17 Democratizing Authority in the Built Environment

Total Page:16

File Type:pdf, Size:1020Kb

17 Democratizing Authority in the Built Environment Democratizing Authority in the Built Environment MICHAEL P. ANDERSEN, JOHN KOLB, KAIFEI CHEN, GABE FIERRO, DAVID E. CULLER, and RANDY KATZ, University of California, Berkeley 17 Operating systems and applications in the built environment have relied upon central authorization and management mechanisms that restrict their scalability, especially with respect to administrative overhead. We propose a new set of primitives encompassing syndication, security, and service execution that unifies the management of applications and services across the built environment, while enabling participants to individually delegate privilege across multiple administrative domains with no loss of security or manage- ability. We show how to leverage a decentralized authorization syndication platform to extend the design of building operating systems beyond the single administrative domain of a building. The authorization sys- tem leveraged is based on blockchain smart contracts to permit decentralized and democratized delegation of authorization without central trust. Upon this, a publish/subscribe syndication tier and a containerized service execution environment are constructed. Combined, these mechanisms solve problems of delegation, federation, device protection and service execution that arise throughout the built environment. We leverage a high-fidelity city-scale emulation to verify the scalability of the authorization tier, and briefly describea prototypical democratized operating system for the built environment using this foundation. This is an extension of work presented in Ref. [3]. CCS Concepts: • Security and privacy → Access control; Authorization; Authentication;•Computer systems organization → Embedded and cyber-physical systems; Additional Key Words and Phrases: Built environment, syndication, microservices, federation ACM Reference format: Michael P. Andersen, John Kolb, Kaifei Chen, Gabe Fierro, David E. Culler, and Randy Katz. 2018. Democ- ratizing Authority in the Built Environment. ACM Trans. Sen. Netw. 14, 3–4, Article 17 (December 2018), 26 pages. https://doi.org/10.1145/3199665 1 INTRODUCTION Over the past several years, building operating systems (BOS) have been developed to provide an execution environment for applications that operate safely on the physical plant of a building, transforming it into a rich cyberphysical system (e.g., BAS [25], sMAP [16], BuildingDepot [1], BOSS [17], Mortar.io [26], BEMOSS [27], Niagara [23], VOLTTRON [2]). While this work has made great strides in supporting energy efficiency, human comfort, and grid integration of buildings, three themes emerge that are both outstanding shortcomings of BOS and This work is sponsored in part by the California Energy Commission, Department of Energy grant DE-EE0007685, the Fulbright Scholarship Program, and National Science Foundation grant CPS-1239552. Authors’ addresses: M. P. Andersen, J. Kolb, K. Chen, G. Fierro, D. E. Culler, and R. Katz, University of California, Berkeley, Soda Hall, Berkeley, CA 94720; emails: {m.andersen, jkolb, kaifei, gtfierro, culler, randy}@cs.berkeley.edu. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. © 2018 Association for Computing Machinery. 1550-4859/2018/12-ART17 $15.00 https://doi.org/10.1145/3199665 ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 17. Publication date: December 2018. 17:2 M. P. Andersen et al. critical to extending from buildings (or campuses of buildings) to the broader built environment—(i) natural delegation of authority and its enforcement, (ii) federation, and (iii) protection. Further- more, each of these are present not just for individuals, but for persistent computational processes and devices operating on their behalf. Delegation: Within the building context, organizationally, the campus facility manager dele- gates certain authority to building managers, each of whom may delegate (logically) the control of certain regions of a building to its tenant organizations, who may further delegate to individual office occupants. However, little of this delegation is actually supported by building management systems. Often the individual does not even have a way to set desired temperature; she instead makes a request up the chain of authority. The building manager may be authorized on a central server to adjust zone setpoints and schedules, but she must issue requests to facilities managers to make deeper adjustments like supply air temperature. In a more modern BOS, the occupant may be able to open a webpage or app to adjust the temperature schedule for their particular of- fice, but authorization to do so is based on verifying the identity of the individual (or possiblythe identity of a device, e.g., a touchpad, in the room) used in accordance with an access control list (ACL). If the occupant loans the office to a visitor, there may be no way to also “loan” the author- ity to adjust its temperature or lighting schedule other than getting the visitor inserted and later removed from the directory. The delegation problem is amplified as we consider the lifecycle of the building, operations performed on common spaces, temporary authorizations for events, etc. These issues are further amplified across the built environment. The individual is delegated differ- ent access in their apartment, work setting, gym, and public space, for example. Furthermore, as we move to intelligent environments, the individual may want to delegate a portion of her authority in each of these places to her computational agents, so out-of-band human communication is not sufficient. Federation: Even within a building, its subsystems (HVAC, lighting, electrical monitoring, secu- rity) have typically been disconnected, managed by different control systems. Most BOS integrate these and many will integrate the resulting systems over multiple buildings in a common admin- istrative domain, say a campus or a property management company. The challenge is integration across distinct administrative domains. This arises in settings as simple as demand response, where the issuer of the critical event (e.g., the independent system operator) is distinct from the building owner, its occupants, the utility, or the energy services aggregator. As electric vehicle charging is incorporated, the set of stakeholders increases, as with the incorporation of municipal and indus- trial processes, especially in conjunction with fluctuating renewable supplies. The mechanisms to allow agents in one administrative domain to take particular limited actions in another, say ad- justing a temperature or lighting set-point, is quite ad hoc. We cannot expect all of these to refer their authorizations to a common central authority, nor can we expect to deal with many disparate authorizing entities. Certainly, the vendors of each of the different devices cannot be the autho- rizing entity (as we see today with Nest, Amazon Echo, and Google Home). Nor can we expect all the parties to be on-line and participating whenever a delegation is performed. Protection: As more of the built environment is connected and intelligent, the danger arises that more attack surfaces and threats are presented. Embedded devices tend to be particularly sen- sitive to DOS attacks because of limited processing power, often limited connection bandwidth, and largely unattended operation. Several examples in the literature [15, 28] show current vul- nerabilities to these threats and modern BOS have not fundamentally changed the picture. They typically apply modern network security, sit behind firewalls, avoid open ports, and may use Vir- tual Private Network (VPN) to cross Local Area Network (LAN). Execution containers: Lying beneath these issues is the simple fact that the building blocks of cyberphysical systems are numerous persistent computational processes—drivers, gateways, ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 17. Publication date: December 2018. Democratizing Authority in the Built Environment 17:3 controllers, and so on. Each of these resides in some execution container and needs to be managed (initiated, monitored, controlled, restarted, etc.), as does the container itself. In building a foundation for delegation, protection, and federation in higher level services, these principles can be utilized internally in the support for these services. To address these issues in the expansion from intelligent buildings to intelligence throughout the built environment, we explore incorporating delegation, protection, and federation into the communication substrate of the syndication layer. The idea is that in any attempt to publish to a resource, the entity making the attempt must present a proof of authorization (over multiple levels of delegation, across administrative domains) that can be easily verified by the router form- ing the syndication layer and by the recipient subscribers. Entities can delegate rights to access resources to other entities without engaging any central authority, in fact, without any communi- cation
Recommended publications
  • What's Included in the Homeos
    What’s included in the HomeOS kit (and some tips on using it) 2/21/2011 HomeOS is an experimental operating system for the home which focuses on providing centralized control of connected devices in the home, useful programming abstractions for developers, and allows for the easy addition of new devices and application functionality to the home environment. This document explains what application and driver modules are included in the kit and how to use them in your setup. It is not a programming guide; that would be programming-howto.docx. Because it might be a little out of date, your most up-to-date source of information is the source code itself Contents Drivers ......................................................................................................................................................... 2 DriverAxisCamera: for IP cameras made by Axis Communications ..................................................... 2 DriverDlnaDmr: for DLNA media renderers ......................................................................................... 2 DriverDlnaDms: for DLNA media servers ............................................................................................. 2 DriverImgRec: virtual device for face recognition ............................................................................... 3 DriverNotifications: virtual device for sending notifications over email and SMS .............................. 3 DriverWebCam: for Webcams ............................................................................................................
    [Show full text]
  • Computational Textiles and Augmenting Space Through Emotion
    Softbuilt: Computational Textiles and Augmenting Space Through Emotion by Felecia A. Davis Bachelor of Science in Engineering, Tufts University (1983) Master of Architecture, Princeton University (1993) Submitted to the Department of Architecture In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the field of Architecture: Design and Computation at the Massachusetts Institute of Technology September 2017 © 2017 Felecia A. Davis All rights reserved The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author Felecia Davis 11 August 2017 Department of Architecture Certified by Terry Knight Professor of Design and Computation Department of Architecture Thesis Supervisor Accepted by Sheila Kennedy Professor of Architecture Chair, Department Committee on Graduate Students 1 2 DISSERTATION COMMITTEE Dr. Terry Knight, Chair Professor of Design and Computation Massachusetts Institute of Technology Dr. Edith K. Ackermann Honorary Professor of Developmental Psychology University of Aix-Marseille 1, France Visiting Scientist Design and Computation Massachusetts Institute of Technology Dr. Leah Buechley Designer, Engineer, Educator Former Director High/ Low Tech Lab Massachusetts Institute of Technology Media Lab 3 4 Softbuilt: Computational Textiles and Augmenting Space Through Emotion By Felecia A. Davis Submitted to the Department of Architecture August 11 2017 in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Architecture: In Design and Computation at the Massachusetts Institute of Technology ABSTRACT When we inhabit, wear, and make textiles we are in conversation with our pre-historical and historical past and in a sense already connected to what is to come by the structure of fabric that operates as a mode of understanding the world.
    [Show full text]
  • Homeos: Context-Aware Home Connectivity ‡
    HomeOS: Context-Aware Home Connectivity ‡ Neal Rosen, Rizwan Sattar, Robert W. Lindeman, Rahul Simha, Bhagirath Narahari Department of Computer Science, The George Washington University {nrosen | rizwan | gogo | simha | narahari}@gwu.edu Abstract* is now possible to make the various devices that pervade our homes work together. Context-aware, The trend of cheaper ubiquitous and pervasive personalization-capable, home-automation systems will technology has reached a critical point. A standardized be possible in the very near future. integration of devices in the context of a home The integration of devices with different environment will be possible in the near future. technologies, conflicting standards, and incompatible HomeOS is an attempt to provide a standard interface interfaces can be approached the same way as the for a context-aware application and device integration construction of a single computer. The "motherboard" system. HomeOS offers three key features: cross- connects all devices through standard ports and slots, platform application portability; application following; the operating system (OS) provides a unified way of and management of multimedia streams. accessing these resources, and applications translate HomeOS allows applications and home management input into usable output. We can view the hardware services to run on a central server written in Java, and infrastructure of the networked home as the displays interface widgets on remote devices capable of motherboard connecting physical input and output acting as terminals. By implementing pre-defined Java devices. The OS to support the nature of typical interfaces, applications and devices can be integrated interaction in the home environment, what we call the into HomeOS, which handles the details of routing Home Operating System, or HomeOS, has distinct events to the current location of a designated user.
    [Show full text]
  • Remediot: Remedial Actions for Internet-Of-Things Conflicts
    RemedIoT: Remedial Actions for Internet-of-Things Conflicts Renju Liu Ziqi Wang [email protected] [email protected] University of California - Los Angeles (UCLA) University of California - Los Angeles (UCLA) Luis Garcia Mani Srivastava [email protected] [email protected] University of California - Los Angeles (UCLA) University of California - Los Angeles (UCLA) ABSTRACT ACM Reference Format: The increasing complexity and ubiquity of using IoT devices exac- Renju Liu, Ziqi Wang, Luis Garcia, and Mani Srivastava. 2019. RemedIoT: Remedial Actions for Internet-of-Things Conflicts. In The 6th ACM Inter- erbate the existing programming challenges in smart environments national Conference on Systems for Energy-Efficient Buildings, Cities, and such as smart homes, smart buildings, and smart cities. Recent Transportation (BuildSys ’19), November 13–14, 2019, New York, NY, USA. works have focused on detecting conflicts for the safety and utility ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3360322.3360837 of IoT applications, but they usually do not emphasize any means for conflict resolution other than just reporting the conflict tothe application user and blocking the conflicting behavior. We propose 1 INTRODUCTION RemedIoT, a remedial action 1 framework for resolving Internet- The proliferation of the Internet-of-Things (IoT) has enabled sen- of-Things conflicts. The RemedIoT framework uses state of the art sors and actuators across several facets of society for the purpose techniques to detect if a conflict exists in a given set of distributed of automating and optimizing our daily tasks. As humans settle IoT applications with respect to a set of policies, i.e., rules that define into smart environments, the collection of data and automation the allowable and restricted state-space transitions of devices.
    [Show full text]
  • Intelligent Discovery, Configuration and Composition of Devices in a Distributed System
    Intelligent Discovery, Configuration and Composition of Devices in a Distributed System Nicole Kaiyan Thesis submitted for the degree of Doctor of Philosophy in the School of Computer Science Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide Adelaide SA 5005 AUSTRALIA 2014 ii Abstract Establishing access to the functionality of input/output devices across a distributed system presents significant challenges worth investigating. To accomplish this requires locating devices and understanding their identity so that requests for them can be satisfied. Current systems require the domain of requestable devices be resolved beforehand and that they be identified as discrete items. Additionally, configuring devices only happens if an operating system has access to suitable drivers and composition is conducted by middleware applications, without any system service awareness. These approaches restrict device use in a distributed context and fail to provide a satisfactory solution. This research has the goal of accomplishing access to devices in a distributed system without such constraints. We present an approach where devices are described by a language based upon a rich taxonomy of form and function. Requests for devices are formulated using the same language and a matching process is employed to satisfy requests. The devices capable of being matched may be rich in functionality, complex, consist of sub-units, and include those yet to be developed. A taxonomy capturing the scope of form and function populates the description space with terms relevant to devices. The description space is structured hierarchically to manage complexity. A contribution is also made to improving the design and integration of operating systems components, in particular, those services responsible for managing devices, from configuration through to composition, and accomplishing such across a distributed system.
    [Show full text]
  • It's Time to End Monolithic Apps for Connected Devices
    SYSTEMS It’s Time to End Monolithic Apps for Connected Devices RAYMAN PREET SINGH, CHENGUANG SHEN, AMAR PHANISHAYEE, AMAN KANSAL, AND RATUL MAHAJAN Rayman Preet Singh is a PhD he proliferation of connected sensing devices (or Internet of Things) candidate in computer science can in theory enable a range of “smart” applications that make at the University of Waterloo, rich inferences about users and their environment. But in practice, Canada. He is co-advised by S. T Keshav and Tim Brecht, and has developing such applications today is arduous because they are constructed broad research interests in distributed systems as monolithic silos, tightly coupled to sensing devices, and must implement and ubiquitous computing. all data sensing and inference logic, even as devices move or are temporarily [email protected] disconnected. We present Beam, a framework and runtime for distributed inference-driven applications that breaks down application silos by decou- Chenguang Shen is a PhD pling their inference logic from other functionality. It simplifies applications candidate in computer science at the University of California, by letting them specify “what should be sensed or inferred,” without worry- Los Angeles (UCLA), working ing about “how it is sensed or inferred.” We discuss the challenges and oppor- with Professor Mani Srivastava. tunities in building such an inference framework. He obtained his MS in computer science from Connected sensing devices such as cameras, thermostats, and in-home motion, door- window, UCLA in 2014, and a BEng in software energy, and water sensors, collectively dubbed the Internet of Things (IoT), are rapidly per- engineering from Fudan University, Shanghai, meating our living environments, with an estimated 50 billion such devices projected for use China in 2012.
    [Show full text]
  • Decentralized Authorization with Private Delegation by Michael P Andersen a Dissertation Submitted in Partial Satisfaction of Th
    Decentralized Authorization with Private Delegation by Michael P Andersen A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David E. Culler, Chair Associate Professor Deirdre Mulligan Assistant Professor Raluca Ada Popa Summer 2019 Decentralized Authorization with Private Delegation Copyright 2019 by Michael P Andersen 1 Abstract Decentralized Authorization with Private Delegation by Michael P Andersen Doctor of Philosophy in Computer Science University of California, Berkeley Professor David E. Culler, Chair Authentication and authorization systems can be found in almost every software system, and consequently affects every aspect of our lives. Despite the variety in the software that relies on authorization, the authorization subsystem itself is almost universally architected following a com- mon pattern with unfortunate characteristics. The first of these is that there usually exists a set of centralized servers that hosts the set of users and their permissions. This results in a number of security threats, such as permitting the operator of the authorization system to view or even change the permission data for all users. Secondly, these systems do not permit federation across administrative domains, as there is no safe choice of system operator: any operator would have visibility and control in all administrative domains, which is unacceptable. Thirdly, these systems do not offer transitive delegation: when a user grants permission to another user, the permissions of the recipient are not predicated upon the permissions of the granter. This makes it very difficult to reason about permissions as the complexity of the system grows, especially in the federation across domains case where no party can have absolute visibility into all permissions.
    [Show full text]
  • Scale-Out Beyond Mapreduce
    Scale-out Beyond MapReduce Raghu Ramakrishnan Cloud Information Services Lab (CISL) Microsoft Outline • Big Data – The New Applications – The Digital Shoebox • Tiered Storage • Compute Fabric • REEF Cloud Information Services Lab (CISL) • Applied research for Cloud and Enterprise (CE) • Focus areas: – Cloud data platforms, predictive analytics and data-driven enterprise applications • Modus innovatii: – Embedded with the product team – Engage closely with MSR – Balance of external and internal impact Big Data What’s the big deal? What’s New? • What we’re doing with it! – The tech is best thought of in terms of what it enables • Why is this more than tech evolution? – Cloud services + advances in analytics + HW trends = Ability to cost-effectively do things we couldn’t dream of before – Uncomfortably fast evolution = revolution Challenges • Is there real technical innovation here? – Yes: Elastic scale-out; heterogeneous data and analysis; real-time/interactive; “instant on” cloud access – Many fascinating challenges, no deal breakers • What about the social, legal and regulatory issues? – Will take longer to understand and resolve • Biggest gap – People: data scientists, data-driven managers (McKinsey) – NAE CATS Big Data training workshop (planned for Jan 2014) Web of Concepts PODS 2009 keynote structured data concept Mumbai julia roberts restaurant san jose Aggregated KB INDEX SERP The “index” is keyed by concept instance, and organizes all relevant information, wherever it is drawn from, in semantically meaningful ways Content Optimization
    [Show full text]
  • Creation of a Building Operating System: Holistic Approach
    Samu Viitanen Creation of a Building Operating System: Holistic Approach Master’s Thesis Department of Built Environment School of Engineering Aalto University Espoo, 1 December 2017 Bachelor of Science in Technology Samu Viitanen Supervisor: Professor Seppo Junnila Instructor: Professor Timo Seppälä Aalto-yliopisto, PL 11000, 00076 AALTO www.aalto.fi Diplomityön tiivistelmä Tekijä Samu Viitanen Työn nimi Rakennuksen käyttöjärjestelmän luonti: kokonaisvaltainen lähestymistapa Koulutusohjelma Kiinteistötalous Pää-/sivuaine Kiinteistötekniikka Koodi M3007 Työn valvoja Professori Seppo Junnila Työn ohjaaja(t) Professori Timo Seppälä Päivämäärä 1.12.2017 Sivumäärä 85 Kieli englanti Tiivistelmä Tämän diplomityön tarkoituksena on tutkia rakennuksen käyttöjärjestelmän holistisia vaatimuksia. Laaja kirjallisuuskatsaus tehtiin aiheen ymmärtämiseksi, joka tutkii käyttöjärjestelmien evoluutiota rinnakkain tietojenkäsittelyn historian kanssa, tarkoituksena hahmottaa käyttöjärjestelmän käsitettä. Lisäksi, eri rakennusten tietojärjestelmiä, mukaan lukien rakennusautomaatiojärjestelmiä ja esineiden internet - järjestelmiä käytiin läpi ymmärtääkseen nykyisiä ja tulevia trendejä rakennusteknologiassa. Edelleen kirjallisuuskatsaus tutkii televiestintää ja sähköistä tunnistautumista niiden kehityksen ja standardisoinnin kautta kohti yhteentoimivuutta, tarjoten tietoa siitä, miten yhteentoimivuutta voitaisiin kehittää rakennusjärjestelmissä. Haastattelututkimus tehtiin diplomityön empiirisenä osuutena, jonka tarkoituksena oli laajentaa työn teoreettista
    [Show full text]
  • Demo Abstract: Augmenting Homes with Custom Devices Using .NET Gadgeteer and Homeos
    Demo Abstract: Augmenting Homes with Custom Devices Using .NET Gadgeteer and HomeOS James Scott A.J. Bernheim Brush Ratul Mahajan Microsoft Research,UK Microsoft Research, USA Microsoft Research, USA [email protected] [email protected] [email protected] Abstract type of the device and its functionality. For instance, the API We describe how two of our recent research technolo- for a light includes “on” and “off” commands. Therefore, gies, .NET Gadgeteer and HomeOS, complement each other HomeOS applications can be independent of device proto- in enabling research using custom devices in home deploy- cols and vendors. ments. .NET Gadgeteer enables rapid prototyping of custom HomeOS currently runs in 12 homes in the Pacific North- devices based on solderless assembly from a wide range of west region of the USA. It has support for many types of de- publicly available hardware modules, and managed C# soft- vices such as light switches, dimmers, door/window sensors, ware. HomeOS provides abstraction layers so that “apps” and cameras. We have also written eighteen applications can be written which leverage devices in the home (e.g. wire- that use these devices in various ways. We have made the less sensors, webcams) using standard APIs. In combination, HomeOS prototype available to academic institutions. Over HomeOS and .NET Gadgeteer make it easy to construct cus- 50 students across twenty research groups have developed tom devices which interact with HomeOS apps. We show- applications and drivers for HomeOS (see [2]). Applications case an example custom device and application a plumbing include energy profiling, remote monitoring, and end user leak sensor and leak notification application.
    [Show full text]
  • II Simposio Latinoamericano De
    ISSN 1390-5384 (Impreso) ISSN 2528-7796 (En línea) Vol. 12, Núm. 3 (2020) II Simposio Latinoamericano de Vol. 12, Núm. 3 (2020) USFQ PRESS Universidad San Francisco de Quito USFQ Campus Cumbayá USFQ, Quito 170901, Ecuador https://usfqpress.com USFQ PRESS es el departamento editorial de la Universidad San Francisco de Quito USFQ. Fomentamos la misión de la universidad al divulgar el conocimiento para formar, educar, investigar y servir a la comunidad dentro de la filosofía de las Artes Liberales. ACI Avances en Ciencias e Ingenierías Vol. 12, Núm. 3, 2020 Autores en esta edición: Fatma Sarsu1, Isaac Kofi Bimpong1, Ljupcho Jankuloski1, Alejandra Landau2, Vanina Brizuela2, Franco Lencina2, Alicia Martínez2, Daniel Díaz2, María Gabriela Pacheco2, Alberto R. Prina2, Mauricio Tcach3, Verónica Bugallo4,5, Gabriela Facciuto5, Mariana Pérez de la Torre5, Vanina Brizuela6, Alberto Prina6, Alejandra Landau6, Pablo Álvarez7, Álvaro Yépez7, Emilio Basantes7, Ángel Murillo8, Eduardo Peralta8, Jorge Rivadeneira9, Xavier Cuesta9, Roberto López10, María Villavicencio11, Kristha Paredes Branda12, Héctor Nakayama12, Edith Segovia12, María Caridad González13, Yamil E. Cartagena14, Rafael A. Parra14, Franklin M. Valverde14, José L. Zambrano14, Soraya P. Alvarado15, Eddy Paul Anguisaca Totasig16, María Cristina Cuesta Plúa16, Marco Vinicio Sinche Serra16, Elena Villacrés17, Mishel Yanez17,18, María Belén Quelal17, Trosky Yánez18, Javier Garófalo-Sosa19, Luis Ponce-Molina19, Patricio Noroña-Zapata19, Diego Campaña-Cruz19 1Plant Breeding and Genetics Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria. 2Instituto de Genética “Ewald A. Favret” (IGEAF), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina. 3Estación Experimental Agropecuaria Sáenz Peña, Chaco, Argentina.
    [Show full text]
  • A Software Development Environment for Building Context-Aware Systems for Family Technology
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2005-11-21 A Software Development Environment for Building Context-Aware Systems for Family Technology Jeremiah Kenton Jones Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Databases and Information Systems Commons BYU ScholarsArchive Citation Jones, Jeremiah Kenton, "A Software Development Environment for Building Context-Aware Systems for Family Technology" (2005). Theses and Dissertations. 331. https://scholarsarchive.byu.edu/etd/331 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A SOFTWARE DEVELOPMENT ENVIRONMENT FOR BUILDING CONTEXT-AWARE SYSTEMS FOR FAMILY TECHNOLOGY by Jeremiah K. Jones A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science School of Technology Brigham Young University December 2005 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Jeremiah K. Jones This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. ____________________________ ____________________________________ Date Richard Helps, Chair ____________________________ ____________________________________
    [Show full text]