70 80 wu o

: 35 45

: 25 o o : : :

o 41 ((

50

o o : o

80 ebp o 29 : o DSh o ((

o 20 Zwm

: : : : 25 o 36°30'0"N : : : :

: : Zwm

30 o Mzx

: Zsa DSh

Zwl o 30 Zwm Qao Qao : (( : :

o e 24 o 35

30 : 42 :

o

o

: 42

45 o : 40 QTa

o : 35 :

o o

:

:

: o

: o o o

o

30 o :

((

42 70 ((

: : : oo

50 : 50 80

o Zwl 85 : 15

30 : (( 55 :

o : wu 55 Oe o

: : 41 50 : :

: : :

: :

: :

70

bbl ((

o :

: 75

: : : o

o : 75 v

o

:

: Qay

: 80 75 Qao Tf : :

: :

:

: o Zwm Qao 80 o

o Zsa t : o

o

32 : o

: 10

t ((

: Zwm 27 35 Qay :

: :

: : : : : o o : Zwm : o

26 25 Qao o :

33 : ((

Zwm : 39 wu Zsb Qao (( Oe

Zwm : : 10 Opa ((

o

73 : 20 o (( 35 o

: : : c o (( :

o Mzx o

o

Qao : 20 : Zsc

o 10 : 10 : o

41 :

8 (( :

: o

35

15 : (( o 15

o 28 z

o 65 Zsc

:

:

: (( :

: : :

o 35 (( o 15

z : 48 :

: : o

:

: c :

27 :

: z : ((

Opg :

:

:

: z 15 o :

: Zsd

o Qay : : :

:

o : Zse

o

: : :

: :

Zwm : :

: o : :

: ((

:

: :

:

: : : ns

45 (( ((

: 25 : 25

: o Ttg : o QTa :

Zwm : : : :

ez 25

o Zwl

o : o

Tf o : 25

z : : (( : v : :

o o

: 35 ((

:

:

: : : nh DSh

30 35 40

o : : o 15

bp : :

Zwm o bp DSh : : wu 35 Zwm v

:

Zwm Zwm 45 wu :

15 : ((

: : ((

: 45 c Zwl (( :

: :

12 : (( :

11 ((

o Opa

: 65 (( : o

o : o

: : : : :

:

16 :

:

:

: : :

: :

75

: 30

30 wu : 65 ((

o

:

Qayo 65

15

(( o : : :

: : : :

: :o : Zwl Opn : : o Zwl ((

: Qao :

Ttc 30 : : : Qay 20 15 : o : o

15 :

:

: :

:

o : o

15 o : Opg

Tf : : o Zwl o Zwm

z 25 : 40 o

: :

: o :

Zwm : o : : :

: : :

: 25 c

60 :

: :

70 : : o

60 Oes

17 23 : : : :

o o :

o 75 20

26 o :

: o ((

45 :

: :

: : : :

:

o ((

o : :

: c : Zwm : 80

: z o

:

:

wu 20 o Zse : : :

t t : :

70 60 : Ttc 41 :

o

: : o Qao

: 55 :

:

z : : t

20 29 ((

30 wu : 35 50 DSh 10 : o

o

o : o

o : ns : : wu z 55 65 : o

: :

o : DSh o :

o o : o : o : 52 o

o : o

:

o : o 20 : Opa

: : 13 40 50

: o

40

47 bp 80 Oe :

(( Qay

58 (( :

30 : 25 : nh : :

o : 30 c

B (22.8Ma) z o 40 40 bp 30

: : o :

56 : 25 15

o 40

: z

68 : : : bbu :

o : : :

o :

:

bp: : o o : : bp c

o t :

: 60

o

o : DSh

: : c 20

61 : o :

: o :

45 : 25 Zwm Qai

:52 45 : (( bbl o

: o 60 : Qay 55 (((( ((

: : :

80 25 : o

(( 25 54 o Qao :

o t Opa Opg Qayo o : ((

: (( : :

Tfcu o

: : bp nc

: 15

:

o (( 25

5 : (( 70 70 : : o

o o

45 bp : Qao

30 : Opn o o

c : bp

35 : ((

o : :

: 55 o (( : 20

o (((((( : 30

o 65 : : 10

bp 45 :

o o :

60 o DSh :

35 o :

25

40 c :

: 15 ((((((

: o bbl o

Tf 43 : 15

: 30 55 25 : 20 Qao : : (( o 25 : o

: : Qay o : : : 35 bp

o : : o o

35 : : 25

o :

: Qao DSh10 Dl o

: Tnrx 30 : 25 : 60 o

Op bb : : : : : : nc o : 25 Qai bp :

20

42bp bbl nh o : : bp 65 ns 70 nc

: : : o

32 : : Qao 35 o

: : 20

: : : Opg o : : bp 10

: bbu

: : 65 15 DSh :

: :

: 10 : : 15 :

: : Qay :

5 : :

: o :

o : : o Oe o

:

: :

: : : o

bb oo o Qai

34 Oes : : :

: 35 : o bp

o20 :

50 : I : o 30

bblo Tnrx Opa o

40 : nc

o

Tfcu (( : :

(( : : 14

:

bb (( (((( o

:

(( : ns :

25 25 :

14 o (( (( 15

o : o

:

: : :

o : : 20 : PRE-TERTIARY DEPOSITS :

: E (8.87Ma) : DSh

Tng o : :

20 : :

: Qay

:

35 (( : : :

QTf 15 o bb Tnix 15 10

:

o

60 bb Qay : : :

: Oe nh :: : :

: Qao

o 80 o 6

: : Dl

45 o : : 20 46 o :

22 Qai 15 : :

20 o : Opg Opa : :

Lithology

Opg o

13 o Tng

o bb

: : :

50 o : o

:

:

: :

:

: ns : : : o :

: : nh Oes : 20

Dl :

10 nh :

: 20

Age Group Formation 50 o :

F (~9Ma) 12 35

: : o : : : :

: : :

: : Oe

20

: : o : Qai

62 : : :

nc : : : : : :

: :

: Opa : :

Shale SST LS 35 Qao : : :

o : : o ns : : : : Dl : 72 :

(( : nh e :

((: : : : :

: :

: DSh 15 : o

: 30 :

Qay (( (( nc : o : :

: :

42 : Opa

& : Opn : o

: : nh : Opa : : :

o : o 20

: :

:

: : Opg : :

DSh Op Op : Dl : : : : : Opa

17 o

40

Hidden Valley Dolomite : : :

o : o

20 : 45 20 35 40 : 25 o

Silurian-Devonian Qay : 60 : :

: : :

o o : Qay

Op 20

:

:: : :

: : : : : : 40

: : : : o : : : Tng o :

: Qai

o bbu DSh : : : & : :

Oes : : :

: : :

35 15 :

Ely Springs Dolomite : : : : Oes : nh

: : : : o : o o NEVADA

: o:

: :

: : : : o

o o :

: : :

Qai : bbl : Oe o :

Oe : DSh : o : 30 : Eureka Quartzite : :

: :

::: DSh

: :

o 35

: : o

: 20 :

: :

: :

o 20 : : :

: 20

Opa :

Qai : : : :

:

: o : : :

QTf : : : CALIFORNIA : 25 : :

35 : :

:

Opa : : : :

: : :

: Tng : o : : : :

o : : 25 o : DSh Antelope Valley Limestone : 25 Qayo

: : :

o : :

Ordovician : Opa : : 35 :

o 15

: o

Op : Opg: 30 : 55 : : :

: : : : : ns

:

: :

30 : Opg

: & :

Pogonip Carbonates Ordovician Ordovician : 25

20 : : Oe 20 : 20 :

o : : :

Ninemile Opn : : o o

:

: : : : : 10 o e

o 30 Opa :

: :

: o : Oes

: : :

: bbu : o 25

Goodwin Limestone Opg & : : : : : :

: Opa 20 15

35 o

: : : : Oe 30 :

Qai Op o : : Opa o

: : : :

:

: :

Tng 30 Oe

: : : Opa : : :

: : : : : o DSh

: : : 45

: : nh :

: : : : : : : :

o o :

& :

Qay : : : : 45 :

: QTa : : nh : :

:

:

: : : : o: : o 40

: : Oes 35

: :

o : : : o : : : 25

Qao : :

: :

Qayo : 20 : :

o

: o

Nopah ::

:

QTx Qayo 85 o : o : : & : :

30 25 60

: 65 Tng Qao :

: : :

Opa Opg o Opa o QTa

: o :

45 : : 40 20 : :

:

QTf : : Qayo

o : :

80 o :

: : :

& : : Qai

o :

45 :

45 : Opa : : : : : Opa :

Opg : :

Dl : :

o: : o

: 20 o : o

: : :

bbl : : : : :

: : : : : :

35 QTa Tng : :

: o Tnp : Oe

: : : : : 10 : : : Tng : : :

20 : 45

: : :

ns : :

ns : : Oe

o

: : : : :

: : :

40 :: : :

: : 30

o QTa : nh : :

:

: o

QTa : : DSh :

:

: : 35

30 : :

: : :

: : :

:

o :

: : & Qayo : : o :

:

Opa : : Opg Tnlx (Op) : : : 30

DSh :

Qai : : : : Opa

: Oe 45 : Qayo :

Qai Oes :

Qayo Tnix o : :

Bonanza King : : : Tng

: :

& nh

:

80 : Opg : : :

Qai : : :

: : : : o :

: : o

:

Tnrx : :

t : Tnlx (Oe) :

40 : : o Qayo 35 :

45 :: : : : : : & :

: : :

o : Tnlx (Oe) : : : : : : : 55 : :

o : Tnlx (en)

Tfcu : Dl Qay 20

Qao :

52 Tnlx :

Carbonates

Cambrian 85 : : :

75 :

: 40

: : QUADRANGLE LOCATION o : : : DSh

o :: : Oe

: : Tnp : : :

:

o o

: : : :: : : : : Oe : 60

: : :

: : Tng

o Tnlx (Op) Cambrian & : :

45 35 : :

: : : :

: Opa : : Pyramid Peak Fault e 45 o : Oe :

:

30 Qc & : : o : : : 15 o :

o Opa o o

Tf : : : : Oe o : :

o 75 : ns : : : o

: 80 : : : : DSh : : o

45 : 65 : o : 35 o : : 15 : : DSh :

Carrara DSh : :

: : : : 30 45 :

: : Tnlx (Op) Tnlx (Og) Opg : Qao

: o : : : : o

:

QTf ns : : : :

:

65 : Oes : 20 : : :

: 45 :

o :

: : : : : 15 Tnlx (Oes) 45

25 :

: o

Tnp : : o

o o o

o :

Zabriskie Quartzite 45 : : : :

: : : o 15 55

50 : : Oes 25 : : : : : 40

Tfcu : o

: o o :

: : Tnlx : : :

: : :

30 : : :

Opa : : : :

& Opa : :

o ns 35 Qayo Tnlx (Og) : 45 Qai

: 20 Tnlx (en)

60 : : : Oes :

o o : : :

o : :

Qayo Qayo : : :

: : : :

: : : DSh :

o : DSh Qc :

: : & : Qai : : : : :

Tnlx (bb) : : : : o :

o o 15 : : o : :

o

Qc o : o :

: o :

o 35

o 25 :

: Opg Tng : : 30 o 30

o Tnlx Tnp Opg : Wood Canyon 60

: :

Qay 20 :

10 30 :

: : 35 DSh o 85 o

: o

60

: : o

Qc : : :

15 o

o o DSh :

20

40

Opa 40 : : 50 Opn o :

60 35 Tnlx (eb) : nh : Oe

: Qao

15 o

Zwl 20 20 Tnlx (DSh) : : Qay :

o

o :

Qai & 45 ns 45 : : o

Tnp :

22 :

o o

: :

v : Qai

o : :

o

o :

15 45 o

Zse o Qao

o Dl : 15 35 :

&

: : o 30 DSh : : : 20 10 :

Tf o o 30

Zsd Tfcu 35

: :

Qay 15 Tf : Oes 40 :

:

Qayo : : : o 15 45 30 75 Qai o 40

15 45 : Tnp :

Opa 45 : 25 :

Zsc o Qayo DSh : :

Qao o o

o 25 : Oe

30 : o o : Qao 45

o :

o o

35 75

Qc &

45 G (8.9Ma) :

DSh : : : : 15

o Qay

o o 35 o o

Tf 20 o DSh Qai o :

: :

30 o o

Qai 20 Oe : Qai

o Qayo

t :

o o 20 : : nh

15 ns : o

o :

20 85 30 nc o o o

Zsb 30o o o :

o : : 15 o Qc

45 o : Qao

35 35 o

: & : o 15

35 :35 25

: Qao

20 35 o

25 20 o 85 : : : 55

Qao 45 Oes :

25 Qayo :

o o : o : o : o o Opg

o : 1000 m o 35 Tng :

10 : Oes 35

o : 25 o

Stirling Quartzite Oes Qay 25

15 65 80 Qayo o: : o : 55 : DSh o

15 o : o : 25 : o

Qc :

o : :

800 60 : Oe

o

Tf : : : : : :

Oes : nd : 30 o : : : :

: o o :

: 30

10 Qayo 30 bbu : : 30 o :

o o Qao o L (~22Ma)

o 15 35 :

o :

:

& : : Qai o

600 & : 35 : : :

10 Tnlx : : : o 35 o Qc : o Tng : : o : oo 10 45 :

o :

Zsa 50 o :

: : : o : : : 40 10 Tnp : o : bbl 25

: Oe ns

40 30 : Oe : : : Qay : : : ::

o o 40 35 45

400 o :

20 40 : Opa : :

Tnp : : Opa : Qai o : o

: o : o : Qc :

Qayo : : : : o

: 20 :

o 30 :

o : 20

15 25 40 o :

: QTa : : bbu

40 o bp 30

: o :

200 o 55 15

DSh : : :

30 : : : : 45

o :

: : : : o :

35

Hadrynian o

: Qay o o

20 : Oes : : Oe o :

o :

: : : : o

: o

o 15 20 : : : o : : : & : : Oe Oes

o

: : 26

50 :

:

10 Tnp o bbl : Tfcu : : :

: Clery Thrust

: Oes :

20 15 : : : : : : : Oe 20

22

0 m 30

:

: : :

: :

80 : :

: : : o

: o : : : :

: :

Tnlx : :

: : Dl Oe : :

: o QTf : : : : Qao bbl

: : & o : :

: 25

Oe o

60

:

o : nh ns : : :

: :

: : : Oe : : :

: nh o Oes :

: 30 :

: :

: : o

: : : : : :

: 35

o : 45 : :

Qayo 15 : : : :

: bbu : o

60 :

DSh : o

bbu Opg : : : :

: :

: 25

: o :

: Opa : : : o

o Opg

o :

o Tnlx : : :

20 : : : o

& bbu Qao

50 : 45 Zju : : :

: :

: : : : o o

Johnnie : : : : nc :

o 45 : :

nd : 25

10 : : :

: 65 :

15 : : : o 35 Opn o

10 45 : :

o Opa Qay : :

35

: : : bbu

bbl :

10 : : Opa : :

25 : o Eocambrian Clasitc Wedge Clasitc Eocambrian : : : :

40 54

: : :

5 : : : : : o

: : : : :

: : o :

: o : o o o

: : : Qayo :

: : o

o

: : : : 65 :

o Ttr :

&

: : : o

o o Opa

: 35

: : o o 45 50 Toss

: bp : : 50

4 32 :

1 km QTf : : :

o : 65 : 35

bbl o

: : 21 o 35 :

25 : o : nc

: : 35 o

o

15 : : :: : Oe nc : : Qai : : Tnlx :

QTf 40 :

45

QTf QTa 30 o

: o : 39

: 42 :

: 40 Tnrx : : o : bp : 30

o : nh : : :

Qay o :

5 : : 20

o :

: ns o Tok

45

o

: : Opa o : o 10 35 : : o 34 : Ttg : o nc

5 : bbl

o o

: : :

: : 20 : : : o o : o

: : 60 o :

10 QTf : :

o : 5 o : : 48 :

o :

o : bp :

40 30 o :

40 : Opa QTa : : 24

o o : :: : : o 30 : o 30

o : : Opg o 14 40

o M (22.57Ma)

o 10 Oes 50

o : :

Scale same as map : nh : o nc :

10 nh

50 35

o Opa o :

: : : : : Ttr

o25 :

: 35 60

:

: 32

: : 70

o :

o :

15 bbl : nc :

: : : 10 : Ttg o

: :

: 41 34 : : : : : :

10 :

: o

: : : : 15

: :

15 QTf : nc o

: : : :

15 : o

: nh : 45 : : :

o : :

Ttl 34

ns o Tfu :

: :

o : :

10 50

:

: :

5 Opa 35 : Tog 10 40 :

: : o Ttg Qai : :

o o : : 45

Qay c o : bbu bbu :

: 30

: : Opa : : : :

: :

:

bbl : o Opa o

o : : : H (~4.5Ma) : o

o 35 : : :

: : o :

: :

o :

15 : ns :: o enc

: : : :

: : : nc o

: 17 Qay Qay : : : nc : 32

5 : o 42 o

: : 30

: bbu o : 40 35

o bp : Qai

o 50 : bbu Qao 34

o o bbl

15o : :

: :

40 :

o o : 40

15 : :

Pahrump

30 o nc :

o

o QTa : 45 o o

o 10 : : nc 50 o

bbl :

Qai o :

Tfu20 55 :

20 Opg Opa

35

Helikian

: bbl : :

o o o

55 DSh 30o 30 36°22'30"N 10 35

o Tfrx o : : o Ttr

bp : o

o

: : Ttg

35 10 : :

Tfu o :

F : : o : nc 35 : :

: o

o ebp

M : 45 :

Tf 70 : 35

o o : o

o Qay o

o

45 : o

ns : 35

: 45 : Qc o F

30 : Ttg : 30

50 :

&

20 o :

Supergroup o :

Purcell 10 40 30 45

Tflx (Op) o : : :

Qay o

o

: :

o

o o

bbu o QTx : :

Tflx (DSh) o

35 65 : : : Dl

55 bp bbl 30

o Qay Ttr o

o 36 o : 15 : :

: :

o 34 35

Tf & 35

o o

Qao :

30 : 40

bbl :

o Ttg 50

40 o o o Qao 30

35 o : 48

20 bp

40 o

QTf o o :

50 :

o

Qay : o

: :

5 :

: QTf o :

55

: o 36

o 30 35 Ttl : o : Qai : o

o 60 35 Qai 25 30 : o

: o : : 30

Tby : : : Toss 35

: :

: : Dl

:

o

& : o

o :

40 34

5 ebbl :

20 :

25 o

: o o : o

: :

o Qao

: : : :

QTa 35 : o Tok :

: 30 : : : o

Qao o 25 : o :

15 35 : : 35

:

QTa & : :

:

Tf Qao o bbl

25 : o

37 QTa

75 ebbl o : :

o

: 60 bbl : : : o o Tok

o :

Qayo 20 40 :

bbu: 40

Qai 35 o bbu : : Dl : : :

& : 20 45 :

:

L o : :

: o o o

40 : N (13.52Ma)

o Tog QTa Tog

: : 35

: Ttg nc : : :

bbl : Qai : o

40 o :

35 oo Qay 40

Qayo 25

Qao o Ttr :

o : : :

o 39 :

o 30 o

25 30 41 : Dl: 35 :

Qay Qay 30o nc : : : o 40

bbl o : &

: :

M QTa 40 : (((((( :

Tby 35 (( Qay : Qai o

10 o nc (( 44 Ttr : Qao : :

M Qao (( : (( (( : : : : :

(( : : (( nc 45 : Tog

(( o : : :

o o

(( o : Qao : o

: o

: : :

& : 40 :

30 : : 45 : 42

:

bbl o

Qao DSh 32 o 65 : Tog Qao o : : :

: Qai : :

45 : : 55 : :

Oes : :

Qai : : 45 : : : : : & :

: : Dl : : : :: : o o

o

:

: (( :

SURFICIAL DEPOSITS : :

: 20 :

Qai : : 45 Qao 45 :

:

: : Qai : o : o

: o Dl Mp

o

DSh (( :

o

& : :

Dl o : :

Qay 40 Dl

45 : 40 o 50 o

: : :

20 : 50 Qao : Dl Dl :

o 47 Qao

Qai (( : 45 : Tog o : o

45 : :

FURNACE CREEK ASSEMBLAGE (UPPER PLIOCENE TO UPPER MIOCENE) : : Mp :

af Artifical fill (Holocene) 40 25 : :

Qai : : : : o :

o

& : :

: : QTx

Qayy Alluvial deposits in annually active channels (Holocene) Furnace Creek Formation (upper Pliocene to upper Miocene) Artist Drive Formation (Miocene) 35 o 39 o :

o : Qao

Qay : Qai 45 o

60 Mt Tog Tft Tnu o :

Qay Alluvial deposits in recently active channels (Holocene and Pleistocene) Travertine (Pliocene) Upper member 50 Dl o 45

o Qai Dl :

40 Mt : 40 o

Qp Playa sediments (Holocene and Pleistocene) Tf Playa and playa margin rocks of Furnace Creek basin (Pliocene) Tnm Middle member 40 : :

40 o

& o 50

Qc Colluvial deposits (Holocene and Pleistocene) Tfu Upper claystone (Pliocene) Lower member o Mp : 45 : 40 Qay o

Tfcu Tnl : : Upper and middle conglomerates (Pliocene) Sedimentary part o o Qm Marl (Holocene and Pleistocene) SCALE 1: 50 000 40 Qao

40 : Qao Qai 45 :

35 : Qao

Tfg Tab Volcanic part 1 1/ 2 0 1 2 3 4 MILES Qay Qls Gypsum-rich member (Pliocene) &

Landslide deposits (Holocene and Pleistocene) : Tok Tog

QTa Qao o Qai Tfrx Rock-avalance breccias (upper Pliocene to upper Miocene) Artist Drive equivalent (Miocene) :

Qayo Alluvial deposits in recent low terraces (Holocene) &

1 .5 0 1 2 3 4 5 KILOMETERS : : Qao o Tflx Giant block breccias (upper Pliocene to upper Miocene) Tng Alluvial deposits 35

Qai Alluvial deposits in mid-level terraces (Pleistocene) Qao

Qao :

Qao Alluvial deposits in high terraces (Pleistocene) Tfc Basal conglomerate (upper Miocene) Tnp Playa deposits CONTOUR INTERVAL 50 METERS o : o & 36 Greenwater Volcanics (upper Pliocene to upper Miocene) Tnrx Rock-avalanche breccias 38 QTa Old alluvial deposits (Pleistocene and late Pliocene) NATIONAL GEODETIC VERTICAL DATUM OF 1929 Qai Qao Qao QTx Landslide deposits (Pleistocene and late Pliocene) Tfb Basalt Tnlx Giant-block breccias Qao Qao

Tfp Pyroclastic deposits OWLSHEAD ASSEMBLAGE (Miocene) Qao SYN-BASIN-RANGE SEQUENCE Tos Rocks of Billie Mine (Miocene) & NAVADU ASSEMBLAGE (UPPER TO MIDDLE MIOCENE BADWATER ASSEMBLAGE (EARLY QUATERNARY? TO PLIOCENE) ~ 6.5 Ma to ~12 Ma) Bat Mountain Formation (Miocene) QTf Funeral Formation (early Quaternary? to Pliocene) Tnix Fault breccia (Miocene) Toss Sandstone member Tby Basalt (Pliocene) Tog Conglomerate member Y` Tok Kelley’s Well Limestone (Miocene) Fridrich et al., 2008

11

(

(

(

(

( (

( 1250 m

( 1350 m H 1250 m

1500 m ( ( 1000 m

o 10

40

L o 1650 m 40

H o70 o55 1750 m 7

16 11 g o 3

o 60

30 q o 12 55 f 8 o 6 1850 m 19 o

31 o 40 o

H 13

20 30

29 40 o ( 21 p o l o30

17 o 30

20 15 o 5

20 28 27 26 24 o

o 30 1835 9 25 40 40 t ( o o 35

o o o o o o o

70 o

o 45 40 o

o o 40

30

t 40 (

H 70 e

20 j

15 25 22 o

25 20 k i 20 o

50 20 m

31 60 23 n 15 14

32 o o 1 (

34 33 55 4 2 ( 1400 m

1000 m a

1250 m 1500 m

PPFS e SPT WPA q o n (AF) m l k i f 2000 p j g CT 2000 m Mzx & Oe $ Opg Opa Opa Opa Opa Opa Tng Oe Opa

$ Oe Oe

Opn Tnrx a

e Oe Opa Ttl $ $ ? Opg $ ? $Opg $ Zj & $ 1000 $ $ $$ $ $ Oe 1000 & $ $ & S.L. S.L.

1000 m

Oe

Op ( Opa o Opn Ninemile Formation ( Opg

H SPT PPFS Upper part WPA AF CT

12

Figure 8: Table of structural data used

in Figure 7. Compilation of

measurements by Fridrich et al. (2008)

and this study.

Depth to basement is interpreted

from a COCORP seismic reflection

survey, which shows a prominent change

from dipping reflectors to predominantly

subhorizontal reflectors at 4-5 seconds

(or 10-15 km). This horizon was interpreted to be brittle-ductile transition zone (Serpa et al., 1988; Serpa, 1990). While the profile lines of the COCORP study do not transect the Funeral Mountains, all 250 km of seismic section through the Death Valley region show a 4-5 second arrival time for this horizon, suggesting that it is a regionally consistent subsurface marker.

Residual gravity models of the Death Valley region (Blakely et al., 2002) suggest some topography in the crystalline basement, with 20-25 mGal values underlying the Funeral

Mountains core complex. The core complex contains mid-lower crustal rock (Hamilton, 1988) overlain by a detachment fault (Fridrich et al., 2008) that has been exhumed in late Miocene time

(Holm and Dokka, 1991). Blakely et al. (2002) interpreted the gravity high to reflect the shallow depth of these lower-plate rocks. Feeding the detachment surface into the cross section is not possible due to the absence of deep subsurface data. Basement is assumed to be at ~10 km depth

13 underneath the section line because of the regional brittle-ductile transition interpreted from the

COCORP seismic reflection line (Serpa et al., 1988).

Thicknesses for formations exposed in the southern Funeral Mountains are from Fridrich et al. (2008), which compiled measured sections from previous workers (i.e. McAllister, 1970,

1971, 1976; Ҫemen et al., 1982; Ҫemen, 1983; Ҫemen and Wright, 1988). However, the

Precambrian Johnnie Formation and Pahrump Group are not fully exposed; thicknesses for these formations were adopted from various stratigraphic studies throughout the Death Valley region

(see below). Figure 6 includes a summary of stratigraphy used in the model.

Pahrump Group and Johnnie Formation

Approximately 600 m of metasedimentary rocks exposed in the northern Funeral

Mountains may be analogous to the Pahrump Group (Troxel and Wright, 1968; Holm and

Dokka, 1991; Miller, 2003), but Labotka (1980) asserts that “the lithologies in this section are not directly correlative to the formations which compose the Pahrump Group elsewhere in the

Death Valley area” (p. 670). Paleotopographic reconstructions of the Amargosa aulacogen, the trough into which the Pahrump Group was deposited, indicate that it may have extended to the present-day location of the Funeral Mountains (Wright et al., 1974). In deeper parts of the trough to the northwest of the Nopah upland, Pahrump Group has a cumulative thickness of 2100 m.

Following the geometry of the trough, the reconstruction uses a thickness off zero to the southeast and gradually thickens to 2000 m to the northwestern end of the section. There is an angular unconformity between the Pahrump Group and the overlying Johnnie Formation that ranges in thickness from 200-1500 m throughout the Death Valley region, thickening northwestward from the craton to the miogeocline (Fedo and Cooper, 2001). The Funeral

Mountains fall into the miogeocline range of the early passive margin and are located northwest

14 of the measured sections of Schoenborn and Fedo (2011), which contain a 1000- m thick section of the Johnnie Formation. Wright and Troxel (1966) indicate a stratigraphic thickness of 1200 m for the Johnnie Formation near the Funeral Mountains. Thus, 1200 m was used as the thickness of the Johnnie Formation in the reconstruction.

Methods used in drawing cross section

The initial structural cross section through the Funeral Mountains (Fig. 7) was drafted by projecting data (i.e. geologic contacts, faults, surface structure contours of faults, and strike/dip data) onto the section line, which was extracted from 1/3 arc national elevation data. Fault dips were determined by creating surface structure contour lines at the contacts between faults/bedding contacts and elevation contours. Apparent dips were calculated from projected strike/dip measurements from the geologic map (Fridrich et al., 2008), and dip tadpoles were plotted on the profile. Bedding attitudes parallel the nearest dip tadpole and maintain equal bed thickness. Stratigraphy was subsequently built down from the surface to the base of the Johnnie

Formation.

Validation

The NW-SE structural cross section through the southern Funeral Mountains was validated by forward modeling in the software program MOVE. The original interpretation of the surface data (Fig. 7) was used to build the stratigraphy down into the subsurface assuming constant bed thickness. The subsurface interpretation was imported as a 2d section and horizons were traced into the program. Normal faulting was restored using the Simple Shear Algorithm, and reverse/thrust faults were restored using the Fault Parallel Flow and Trishear Algorithms

15

60

55

(( ((

o ((

60 o

60 Qao 60 (( ((

Zwl ((

o 35 ((

(( 45

F o Qao ((

o 40 55 :

F ((

(( ((

:

((

((

((

o (( : o

(( o ((

: 85

15 o

: t

70

(( o

(( DSh

: ((

(( 20

15

(( ((

25 F

M :

(( ((

DSh (( t ((

((

50

F :

:

20

o ((

75 40

:

t Qay

((

:

:

o 25 (( 50

((

o 20 :

:

: : 20 :

35 35 o 60 (( : :

o o Qay

80 DSh :

:

: 60 : :

20 : 60

:

Qc :

o DSh :

Oe : o :

:

:

nc:

40

o : 50 (( : : :

: F :

:

70 : :

20 (( :

o :

: :

50 :

DSh o

(( bbu

:

: 25 :

:

:

Qao : Qao

Qao o 30 : : : :

: o

: : :

20

: bbl

Dl : 26 o :

Opa o Opg :

:

20 o

Oe 40

Qao (( 10 :

: :

60 o : : : : 85

Qc : :

:

: :

: Ttg :

30 : :

Oe : : :

o Oe : :

o

: :

o : :

: :

75 :

:

: :

: nc bbu

: 45

:

: : 15 nc o

60

:

o : : : :

: Oe o 35

:

:

o : : o :

:

: :

: Qao Oes :

: (( : : 35 : : Oe

: : :

: : bbu

Opg (( :

:

:

: : :

40

:

: : o

ns :

: Tng :

25

: v o

Zsd o ((

:

(( : 25

o : : :

:

DSh Opa :

40 : 35 :

o : Qay

:

: :

:

25 : : 25 : :

: :

a Oe o bbl 45

: :

: :

:

:

T : o

Oes : :

F Zse : Oe o : : bbu 30

nc :

30 : : o

: Oe :

o o : o 30 :

:

: Opa

Q Qay : :

: nc

45 45 :

:

: :

: :

: (( DSh 25 : : (( : a nc 25 :

:

DSh : :

:

nh :

45 :

: 25

: o Dl : o : : : :

:

(( o : T Ttr

o Dl

75 :

: :

:

o

o : : o

: : ((

40

Opa Oes o

o : o

: Opg

: : : :

Q Opn : ((

:

: 25

(( Oes : M : :

(( : :

: :

Zsc Oe DSh 44 DSh : Ttg : o

:

: o

o o :

o : : 30

: : 35 : Tng

x :

70 :

o : 50

: : 35

: :

: o

60 : :

o 10 :

c :

40 : : : : 20 :

Qao : o

: 30

70 :

: Qao ((

:

: : bbl :

:

: : :

o : :

: Oes o :

o : :

55 : :

60 o : : : o (( : 30

35 : o

DSh : :

: :

25 o DSh : o Ttg

Oe : : : :

(( : : o : 25 :

80 : bbu

45 :

:

:

: :

o 35

: o

: Dl

20 35

:

: (( Oes bbu o

Zsa : 30

Opn : 65

: :: : o

: o o

15 45 : :

o 41 o

:

o

: :

(( :

32

bp :

:

: : :

: 30 :

: :

: 45

40

o o :

: :

F (( Oe

50 : Qay : nc 30 : DSh Oes Oe o (( Oes :

o

o o : : :

: o o o

35 : 25 :

: Opa : :

o :

50 70

M o

o 60

55

: : : 30

: o o bbu : 35

50 : :

:

: : bbl :

: 40 : :

25 :

Zsa o : nc :

40 bl

o

25 : o ((

o o Oe Qayo 25 : o

30 : 20 ns :

:

: :

Zsb 40

o

10 :

30 o

o :

60 o o :

: ((

15 o30 : 20 20

F 10 Opg DSh Dl o o :

: :

o : : o o 30

o :

:

: : 20

30 : : Dl

: :

40 Opa o (( 40 o

o 35 35 o ((

45 : o

40 :

35 :

t &

o : :

(( 45

:

: : (( : : DSh :

:

40 Oe : : 25 DSh o o : Opa

o o : nc : :

(( Tng 35 (((( o

o

: : 70

o : e (( :

35 :

o : bp bbl o

Opa

Dl 50 o : o :

nh (( : o : e e

o o

: 40 :

40 :

: : :

(( 45

40

e : :

15 t

: : : :

70 o :

: Opa o

o : o

45 Tnrx o

45 40 (( :

25 : :

: : :

20

o : Oe

: DSh bbl

: 45

o o Qay

Tng 30 30 : : :

: :

20 x o bbu : :

: Qao o35

o : : Qay

o : :

o :

30 : :

:

o :

F c (( :

35 o :

Oes o

60 50 : Qay

o (( : :

45

:

: : : : :

: (( : 20 :

((

Opg : Tng

:

o

Zsb : 60 : : :

: o

:

: :

: o

bbu o 45 : nc Oe 45

: : : : : :

: :

: :

: 60 o:

: 10 :

30 :

o o (( Zsa :

Zwm :

:

: o

:

o : ns

: 40

55

15 : 40 :

:

(( Opg : Oes

35

Opa : bbl

o : : 15 :

: : DSh

bbl o 45 : : : & :

: : 35 : :

: : : : : :

o DSh :

: o :

DSh

: : :

:

20 :

40 20 : o :

: o

60 :

:

t Oes

: : o :

: : :

(( Oe

Qao : Tng QTa

: :

: :

: : QTa

Opn

: Qai : :

: : o

:

o : ((

: : o

:

44

: 35 : o bbl : o 60

o

: Opg 40 45 : :

o : o :

44 :

:

: : Opa

ns Opa : :

40 : Oe

:

(( : : : :

: : 44

: : ((

:

65 35 : Opg Oe :

: : : : : :

:

: : :

o :

: :

: Opa

:

: : t

: : : o bbl

o :

: :

: :

: 30 Qai

40 : : o o : : 35

ns :

: : Oe

: ns :

: :

: : (( ((

:

60 40 (( : :

: 35 : 30

:

70

: : : :

:

: : :

: 35 : :

nh :

60 o

: 40 o 40 (( (( : 44 o

:

: : : : : o : :

Opg 30

o :

20 o

:

ns : DSh :

: :

10 25 : 15 :

Zsb : Oes bbl bbl 10 :

: o bp : Oes 44 35 :

(( o :

Zwl : nh 35 :

:

F

: : DSh 35 50

: : : : : 35

: :

o : :

: o :

o 4 : bp :

: 44 nh : :

:

t o

: 20 : :

: c : 30 : : o o : Qay

: :

44 35

: ns

: : : :

45 : :

: : : : : :

44 :

nh :

: o

: : : o

: nc

: Opa : :

: : ns : : 70

:: : 25 25

: :

: : : : ((

: o : : :

45

: : (( 55

o : : : : :

(( : o : : : : : : 35 ((

Zsc :

: 30

20 Zsb : :

:

: 45 35 :

45 : o : : Zju

: : : 44 o : : :

: 20 : : : o nh

: : : o

o :

15 : :

nh : : : bbu : : : : :

: :

(( : :

44 : Opa

10 : o

:

60 o nh Qc

ns : Oes 12 : o

nh : :

: 60 : Opa

40 :

bbl bbu : : : DSh Oe : :

: :

: : : : : : : e : : : : Tng : : :

ns : 50

Zwl Opa : : : nd

Opg : : : : 10 QTa

T WPA ATSPT 1 AF PPF CT 2

5 5 km

S.L. S.L.

-5 -5 PRE-TERTIARY DEPOSITS MAJOR STRUCTURES

DSh Hidden Valley Dolomite (Devonian and Silurian) Carrara Formation (Cambrian) WPA- Winters Peak anticline Oes Ely Springs Dolomite (Ordovician) Zabriskie Quartzite (Cambrian) SPT- Schwaub Peak thrust Oe Eureka Quartzite (Ordovician) , undivided (Cambrian and Neoproterozoic) AF- Amphitheatre fault Op Pogonip Group, undivided (Ordovician) Upper member (Cambrian) PPF- Pyramid Peak fault Opa Antelope Valley Limestone CT- Clery thrust Zwm Middle member (Neoproterozoic) Opn Ninemile Formation Zwl Lower member (Neoproterozoic) Opg Goodwin Limestone Stirling Quartzite (Neoproterozoic) Nopah Formation (Cambrian) Zse E member Smoky and Halfpint Members, undivided Zsd D member Smoky Member Zsc C member Halfpint Member Zsb B member Dunderberg Shale Member Zsa A member Bonanza King Formation (Cambrian) Zju Johnnie Formation (Neoproterozoic) Banded Mountain Member Upper part

Lower part 16 Papoose Lake Member (see appendix for a discussion of the algorithms). After all the faulting was restored to obtain an undeformed section (i.e. prior to thrusting), the deformation sequence was forward modeled back to the present day structural geometry (Figs. 9 and 10).

Structural cross section of the Funeral Mountains

Figure 9 is the interpretive cross section after forward modeling. Surface data was projected into the line of section (Fig. 7); thus, the confidence level of the interpreted structural geometries decreases below 1000 m elevation, where the surface structure contours stop.

However, because the stratigraphy is well documented, the structural relationships at the surface provide sufficient data to constrain the amount of extension between the thrust surfaces. The basement depth extracted from seismic reflection profiling (Serpa et al., 1988) allows the model to predict the amount of upper crustal thickening necessary to fill the void space between the base of the stratigraphy and the dėcollemont surface.

Extensional structures

The Funeral Mountains contain three major extensional fault blocks, which are reflected in the present day topography. From northwest to southeast in Figures 7 and 9, they are the 1)

Amphitheatre fault block, 2) Pyramid Peak fault block, and 3) Bat Mountain fault block. The fault blocks have been rotated top to the southeast as part of a northwest stepping half graben system.. Attitudes and dip separations of minor faults are summarized in Figure 8.

Amphitheater fault. The surface exposure of the Amphitheatre fault is covered with

Miocene alluvium. 3.7 km north of the section line, the fault placed Devonian Lost Burro

Formation on top of the Ordovician Antelope Valley Limestone with an estimated throw of 750 to 1000 m. Along the line of section, alluvium unconformably overlies the Ordovician Antelope

17

Valley Limestone in the hanging wall. By projecting the dips of this outcrop and the Ordovician

Goodwin Limestone in the footwall and assuming a dip of 14 degrees indicated by structure contours, the dip separation is estimated as 2000 m.

Pyramid Peak fault system. The Pyramid Peak fault system consists of two faults exposed at the surface. The fault in the southeast juxtaposes the Ordovician Antelope Valley

Limestone of the Pogonip Group in the hanging wall with the Upper Banded Mountain member of the Bonanza King Formation in the footwall, indicating a throw of 1300 m (Fridrich et al.,

2008). The half graben created by the northwestern most of the two faults contains Miocene

Artist Drive Equivalent rocks that cover the fault contact, but 900 m of throw were estimated by projecting exposed rocks in the hanging wall and footwall. These relationships indicate 2200 m of total throw on the fault system. The 65° surface dip indicated by structure contours (Fig. 7) yields 2500 m of dip separation. In the half graben formed by hanging wall rollover, Miocene

Artist Drive equivalent rocks are tilted to 30° and 50°. Restoration of this angular unconformity demonstrates that the Paleozoic rocks in the hanging wall had a subhorizontal to 10° northwest dip prior to Miocene extension.

Clery thrust. The Clery thrust has also been called the Clery-Bat Mountain fault because it is a reactivated Mesozoic thrust that displays Miocene-recent normal dip separation (Çemen and Wright, 1990). It is the southeastern most structure within the section line and is discussed in the following section.

Compressional structures

The Schwaub Peak thrust contains a fault propagation fold in its hanging wall (the

Winter’s Peak anticline) with in-limb breakthrough (Figs. 7, 8, 9 & 10). Overturned limbs crop out in the hanging wall and footwall near Schwaub Peak (Figs. 6 & 7). The fold axes crop out

18 less than 1 km northeast of the section line. Along the section line, structural relationships only indicate about 1200 m of throw on the fault. North of the section line, the Schwaub Peak thrust juxtaposes the lower member of the Cambrian Wood Canyon Formation with the Devonian

Hidden Valley Dolomite, indicating 3800 m of throw. Based on apparent translation of the

Winter’s Peak anticline 5 km along the Funeral Mountains detachment, Ҫemen and Wright

(1990) attribute the southwestward decrease in thrust displacement to extensional reactivation.

Axial planes for the Winters Peak anticline dip steeply to the southeast and approximately 30 degrees to the northwest, defining a box fold. The spacing between the west-vergent axis of the

Winters Peak anticline and the Schwaub Peak thrust at the Eureka Quartzite structural level is 7 km.

The Clery thrust is exposed over less than 1/2 km2 area. Ҫemen and Wright (1990) indicate that it is a duplex structure with 3000 m of pre-extensional reverse dip separation. A northwest dipping outcrop of Ordovician Ely springs Dolomite in the footwall is overturned, indicating a recumbent footwall syncline. The hanging wall has pervasive extensional deformation, which obscures the original geometry. Restoration of the extension yields geometric relationships consistent with a fault propagation fold with in-limb breakthrough.

Restoration

Figure 10 depicts the stepwise restoration of extension and interpreted shortening. Figure

10a is the present day structure after forward modeling (same as Fig. 9). Figures 10b, c, and d are restorations of the extensional Amphitheatre, Pyramid Peak, and Clery fault blocks, respectively.

Figures 10a', b', c', and d' are the same four sections with the interpretation extended down to the basement. Figures 10e, f, and g are restorations of the compressional structures.

19 a.) present day 5 5 km a'.) 5 5 km S.L. S.L. S.L. S.L.

-5 -5 -5 -5 ~28 km

-10 -10 -10 -10

b.) Amphitheatre 5 5 km b'.) 5 5 km

fault block S.L. S.L. S.L. S.L. restored -5 -5 -5 -5

-10 -10 -10 -10

5 5 km 5 5 km c.) Pyramid Peak c'.) fault block S.L. S.L. S.L. S.L.

restored -5 -5 -5 -5

-10 -10 -10 -10

5 5 km 5 5 km d.) Clery-Bat d'.) Mountain fault S.L. S.L. S.L. S.L.

-5 -5 -5 block restored ~20 km -5

-10 -10 -10 -10

5 5 km e.)Lowest (Lee Canyon ?) End of Section line S.L. S.L. thrust restored -5 -5

-10 -10

-15

End of Section line

5 f.) Wheeler pass thrust (?) 5 km S.L. restored S.L.

-5 -5

-10 -10

-15

End of Section line

5 g.) Clery and Schwaub Peak thrusts restored 5 km

S.L. S.L.

-5 -5

-10 -10

-15

~110 km

20 After restoration of the pre-extensional geometry (Fig. 10d), the space between the base of the Johnnie Formation and the inferred basement was filled with imbricate thrust sheets of

Neoproterozoic clastic wedge. This geometry is speculative but, as discussed in the next section, it mimics patterns observed in other transects through the Cordilleran fold thrust belt (Fig. 11).

21

DISCUSSION

The pre-extensional spacing between the Winters Peak anticline, Schwaub Peak thrust, and Clery thrust is approximately equal to that between the White Top back fold, Marble Canyon thrust, and Lemoigne thrust (Fig. 10) at the base of the Cambrian hanging wall cutoffs.

Percentage and Amount of Extension

Restoration of the NW-SE cross section suggests that the interior of the southern Funeral

Mountains has been extended 40 % (8 km) of its pre-Cenozoic length. This value is comparable to previous studies of intra-block extension in the Death Valley area. Ҫemen and Wright (1990) determined 30 % extension for their sections in the southern Funeral Mountains near the Clery thrust. The cross-section by Snow (1990) through the Cottonwood Mountains (Fig. 5) indicates extension of 32%. The cross-section and restoration by Ҫemen and Wright (1990) did not include the Pyramid Peak fault system, Amphitheatre fault, or the associated synthetic faults.

Therefore, these fault systems accommodate proportionally more extension than the Clery-Bat

Mountain fault (i.e. Clery thrust) in the far southeastern part of the Funeral Mountains.

Restoration of the extension along the NW-SE cross-section yields a pre-Cenozoic thrust geometry (Fig. 11) for the Funeral Mountains comparable to unextended cross sections through the Cottonwood/Spring Mountains (Burchfiel et al., 1974; Snow, 1990). In the Death Valley

Junction section (Y-Y!, Fig. 11; this study) the Schwaub Peak thrust hanging wall cutoff for the base of the Cambrian is at 5000 m. In the section, the same cutoff on the Marble

22

Canyon thrust is at 500 m. (Snow, 1990). If the two thrusts were once joined, it is unlikely that a

4500-m elevation difference of the same hanging wall cutoff could be the result of along-strike variations in fault displacement. This 4500 m difference is probably the result of major extensional subsidence across northern Death Valley.

Shortening in the southern Sevier belt

The pre-Cenozoic cross section (Fig. 11) is comparable to other cross sections through the Cordillera. Thrusts have a ramp-flat geometry and propagate toward the foreland. The bivergent anticline-thrust pair marks the trailing end of the Cordilleran fold-thrust belt (DeCelles,

2004) and appears just hindward of the foreland basin. This west-vergent structure resulted from imbrication of the Neoproterozoic clastic wedge and may be regionally traceable along strike through the belt.

The southern Sevier fold thrust belt comprises the Last Chance, Schwaub Peak, Clery, Wheeler

Pass, Lee Canyon, and Keystone thrust systems (Burchfiel and Davis, 1972; Wernicke et al.,

1988; Burchfiel et al., 1998). In this study, the restored cross-section indicates that the Schwaub

Peak, Clery, Wheeler Pass, and Lee Canyon thrusts accommodated 90 km of shortening. In the

Spring Mountains, the Wheeler Pass, Lee Canyon, and Keystone thrusts together accommodated a total shortening of 75 km (Burchfiel et al.,1974). The Last Chance thrust is interpreted to account for ~30 km of shortening (Steven and Stone, 2005). Combining my estimates with those of previous workers yields that the southern segment of the Sevier belt accommodated ~145 km of total shortening. This value is comparable to other transects through the Cordillera. In the

23

X-X’ Calgary E Simpson Pass Simposon Pass Fatigue W Purcell Anticlinorium Bourgeau Suphur Mountain Rundle 5 Exshaw McConnell 5 km

S.L. S.L.

S.L. -5

-5 -10

-10 Price and Fermor, 1985 Death Valley Junction

Anticlinorium NW Grapevine Schwaub Peak Clery SE

Mesozoic Hadrynian M H Y-Y’ 5 5 km Paleozoic minus Cambrian Helikian S.L. S.L. Wheeler Pass (?) P I

-5 -5 Lee Canyon (?) Cambrian Crystalline basement Basement -10 -10

Las Vegas W E

Anticlinorium Marble Canyon Lemoigne Lee Canyon Last Chance Z-Z’ 5 Wheeler Pass Keystone 5 km S.L. S.L.

-5 -5

-10 -10

Snow and Wernicke, 1989

A T1 T2

24 northwest Montana-Alberta segment of the thrust belt (Figs. 1 and 11; section X-X’), over 165 km of shortening is accommodated along five major thrust systems (Bally, 1984; McMechan and

Thompson, 1993). The Idaho-Wyoming-Utah salient (Fig. 1) contains eight major thrust systems and accommodates 100-160 km of shortening (Royse, 1993a; Camilleri et al., 1997). The south- central Utah segment of the Sevier thrust belt comprises four thrusts that, when combined with those of the central Nevada thrust belt (Fig. 1), accommodate over 240 km of shortening

(DeCelles et al., 1995; Currie, 2002).

25

CONCLUSIONS

The balanced and restored structural cross section of the southern Funeral Mountains

(Fig. 10) constrains the magnitude of extension within the Funeral Mountains range block and yields a base geometry for the southern Sevier fold-thrust belt prior to extensional overprinting.

This pre-extensional cross section is comparable to a similar one in the Cottonwood Mountains

(Snow, 1990), where the extension between thrusts surfaces has already been restored. The interior of the Cottonwood Mountains has been extended by 32% (Snow, 1990), and the Funeral

Mountains have been extended by 40 % (this study). Comparison of pre-extensional cross sections through the Funeral and Cottonwood Mountains reveals that the original spacing between thrust structures was equal. Specifically, at the base of the Cambrian hanging wall cutoffs, the White Top backfold, Marble Canyon, and Lemoigne thrusts in the Cottonwood

Mountains are spaced at the same interval as the Winter’s Peak anticline, Schwaub Peak, and

Clery thrusts in the Funeral Mountains. Thus, the Cottonwood and Funeral Mountains are interpreted to be correlative range blocks.

The restoration of the Funeral Mountains to a pre-extensional geometry also constrains the amount of extensional subsidence and map view strain across northern Death Valley. If the two ranges were once joined, there is ~ 4.5 km of normal throw and 70 km of map view displacement between them. This 70 km of map view displacement (Snow and Wernicke, 1989;

2000) is fundamental to palinspastic reconstructions of extensional deformation across the entire west-central Basin and Range province.

26

The kinematics of the section through the Funeral Mountains combined with structural cross sections in the Spring Mountains (Burchfiel et al., 1974) indicate that the southern Nevada segment of the Sevier thrust belt accommodated ~145 km of shortening. The thrust system was accommodated by forward propagating thrusts developed within the late Proterozoic-Mesozoic passive margin and foreland basin sedimentary rocks. The anticlinorium in the hindward portion of the thrust belt is regionally traceable along strike to various other thrust belt segments in the

North American Cordillera (e.g. Alberta, BC; Figs. 1 and 11; X-X’). Like other upper crustal cross sections through the Cordillera (Price and Fermor, 1985; DeCelles et al., 1995; Fuentes et al., 2011 other source, 2012”), most of the deformation in the southern Nevada segment of the thrust belt occurs above a dėcollement at the boundary between a Mesoproterozoic rift-fill sequence and passive margin sediments.

27

REFERENCES

Bally, A. W., 1984, Tectogene` se et sismique re ́ flexion: Bulletin de la Societe ́ Geologique de France, v. 26, p. 279 –285.

Blakely, R.J., and Ponce, D.A., 2002, Map Showing Depth to Pre-Cenozoic Basement in the Death Valley Groundwater Model Area, Nevada and California, in USGS MF2381, http://pubs.usgs.gov/mf/2002/mf-2381/.

Burchfiel, B.C., and Davis, G.A., 1972, Structural framework and evolution of the southern part of the Cordilleran orogen, western United States: American Journal of Science, v. 272, p. 97-118.

Burchfiel, B.C., Fleck, R.J., Secor, D.T., Vincelette, R.R., and Davis, G.A., 1974, Geology of the Spring Mountains, Nevada, in Death Valley Region, California and Nevada Guidebook, Geological Society of America Field Trip 1, 70th annual meeting of the Cordilleran section: The Death Valley Publishing Company, Shoshone, California, p. 17-23.

Camilleri, P., Yonkee, W. A., Coogan, J. C., DeCelles, P. G., McGrew, A., and Wells, M., 1997, Hinterland to foreland transect through the Sevier orogen, NE Nevada to SW Wyoming: structural style, metamor- phism, and kinematic history of a large contractional orogenic wedge, in Link, P. K., and Kowallis, B. J., editors, Proterozoic to Recent Stratigraphy, Tectonics, and Volcanology, Utah, Nevada, Southern Idaho and Central Mexico: Brigham Young University Geology Studies, v. 42, part 1, p. 297–309.

Çemen, I., 1983, Stratigraphy, geochronology, and structure of selected areas of the northern Death Valley region, eastern California—western Nevada, and implications concerning Cenozoic tectonics in the region: College Station, Pennsylvania State University Ph.D. dissertation, 235 p.

Ҫemen, I., and Wright, L.A., 1988, Cenozoic extension in northern Death Valley–Evidence from the sedimentary rocks surrounding the Funeral Mountains: Geological Society of America, Abstracts with Programs, v. 20, no. 3, p. 149.

Çemen, I., and Wright, L.A., 1990, Effect of Cenozoic extension on Mesozoic thrust surfaces in the central and southern Funeral Mountains, Death Valley, California; in Wernicke, Brian, eds. Basin and Range Extensional Tectonics near the Latitude of Las Vegas, Nevada: Geological Society of America Memoir 176, p. 305 – 316.

28

Ҫemen, I., Drake, R., and Wright, L.A., 1982, Stratigraphy and chronology of the Tertiary sedimentary and volcanic units at the southeastern end of the Funeral Mountains, Death Valley region, California, in Cooper, J.D., Troxel. B.W. and Wright, L.A., eds., Geology of selected areas in the San Bernardino Mountains, western Mojave Desert, and southern Great Basin, California: Guidebook, Field Trip Number 9, 78th annual meeting Cordilleran Section, p. 77-86.

Çemen, I., Wright, L.A., Drake, R., and Johnson, F.C., 1985, Cenozoic sedimentation and sequence of deformational events at southern end of Furnace Creek strike-slip fault zone, Death Valley region, California, in Biddle, K.T., and Christie-Blick, N., eds. Strike-slip Deformation and Basin Formation.

Çemen, I., Wright, L.A., and Prave T., 1999, Stratigraphy and tectonic implications of the latest Oligocene and Early Miocene sedimentary succession, southernmost Funeral Mountains, Death Valley, region, California; in Wright, L.A., and Troxel, B.W., eds.,Cenozoic Basins of the Death Valley region: Geological Society of America Special Paper, 333, p. 65-86.

Currie, B. S., 2002, Structural configuration of the Early Cretaceous Cordilleran foreland-basin system and Sevier thrust belt, Utah and Colorado: Journal of Geology, v. 110, p. 697– 718.

DeCelles, P. G., Lawton, T. F., and Mitra, G., 1995, Thrust timing, growth of structural culminations, and synorogenic sedimentation in the type area of the Sevier orogenic belt, central Utah: Geology, v. 23, p. 699 –702.

DeCelles, P.G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA: American Journal of Science, v. 304, p. 105-168.

Egan, S.S., Buddin, T.S., Kane, S.J., and Williams, G.D., 1997, Three-dimensional modeling and visualisation in structural geology: New techniques for the restoration and balancing of volumes, in Proceedings of the 1996 Geoscience Information Group Conference on Geological Visualisation, Electronic Geology, v. 1, p. 67-82.

Erslev, E.A., 1991, Trishear fault-propagation folding: Geology, v. 19, p. 617-620.

Fedo, C.M., and Cooper, J.D., 2001, Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin: Sedimentary Geology, v. 141-142, p. 501-522.

29

Fridrich, C.J., Thompson, R.A., Slate, J.L., Berry, M.E., and Machette, M.N., 2008, Preliminary geologic map of the southern Funeral Mountains and adjacent ground-water discharge sites, Inyo County, California, and Nye County, Nevada: U.S. Geological Survey Open- File Report 2008-1366, 1 sheet, scale 1:50,000, pamphlet 16 p.

Gibbs, A.D., 1983, Balanced cross-section construction from seismic sections in areas of extensional tectonics, Journal of Structural Geology, 5, 153-160.

Hall, W.E., 1971, Geology of the Panamint Butte quadrangle, Inyo County, California: U.S. Geological Survey Bulletin 1299, map scale 1:48,000, 67 p. 1 pl. M, T

Hamilton, W.B., 1988, Detachment faulting in the Death Valley region, California and Nevada, in Carr, M.D., and Yount, J.C., eds., Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada: U. S. Geological Survey Bulletin, Report B1790, p. 51–85.

Holm, D.K., and Dokka, R.K., 1991, Late Miocene cooling associated with tectonic denudation in the Funeral Mountains, California: EOS Transactions of American Geophysical Union, 1991, v. 72, p. 268.

Kane, S.J., Williams, G.D., Buddin, T.S., Egan, S.S., and Hodgetts, D, 1997, Flexural-slip based restoration in 3D, a new approach, 1997 AAPG Annual Convention Official Program, A58.

Labotka, T.C., 1980, Petrology of a medium-pressure regional metamorphic terrane, Funeral Mountains, California: American Mineralogist, v. 65, p. 670-689.

McAllister, J.F., 1970, Geology of the Furnace Creek borate area, Death Valley, Inyo County, California: California Division of Mines and Geology Map Sheet 14, scale 1:24,000, 9 p.

McAllister, J.F., 1971, Preliminary geologic map of the Funeral Mountains in the Ryan quadrangle, Death Valley region, Inyo County: U.S. Geological Survey Open-File Report 71–147, scale 1:31,680.

McAllister, J.F., 1973, Geologic map and sections of the borate area—Inyo County, California: U.S. Geological Survey Miscellaneous Investigation Series Map I- 782, 1:24,000 scale.

McAllister, J.F., 1976, Geologic maps and sections of a strip from Pyramid Peak to the southeast end of the Funeral Mountains, Ryan Quadrangle, California, in Troxel, B.W. and Wright,

30

L.A., eds., Geologic features, Death Valley, California: California Division of Mines and Geology Special Report 106, p. 63–66.

McMechan, M. E., and Thompson, R. I., 1993, The Canadian Cordilleran fold and thrust belt south of 66°N and its influence on the Western Interior basin, in Caldwell, W. G. E., and Kauffman, E. G., editors, Evolution of the Western Interior Basin: Geological Association of Canada Special Paper 39, p. 73–90.

Miller, M., 2003. Basement-involved thrust faulting in a thin skinned fold and thrust belt, Death Valley, California, USA: Geology 31, 31– 34.

Price, R.A., 1986, The southeastern Canadian Cordillera: Thrust faulting, tectonic wedging, and delamination of the lithosphere: Journal of Structural Geology, v. 8, Issues 3-4, 1986, p. 239-254.

Price, R.A., and Fermor, P.R., 1985, Structure section of the Cordilleran foreland thrust and fold belt west of Calgary, Alberta: Canada Geological Survey Paper 84-14.

Royse, F., Jr., 1993a, An overview of the geologic structure of the thrust belt in Wyoming, northern Utah, and eastern Idaho, in Snoke, A. W., Steidtmann, J. R., and Roberts, S. M., editors, Geology of Wyoming: Geological Survey of Wyoming Memoir No. 5, p. 272– 311.

Schoenborn, W.A., and Fedo, C.M., 2011, Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California: Chemical Geology, 285, 231-255.

Serpa, L., 1990, Structural styles across an extensional orogen, Results from the COCORP Mojave and Death Valley seismic transects, in Wernicke, B.P., eds., Basin and Range extensional tectonics near the latitude of Las Vegas, Nevada: Geological Society of America Memoir 176, p. 335-344.

Serpa, L., De Voogd, B., Wright, L., Willemin, J., Oliver, J., Hauser, E., and Troxel, B., 1988, Structure of the central Death Valley pull-apart basin and vicinity from COCORP profiles in the southern Great Basin: Geological Society of America Bulletin, v. 100, p. 1437- 1450.

Snow, J.K., 1990, Cordilleran orogenesis, extensional tectonics and geology of the Cottonwood Mountain area, Death Valley region, California and Nevada: Ph.D. dissertation, Harvard University, Boston, Mass, 210 p, scale 1:24,000.

31

Snow, J.K., 1992, Large-magnitude Permian shortening and continental-margin tectonics in the southern Cordillera: Geological Society of America, v. 104, p. 80-105.

Snow, J.K., and Wernicke, B.P., 1989, Uniqueness of geological correlations: An example from the Death Valley extended terrain: Geological Society of America Bulletin, v. 101, p. 1351-1362.

Snow, J.K., and Wernicke, B.P., 2000, Cenozoic tectonism in the central Basin and Range: Magnitude, rate and distribution of upper crustal strain: American Journal of Science, v. 300, p. 659-719.

Stewart, J.H., 1983, Extensional tectonics in the Death Valley area, California–Transport of the structural block 80 km northwestward: Geology, v. 11, no. 3, p. 153- 157. T

Troxel, B.W., and Wright, L.A., 1968, Precambrian stratigraphy of the Funeral Mountains, Death Valley, California: Geological Society of America Program, Cordilleran Section, Geological Society of America, p. 125-126.

Verrall, P., 1981, Structural interpretation with application to North Sea problems, Geological Society Course Notes, No. 3, Lectures 13-27.

Wernicke, B.P., Axen, G.J., and Snow, J.K., 1988, Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada: Geological Society of America Bulletin, v. 100, p. 1738- 1757.

Withjack, M.O., and Peterson, E.T., 1993, Prediction of normal-fault geometries- a sensitivity analysis: American Association of Petroleum Geologists Bulletin, v. 77, p. 1860-1873

Wright, L.A., and Troxel, B.W., 1966, Noonday Dolomite, Johnnie Formation, Stirling Quartzite and Wood Canyon Formation in the southern Death Valley region, California: Geological Society of America Bulletin, v. 67, no. 12, p. 1787.

Wright, L.A., and Troxel, B.W., 1993, Geologic map of the central and northern Funeral Mountains and adjacent areas, Death Valley region, southern California: U.S. Geological Survey Miscellaneous Investigation Series Map I-2305, scale 1:48,000.

Wright, L.A., Williams, E.G., and Cloud, P., 1974, Stratigraphic cross section of Proterozic Noonday Dolomite, War Eagle Mine area, Southern Nopah Range, Eastern California, in Guidebook–Death Valley Region, California and Nevada: Geological

32

Society of America Field Trip Number 1, 70th annual meeting of the Cordilleran section: The Death Valley Publishing Company, Shoshone, California, p. 36.

Wright, L.A., Green, R.C., Çemen, I., Johnson, F.C., and Prave, T.R., 1999, Tectono- stratigraphic development of the Miocene-Pliocene Furnace Creek Basin and related features, Death Valley region, California; in Wright, L. A., and Troxel, B.W., eds., Cenozoic Basins of the Death Valley region: Geological Society of America Special Paper 333, p. 87-114.

33

APPENDIX

Algorithms used in kinematic restorations:

To restore displacement on extensional faults, the Simple Shear algorithm was used (Fig.

12). The magnitude of extensional area is calculated from input parameters such as heave, throw, and fault shape (Fig. 12a). The void space created during fault rupture is then simulated by redistributing the extensional area along the fault plane such that every point along the hangingwall contact with the fault plane is translated horizontally the same distance (the heave;

Fig. 12b). Previous points of fault contact along the hangingwall are then translated along the chosen shear vector (Fig. 12c). The Simple Shear algorithm assumes penetrative deformation as

opposed to flexural slip and maintains

the area between beds during

restoration. This algorithm was

developed by Midland Valley © and

incorporated the work of Verrall

(1981), Gibbs (1983), and Withjack

and Peterson (1993).

To restore displacements on

thrust faults, the Fault Parallel Flow

and Trishear algorithms were used.

Figure 12

34

The Fault Parallel Flow algorithm is useful for restoring kinematics in ramp-flat geometries.

Flow-lines separated by dip bisectors (Figure 13b) are created parallel to fault surfaces (ramps and flats). Beds are only allowed to move parallel to these lines. The result is a series of fault- bend folds (Fig.13a) in which the line-length of beds is conserved during the restoration.

Adjustment of the angular back shear (Fig. 13c) allows the modeler to achieve area balance as well. The Fault Parallel Flow algorithm was developed by Midland Valley © and incorporated the work of Kane et al., (1997) and Egan et al. (1997).

The Trishear

algorithm is useful for

restoring fault-propagation

fold kinematics because it

models a triangular shear

zone (Fig. 14a) in front of

the hangingwall as it

moves along a fault. This

allows thickening and

thinning in the limbs of the

composite syncline and

Figure 13 anticline pair, respectively.

The modeler can define any number of deformation zones within the triangular shear area, depending on computing capacity. The direction and magnitude of slip within those zones varies

35 based on the fault plane and user-controlled input parameters such as angle between zones and size of the entire zone. Within the Trishear zone, the area between beds is preserved. Outside the

Trishear zone, Fault Parallel Flow kinematics are applied to the fault motion (i.e. bed length is preserved).

The algorithm also allows the

user to determine where the

fault breaks through the fold.

For the Schwaub Peak and

Clery thrusts, the faults

probably broke through in-limb

(Fig. 14b) because the beds are

vertical to overturned in the

hanging wall and footwall. The

Trishear algorithm was

developed by collaboration Figure 14 between Midland Valley © and Colorado State University (Erslev, 1991).

36