(Missing) Concept Discovery in Heterogeneous Information Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Back Matter (PDF)
Index Note: Page numbers in italic denote figures. Page numbers in bold denote tables. Abel, Othenio (1875–1946) Ashmolean Museum, Oxford, Robert Plot 7 arboreal theory 244 Astrodon 363, 365 Geschichte und Methode der Rekonstruktion... Atlantosaurus 365, 366 (1925) 328–329, 330 Augusta, Josef (1903–1968) 222–223, 331 Action comic 343 Aulocetus sammarinensis 80 Actualism, work of Capellini 82, 87 Azara, Don Felix de (1746–1821) 34, 40–41 Aepisaurus 363 Azhdarchidae 318, 319 Agassiz, Louis (1807–1873) 80, 81 Azhdarcho 319 Agustinia 380 Alexander, Annie Montague (1867–1950) 142–143, 143, Bakker, Robert. T. 145, 146 ‘dinosaur renaissance’ 375–376, 377 Alf, Karen (1954–2000), illustrator 139–140 Dinosaurian monophyly 93, 246 Algoasaurus 365 influence on graphic art 335, 343, 350 Allosaurus, digits 267, 271, 273 Bara Simla, dinosaur discoveries 164, 166–169 Allosaurus fragilis 85 Baryonyx walkeri Altispinax, pneumaticity 230–231 relation to Spinosaurus 175, 177–178, 178, 181, 183 Alum Shale Member, Parapsicephalus purdoni 195 work of Charig 94, 95, 102, 103 Amargasaurus 380 Beasley, Henry Charles (1836–1919) Amphicoelias 365, 366, 368, 370 Chirotherium 214–215, 219 amphisbaenians, work of Charig 95 environment 219–220 anatomy, comparative 23 Beaux, E. Cecilia (1855–1942), illustrator 138, 139, 146 Andrews, Roy Chapman (1884–1960) 69, 122 Becklespinax altispinax, pneumaticity 230–231, Andrews, Yvette 122 232, 363 Anning, Joseph (1796–1849) 14 belemnites, Oxford Clay Formation, Peterborough Anning, Mary (1799–1847) 24, 25, 113–116, 114, brick pits 53 145, 146, 147, 288 Benett, Etheldred (1776–1845) 117, 146 Dimorphodon macronyx 14, 115, 294 Bhattacharji, Durgansankar 166 Hawker’s ‘Crocodile’ 14 Birch, Lt. -
Osteology of the Dorsal Vertebrae of the Giant Titanosaurian Sauropod Dinosaur Dreadnoughtus Schrani from the Late Cretaceous of Argentina
Rowan University Rowan Digital Works School of Earth & Environment Faculty Scholarship School of Earth & Environment 1-1-2017 Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina Kristyn Voegele Rowan University Matt Lamanna Kenneth Lacovara Rowan University Follow this and additional works at: https://rdw.rowan.edu/see_facpub Part of the Anatomy Commons, Geology Commons, and the Paleontology Commons Recommended Citation Voegele, K.K., Lamanna, M.C., and Lacovara K.J. (2017). Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina. Acta Palaeontologica Polonica 62 (4): 667–681. This Article is brought to you for free and open access by the School of Earth & Environment at Rowan Digital Works. It has been accepted for inclusion in School of Earth & Environment Faculty Scholarship by an authorized administrator of Rowan Digital Works. Editors' choice Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina KRISTYN K. VOEGELE, MATTHEW C. LAMANNA, and KENNETH J. LACOVARA Voegele, K.K., Lamanna, M.C., and Lacovara K.J. 2017. Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina. Acta Palaeontologica Polonica 62 (4): 667–681. Many titanosaurian dinosaurs are known only from fragmentary remains, making comparisons between taxa difficult because they often lack overlapping skeletal elements. This problem is particularly pronounced for the exceptionally large-bodied members of this sauropod clade. Dreadnoughtus schrani is a well-preserved giant titanosaurian from the Upper Cretaceous (Campanian–Maastrichtian) Cerro Fortaleza Formation of southern Patagonia, Argentina. -
Overview of Sauropod Phylogeny and Evolution
One Overview of Sauropod Phylogeny and Evolution Jeffrey A. Wilson SAUROPOD STUDIES FROM OWEN TO long bones” and “the toes being terminated by THE PRESENT strong claws” (Owen 1842:102), but this assess- ment was based on limited anatomical evidence This year marks the one hundred sixty-fourth (Owen 1875:27). Key data emerged with the dis- anniversary of Richard Owen’s (1841) description covery of abundant Cetiosaurus bones in of the first sauropod—Cetiosaurus, the “whale Oxfordshire by John Phillips. Thomas Huxley lizard”—on the basis of vertebrae and limb ele- examined this “splendid series of remains” ments from localities across England. Although before the publication of Phillips’ (1871) mono- these remains “had been examined by Cuvier graph and was the first to place Cetiosaurus within and pronounced to be cetaceous” (Buckland Dinosauria (Iguanodontidae [Huxley, 1869:35]). 1841:96), Owen (1841:458–459) demonstrated Phillips (1871) interpreted Cetiosaurus as a plant- the saurian affinities of Cetiosaurus on the basis eating dinosaur and hypothesized that its limb of several features, including the absence of epi- bones were “suited for walking.” He could not physes (growth plates) on caudal vertebrae (fig. rule out the possibility that it was amphibious, 1.1). He differentiated Cetiosaurus from other however, concluding that it was a “marsh-loving extinct saurians on the basis of its large size and or riverside animal.” Owen (1875:27) later acqui- characteristics of its vertebrae (see Upchurch esced, referring Cetiosaurus to the Dinosauria and Martin 2003:215). Owen (1841:462) con- because of its four sacral vertebrae. He admitted cluded his initial description with this assess- that it may have had some terrestrial capabilities ment: “The vertebræ, as well as the bones of the but concluded that Cetiosaurus was an estuarine extremities, prove its marine habits . -
Short Review of the Present Knowledge of the Sauropoda
PRESENT KNOWLEDGE OF THE SAUROl'ODA.-HUENE. 121 SHORT REVIEW OF THE PRESENT KNOWLEDGE OF THE SAUROPODA. BY DR. FRIEDRICH BARON HUENE, PROFESSOR AT THE UNIVERSITY OF TUBINGEN, GERMANY. THE Sauropoda are the hugest continental animals the earth has ever seen. They lived from the middle Jurassic to the Danian period of the upper most Cretaceous. Much has been written about them, but nevertheless their natura! classification and development do not yet appear in a desirable clearness. In this respect the immense size of the Sauropoda has been an obstacle. The satisfactory excavation of such gigant.ic skeletons is difficult, and the preparation, which is still more important, needs trained, skilful men working for years. The scientific value of a skeleton is determined in advance by the degree of care by which, during the excavation, the original articulation or the original positions of the bones to each other in the rock is dealt "\vith by sketch-plans in scale as to make sure specially the sequence of the vertebræ. Because of the failure of this in many cases, we still know so astonishingly little about the natura! classification of the Sauropoda as a whole. Most has been written and spoken on the North American Sauropoda. Too little has been done with the earlier Sauropoda. The knowledge of the Upper Cretaceous Sauropoda until now is quite insufficient. The large amount of Tendaguru Sauropoda at Berlin and the recent excavations of the Carnegie Museum at Pittsburgh have not yet been described ; they will probably complete and alter our ideas of the development and classification of the Sauropoda. -
A Gigantic, Exceptionally Complete Titanosaurian Sauropod Dinosaur from Southern Patagonia, Argentina
OPEN A Gigantic, Exceptionally Complete SUBJECT AREAS: Titanosaurian Sauropod Dinosaur from PALAEONTOLOGY SYSTEMATICS Southern Patagonia, Argentina Kenneth J. Lacovara1, Matthew C. Lamanna2, Lucio M. Ibiricu3, Jason C. Poole4, Elena R. Schroeter1, Received Paul V. Ullmann1, Kristyn K. Voegele1, Zachary M. Boles1, Aja M. Carter1, Emma K. Fowler1, 1 April 2014 Victoria M. Egerton5, Alison E. Moyer6, Christopher L. Coughenour7, Jason P. Schein8, Jerald D. Harris9, 10 11 Accepted Rube´n D. Martı´nez & Fernando E. Novas 30 July 2014 Published 1Department of Biodiversity, Earth and Environmental Science, Drexel University, 3141 Chestnut Street, Philadelphia, PA 4 September 2014 19104, USA, 2Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA, 3Laboratorio de Paleontologı´a, Centro Nacional Patago´nico (CENPAT–CONICET), Boulevard Almirante Brown 2915, (9120) Puerto Madryn, Chubut, Argentina, 4Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA, 5Faculty of Life Sciences, The University of Manchester, Dover Street, Manchester, Correspondence and M13 9PL, UK, 6Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 2800 Faucette Drive, requests for materials Raleigh, NC 27695, USA, 7University of Pittsburgh at Johnstown, 450 Schoolhouse Road, Johnstown, PA 15904, USA, 8New 9 should be addressed to Jersey State Museum, 205 West State Street, Trenton, NJ 08608, USA, Dixie State College, 225 South 700 East, St. George, 10 K.J.L. (lacovara@ UT 84770, USA, Laboratorio de Paleovertebrados, Universidad Nacional de la Patagonia San Juan Bosco, (9000) Comodoro Rivadavia, Chubut, Argentina, 11Museo Argentino de Ciencias Naturales, Avenida Angel Gallardo 470, (1405) drexel.edu) Buenos Aires, Argentina. -
Osteology of the Dorsal Vertebrae of the Giant Titanosaurian Sauropod Dinosaur Dreadnoughtus Schrani from the Late Cretaceous of Argentina
Editors' choice Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina KRISTYN K. VOEGELE, MATTHEW C. LAMANNA, and KENNETH J. LACOVARA Voegele, K.K., Lamanna, M.C., and Lacovara K.J. 2017. Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina. Acta Palaeontologica Polonica 62 (4): 667–681. Many titanosaurian dinosaurs are known only from fragmentary remains, making comparisons between taxa difficult because they often lack overlapping skeletal elements. This problem is particularly pronounced for the exceptionally large-bodied members of this sauropod clade. Dreadnoughtus schrani is a well-preserved giant titanosaurian from the Upper Cretaceous (Campanian–Maastrichtian) Cerro Fortaleza Formation of southern Patagonia, Argentina. Numerous skeletal elements are known for Dreadnoughtus, including seven nearly complete dorsal vertebrae and a partial dorsal neural arch that collectively represent most of the dorsal sequence. Here we build on our previous preliminary descrip- tion of these skeletal elements by providing a detailed assessment of their serial positional assignments, as well as comparisons of the dorsal vertebrae of Dreadnoughtus with those of other exceptionally large-bodied titanosaurians. Although the dorsal elements of Dreadnoughtus probably belong to two individuals, they exhibit substantial morpho- logical variation that suggests that there is minimal, if any, positional overlap among them. Dreadnoughtus therefore preserves the second-most complete dorsal vertebral series known for a giant titanosaurian that has been described in detail, behind only that of Futalognkosaurus. The dorsal sequence of Dreadnoughtus provides valuable insight into serial variation along the vertebral column of these enormous sauropods. -
Body-Size Evolution in the Dinosauria
8 Body-Size Evolution in the Dinosauria Matthew T. Carrano Introduction The evolution of body size and its influence on organismal biology have received scientific attention since the earliest decades of evolutionary study (e.g., Cope, 1887, 1896; Thompson, 1917). Both paleontologists and neontologists have attempted to determine correlations between body size and numerous aspects of life history, with the ultimate goal of docu- menting both the predictive and causal connections involved (LaBarbera, 1986, 1989). These studies have generated an appreciation for the thor- oughgoing interrelationships between body size and nearly every sig- nificant facet of organismal biology, including metabolism (Lindstedt & Calder, 1981; Schmidt-Nielsen, 1984; McNab, 1989), population ecology (Damuth, 1981; Juanes, 1986; Gittleman & Purvis, 1998), locomotion (Mc- Mahon, 1975; Biewener, 1989; Alexander, 1996), and reproduction (Alex- ander, 1996). An enduring focus of these studies has been Cope’s Rule, the notion that body size tends to increase over time within lineages (Kurtén, 1953; Stanley, 1973; Polly, 1998). Such an observation has been made regarding many different clades but has been examined specifically in only a few (MacFadden, 1986; Arnold et al., 1995; Jablonski, 1996, 1997; Trammer & Kaim, 1997, 1999; Alroy, 1998). The discordant results of such analyses have underscored two points: (1) Cope’s Rule does not apply universally to all groups; and (2) even when present, size increases in different clades may reflect very different underlying processes. Thus, the question, “does Cope’s Rule exist?” is better parsed into two questions: “to which groups does Cope’s Rule apply?” and “what process is responsible for it in each?” Several recent works (McShea, 1994, 2000; Jablonski, 1997; Alroy, 1998, 2000a, 2000b) have begun to address these more specific questions, attempting to quantify patterns of body-size evolution in a phylogenetic (rather than strictly temporal) context, as well as developing methods for interpreting the resultant patterns. -
Determining the Largest Known Land Animal: a Critical Comparison of Differing Methods for Restoring the Volume and Mass of Extinct Animals
ANNALS OF CARNEGIE MUSEUM VOL. 85, NUMBER 4, PP. 335–358 31 DECEMBER 2019 DETERMINING THE LARGEST KNOWN LAND ANIMAL: A CRITICAL COMPARISON OF DIFFERING METHODS FOR RESTORING THE VOLUME AND MASS OF EXTINCT ANIMALS GREGORY PAUL 3100 St. Paul Street 604, Baltimore, Maryland, 21218 [email protected] ABSTRACT Recent claims regarding what is and is not the largest known sauropod dinosaur are tested via dimensional comparisons of the most critical metrics of relative size—especially, when possible, the functional lengths of the dorsal vertebral centra and the articulated length of the combined trunk vertebrae—and analog volumetric models based on technical skeletal restorations. The Cretaceous Argentinosaurus massed 65–75 tonnes, and its dorsal vertebrae and dorsal–sacral series are much larger than those of any other described titanosaur. Specimens of Patagotitan indicate a 50–55 tonne titanosaur, and the less complete Notocolossus, Puertasaurus, and ‘Antarctosaurus’ giganteus appear to have occupied a similar size range. Paralititan weighed between 30 and 55 tonnes. The juvenile Dreadnoughtus, as well as Futalognkosaurus and Alamosaurus, were in the area of 30 tonnes, with the possibility that the last was substantially larger. Entirely analog, skillfully produced, high-anatomical-fidelity skeletal restorations and volumetric models representing a prime-lean condition are approximately as scientifically objective and accurate, as well as more realistic than, analog-digital, crudely-formed convex hull volumetric models, which are based on subjectively and often inconsistently or erroneously mounted skeletons and digitized skeletal reconstructions. The need to ensure that skeletal restorations are as anatomically correct and consistent as the data allow is stressed, which requires that researchers and illustrators be sufficiently skilled in animal and especially dinosaur anatomy, and the proce- dures and standards for achieving the best possible results are detailed. -
Description of a Sauropod Dinosaur Braincase (Titanosauridae) from the Late Cretaceous Rio Colorado Subgroup, Patagonia
“main” — 2005/12/13 — 23:47 — page 175 — #1 Anais da Academia Brasileira de Ciências (2006) 78(1): 175-182 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Description of a sauropod dinosaur braincase (Titanosauridae) from the Late Cretaceous Rio Colorado Subgroup, Patagonia JORGE O. CALVO1 and ALEXANDER W. KELLNER2 1Centro Paleontológico Lago Barreales, Universidad Nacional del Comahue Ruta Pro. 51 km 65, Buenos Aires 1400, 8300 Neuquén, Argentina 2Museu Nacional/UFRJ, São Cristóvão, Quinta da Boa Vista s/n 20940-040 Rio de Janeiro, RJ, Brasil Manuscript received on March 29, 2005; accepted for publication on September 12, 2005; contributed by ALEXANDER W. KELLNER* ABSTRACT The fossil record of cranial material from titanosaurid sauropods is very poor and no complete skull has been described so far. Here we describe a new braincase (MUCPv-334) that was recovered from reddish sandstones of the Rio Colorado Subgroup (Late Cretaceous) of the region of Bajo del Añelo, approximately 20 km north of the town Añelo (Neuquén Province, Argentina). This specimen is attributed to the Titanosauridae based on the ventrally projected basipterygoid processes, a common condition shared by other titanosaurids. The robustness of MUCPv-334 together with an unusually expanded crista prootica and the presence of an anterior prolongation of the parasphenoid reaching the basal tubera were not reported in other members of the Titanosauridae, indicating a larger diversity in the braincase morphology of this sauropod clade than previously thought. Key words: braincase, Titanosauridae, Late Cretaceous, Patagonia, Argentina. INTRODUCTION (Haughton 1928) (Jacobs et al. 1993), Antarcto- The fossil record of cranial material belonging to saurus septentrionalis Huene and Matley 1933 the Titanosauria (sensu Salgado et al. -
Big Sauropods-Really, Trees
~-:- ~ -0 ;'HE DINOSAUR REPORT FALL 1994 "Super-sauropods" could have brought down all bur the biggest Big Sauropods-Really, trees. The surprising slenderness of the giant Ampbicoelias vertebra and the Argmtinosaurus tibia suggests that even they were not close Really Big Sauropods to the maximum size possible! Indeed, it is hardly likely that we have found the biggest sauropods, so species as heavy as 200 tonne By Gregory S_ Paul blue whales cannot be ruled out. The skeletons alone of super-sauropods weighed about 20 to 30 or more tonnes (more For the last quarter century an array of newly discovered than the biggest entire land mammals), so they were the most sauropods-Supersaurus, Ultrasauros, and Seismosaurus-have preservable and discoverable fossils ever. The scarcity of their competed for the title of the world's largest dinosaur. These have remains therefore suggests that their populations were extremely been big, bur not much more so than other well-known sauropods. low. This is contrary to the hypothesis that sauropods were energy- A few sauropods truly dwarf all the others. One of them is new, but efficient reptiles with higher population densities than giant the biggest of all was discovered over a century ago, lost, and nearly mammals. Besides, if 100 to 200 tonne sauropods had reptilian forgonen. metabolisms, then their hearts would have done only abour as First we go to Argentina, home of enormous Late Cretaceous much work as a big elephant's heart. It is difficult to see how such tiranosaurs, such as "Antarctosaurus" gigantus, which supplied a weak hearts could have oxygenated the fifty tonnes of skeletal 2.3m long femur, the largest limb bone yet described in a published muscles needed to carry and operate 125 tonnes of flesh and bones, paper. -
The Evolution of Sauropod Locomotion
eight The Evolution of Sauropod Locomotion MORPHOLOGICAL DIVERSITY OF A SECONDARILY QUADRUPEDAL RADIATION Matthew T. Carrano Sauropod dinosaur locomotion, fruitful but also have tended to become canal- like that of many extinct groups, has his- ized. In this regard, the words of paleontologist torically been interpreted in light of potential W. C. Coombs (1975:23) remain particularly apt, modern analogues. As these analogies—along as much for their still-relevant summary of the with our understanding of them—have shifted, status quo in sauropod locomotor research as perspectives on sauropod locomotion have fol- for their warning to future workers: lowed. Thus early paleontologists focused on the “whalelike” aspects of these presumably aquatic It is a subtle trap, the ease with which an entire reptilian suborder can have its habits and habi- taxa (e.g., Osborn 1898), reluctantly relinquish- tat preferences deduced by comparison not ing such ideas as further discoveries began to with all proboscideans, not with the family characterize sauropod anatomy as more terres- Elephantidae, not with a particular genus or trial. Although this debate continued for over a even a single species, but by comparison with century, the essentially terrestrial nature of certain populations of a single subspecies. Deciding that a particular modern animal is sauropod limb design was recognized by the most like sauropods is no guarantee of solving early 1900s (Hatcher 1903; Riggs 1903). Aside the problem of sauropod behavior. from a few poorly received attempts (e.g., Hay 1908; Tornier 1909), comparisons have usually Similarly, modern analogues play a limited been made between sauropods and terrestrial role in illuminating the evolution of sauropod mammals, rather than reptiles. -
Osteological, Myological, and Biomechanical Investigations of the Sauropod Dinosaur
Osteological, myological, and biomechanical investigations of the sauropod dinosaur Dreadnoughtus schrani and molecular paleontological investigation of the marine crocodile Thoracosaurus neocesariensis A Thesis Submitted to the Faculty of Drexel University by Kristyn K. Voegele in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2016 © Copyright 2016 Kristyn K. Voegele. All Rights Reserved. ii Dedication To those with dreams and those that help them achieve dreams iii Acknowledgements This project would not be possible without the support, assistance, and guidance of just about everyone I have had interacted with in the last five years. I am grateful for all of your time, effort, patience, and support. First, I would like to thank Drexel University, the College of Arts and Sciences, the Department of Biology, the Academy of Natural Sciences, the Department of Biodiversity, Earth, and Environmental Science, and all the faculty and staff that made my graduate education possible. At Drexel I have been fortunate to have the opportunity to learn from world-class scientists about research, teaching, and everything in between. I appreciate the resources and support provided to me over my graduate career to turn me into a capable scientist. I am also thankful to the organizations that have financially supported my research. Without the financial support from a National Science Foundation Graduate Research Fellowship (DGE Award #1002809) and a Paul Bond Scholarship from the Delaware Valley Paleontological Society much of my research would have been unaffordable. I am thankful to these institutions for helping me expand my area of focus and training in my field of study during my graduate career.