Differential Equations for Engineers

Total Page:16

File Type:pdf, Size:1020Kb

Differential Equations for Engineers Differential Equations for Engineers Lecture Notes for Jeffrey R. Chasnov The Hong Kong University of Science and Technology Department of Mathematics Clear Water Bay, Kowloon Hong Kong Copyright ○c 2019 by Jeffrey Robert Chasnov This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Preface View the promotional video on YouTube These are my lecture notes for my online Coursera course, Differential Equations for Engineers.I have divided these notes into chapters called Lectures, with each Lecture corresponding to a video on Coursera. I have also uploaded all my Coursera videos to YouTube, and links are placed at the top of each Lecture. There are problems at the end of each lecture chapter and I have tried to choose problems that exemplify the main idea of the lecture. Students taking a formal university course in differential equations will usually be assigned many more additional problems, but here I follow the philosophy that less is more. I give enough problems for students to solidify their understanding of the material, but not too many problems that students feel overwhelmed and drop out. I do encourage students to attempt the given problems, but if they get stuck, full solutions can be found in the Appendix. There are also additional problems at the end of coherent sections that are given as practice quizzes on the Coursera platform. Again, students should attempt these quizzes on the platform, but if a student has trouble obtaining a correct answer, full solutions are also found in the Appendix. Students who take this course are expected to know single-variable differential and integral calcu- lus. Some knowledge of complex numbers, matrix algebra and vector calculus is required for parts of this course. Students missing this latter knowledge can find the necessary material in the Appendix. Jeffrey R. Chasnov Hong Kong January 2019 iii Contents 1 Introduction to differential equations1 Practice quiz: Classify differential equations3 I First-Order Differential Equations5 2 Euler method 9 3 Separable first-order equations 11 4 Separable first-order equation: example 13 Practice quiz: Separable first-order odes 15 5 Linear first-order equations 17 6 Linear first-order equation: example 19 Practice quiz: Linear first-order odes 21 7 Application: compound interest 23 8 Application: terminal velocity 25 9 Application: RC circuit 27 Practice quiz: Applications 31 II Homogeneous Linear Differential Equations 33 10 Euler method for higher-order odes 37 11 The principle of superposition 39 12 The Wronskian 41 13 Homogeneous second-order ode with constant coefficients 43 Practice quiz: Superposition, the Wronskian, and the characteristic equation 45 v vi CONTENTS 14 Case 1: Distinct real roots 47 15 Case 2: Complex-conjugate roots (Part A) 49 16 Case 2: Complex-conjugate roots (Part B) 51 17 Case 3: Repeated roots (Part A) 53 18 Case 3: Repeated roots (Part B) 55 Practice quiz: Homogeneous equations 57 III Inhomogeneous Linear Differential Equations 59 19 Inhomogeneous second-order ode 63 20 Inhomogeneous term: Exponential function 65 Practice quiz: Solving inhomogeneous equations 67 21 Inhomogeneous term: Sine or cosine (Part A) 69 22 Inhomogeneous term: Sine or cosine (Part B) 71 23 Inhomogeneous term: Polynomials 73 Practice quiz: Particular solutions 75 24 Resonance 77 25 Application: RLC circuit 79 26 Application: Mass on a spring 83 27 Application: Pendulum 85 28 Damped resonance 87 Practice quiz: Applications and resonance 89 IV The Laplace Transform and Series Solution Methods 91 29 Definition of the Laplace transform 95 30 Laplace transform of a constant-coefficient ode 97 31 Solution of an initial value problem 99 Practice quiz: The Laplace transform method 101 32 The Heaviside step function 103 33 The Dirac delta function 105 CONTENTS vii 34 Solution of a discontinuous inhomogeneous term 107 35 Solution of an impulsive inhomogeneous term 109 Practice quiz: Discontinuous and impulsive inhomogeneous terms 111 36 The series solution method 113 37 Series solution of the Airy’s equation (Part A) 117 38 Series solution of the Airy’s equation (Part B) 121 Practice quiz: Series solutions 123 V Systems of Differential Equations 125 39 Systems of linear first-order odes 129 40 Distinct real eigenvalues 131 41 Complex-conjugate eigenvalues 133 Practice quiz: Systems of differential equations 135 42 Phase portraits 137 43 Stable and unstable nodes 139 44 Saddle points 141 45 Spiral points 143 Practice quiz: Phase portraits 145 46 Coupled oscillators 147 47 Normal modes (eigenvalues) 149 48 Normal modes (eigenvectors) 151 Practice quiz: Normal modes 153 VI Partial Differential Equations 155 49 Fourier series 159 50 Fourier sine and cosine series 161 51 Fourier series: example 163 Practice quiz: Fourier series 165 52 The diffusion equation 167 viii CONTENTS 53 Solution of the diffusion equation (separation of variables) 169 54 Solution of the diffusion equation (eigenvalues) 171 Practice quiz: Separable partial differential equations 173 55 Solution of the diffusion equation (Fourier series) 175 56 Diffusion equation: example 177 Practice quiz: The diffusion equation 179 Appendix 180 A Complex numbers 183 B Nondimensionalization 185 C Matrices and determinants 187 D Eigenvalues and eigenvectors 189 E Partial derivatives 191 F Table of Laplace transforms 193 G Problem and practice quiz solutions 195 Lecture 1 Introduction to differential equations View this lecture on YouTube A differential equation is an equation for a function containing derivatives of that function. For exam- ple, the differential equations for an RLC circuit, a pendulum, and a diffusing dye are given by d2q dq 1 L + R + q = E cos wt, (RLC circuit equation) dt2 dt C 0 d2q dq ml + cl + mg sin q = F cos wt, (pendulum equation) dt2 dt 0 ¶u ¶2u ¶2u ¶2u = D + + . (diffusion equation) ¶t ¶x2 ¶y2 ¶z2 These are second-order differential equations, categorized according to the highest order derivative. The RLC circuit equation (and pendulum equation) is an ordinary differential equation, or ode, and the diffusion equation is a partial differential equation, or pde. An ode is an equation for a function of a single variable and a pde for a function of more than one variable. A pde is theoretically equivalent to an infinite number of odes, and numerical solution of nonlinear pdes may require supercomputer resources. The RLC circuit and the diffusion equation are linear and the pendulum equation is nonlinear. In a linear differential equation, the unknown function and its derivatives appear as a linear polynomial. For instance, the general linear third-order ode, where y = y(x) and primes denote derivatives with respect to x, is given by 000 00 0 a3(x)y + a2(x)y + a1(x)y + a0(x)y = b(x), where the a and b coefficients can be any function of x. The pendulum equation is nonlinear because of the term sin q, where q = q(t) is the unknown function. Making the small angle approximation, sin q ≈ q, the pendulum equation becomes linear. The simplest type of ode can be solved by integration. For example, a mass such as Newton’s apocryphal apple, falls downward with constant acceleration, and satisfies the differential equation d2x = −g. dt2 With initial conditions specifying the initial height of the mass x0 and its initial velocity u0, the solution obtained by straightforward integration is given by the well-known high school physics equation 1 x(t) = x + u t − gt2. 0 0 2 1 2 LECTURE 1. INTRODUCTION TO DIFFERENTIAL EQUATIONS Practice quiz: Classify differential equations 1. By checking all that apply, classify the following differential equation: d3y d2y + y = 0 dx3 dx2 a) first order b) second order c) third order d) ordinary e) partial f ) linear g) nonlinear 2. By checking all that apply, classify the following differential equation: 1 d dy x2 = e−y x2 dx dx a) first order b) second order c) ordinary d) partial e) linear f ) nonlinear 3 4 LECTURE 1. INTRODUCTION TO DIFFERENTIAL EQUATIONS 3. By checking all that apply, classify the following differential equation: ¶u ¶u ¶2u + u = n ¶t ¶x ¶x2 a) first order b) second order c) ordinary d) partial e) linear f ) nonlinear 4. By checking all that apply, classify the following differential equation: d2x dx a + b + cx = 0 dt2 dt a) first order b) second order c) ordinary d) partial e) linear f ) nonlinear 5. By checking all that apply, classify the following differential equation: ¶2u ¶2u ¶2u ¶2u = c2 + + ¶t2 ¶x2 ¶y2 ¶z2 a) first order b) second order c) ordinary d) partial e) linear f ) nonlinear Solutions to the Practice quiz Week I First-Order Differential Equations 5 7 In this week’s lectures, we discuss first-order differential equations. We begin by explaining the Euler method, which is a simple numerical method for solving an ode. Not all first-order differential equations have an analytical solution, so it is useful to understand a basic numerical method. Then the analytical solution methods for separable and linear equations are explained. We follow the dis- cussion of each theory with some simple examples. Finally, three real-world applications of first-order equations and their solutions are presented: compound interest, terminal velocity of a falling mass, and the resistor-capacitor electrical circuit. 8 Lecture 2 Euler method View this lecture on YouTube y = y +∆x f(x ,y ) 1 0 0 0 y 1 slope = f(x ,y ) 0 0 y 0 x x 0 1 dy/dx = f (x, y) with initial condition y(x0) = y0 is integrated to x = x1 using the Euler method.
Recommended publications
  • Ordinary Differential Equations
    Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license is that You are free to: Share copy and redistribute the material in any medium or format • Adapt remix, transform, and build upon the material for any purpose, even commercially. • The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution You must give appropriate credit, provide a link to the license, and indicate if changes • were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Notices: You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the web page below. To view a full copy of this license, visit https://creativecommons.org/licenses/by/4.0/legalcode.
    [Show full text]
  • New Dirac Delta Function Based Methods with Applications To
    New Dirac Delta function based methods with applications to perturbative expansions in quantum field theory Achim Kempf1, David M. Jackson2, Alejandro H. Morales3 1Departments of Applied Mathematics and Physics 2Department of Combinatorics and Optimization University of Waterloo, Ontario N2L 3G1, Canada, 3Laboratoire de Combinatoire et d’Informatique Math´ematique (LaCIM) Universit´edu Qu´ebec `aMontr´eal, Canada Abstract. We derive new all-purpose methods that involve the Dirac Delta distribution. Some of the new methods use derivatives in the argument of the Dirac Delta. We highlight potential avenues for applications to quantum field theory and we also exhibit a connection to the problem of blurring/deblurring in signal processing. We find that blurring, which can be thought of as a result of multi-path evolution, is, in Euclidean quantum field theory without spontaneous symmetry breaking, the strong coupling dual of the usual small coupling expansion in terms of the sum over Feynman graphs. arXiv:1404.0747v3 [math-ph] 23 Sep 2014 2 1. A method for generating new representations of the Dirac Delta The Dirac Delta distribution, see e.g., [1, 2, 3], serves as a useful tool from physics to engineering. Our aim here is to develop new all-purpose methods involving the Dirac Delta distribution and to show possible avenues for applications, in particular, to quantum field theory. We begin by fixing the conventions for the Fourier transform: 1 1 g(y) := g(x) eixy dx, g(x)= g(y) e−ixy dy (1) √2π √2π Z Z To simplify the notation we denote integration over the real line by the absence of e e integration delimiters.
    [Show full text]
  • Second Order Linear Differential Equations Y
    Second Order Linear Differential Equations Second order linear equations with constant coefficients; Fundamental solutions; Wronskian; Existence and Uniqueness of solutions; the characteristic equation; solutions of homogeneous linear equations; reduction of order; Euler equations In this chapter we will study ordinary differential equations of the standard form below, known as the second order linear equations : y″ + p(t) y′ + q(t) y = g(t). Homogeneous Equations : If g(t) = 0, then the equation above becomes y″ + p(t) y′ + q(t) y = 0. It is called a homogeneous equation. Otherwise, the equation is nonhomogeneous (or inhomogeneous ). Trivial Solution : For the homogeneous equation above, note that the function y(t) = 0 always satisfies the given equation, regardless what p(t) and q(t) are. This constant zero solution is called the trivial solution of such an equation. © 2008, 2016 Zachary S Tseng B-1 - 1 Second Order Linear Homogeneous Differential Equations with Constant Coefficients For the most part, we will only learn how to solve second order linear equation with constant coefficients (that is, when p(t) and q(t) are constants). Since a homogeneous equation is easier to solve compares to its nonhomogeneous counterpart, we start with second order linear homogeneous equations that contain constant coefficients only: a y″ + b y′ + c y = 0. Where a, b, and c are constants, a ≠ 0. A very simple instance of such type of equations is y″ − y = 0 . The equation’s solution is any function satisfying the equality t y″ = y. Obviously y1 = e is a solution, and so is any constant multiple t −t of it, C1 e .
    [Show full text]
  • 5 Mar 2009 a Survey on the Inverse Integrating Factor
    A survey on the inverse integrating factor.∗ Isaac A. Garc´ıa (1) & Maite Grau (1) Abstract The relation between limit cycles of planar differential systems and the inverse integrating factor was first shown in an article of Giacomini, Llibre and Viano appeared in 1996. From that moment on, many research articles are devoted to the study of the properties of the inverse integrating factor and its relation with limit cycles and their bifurcations. This paper is a summary of all the results about this topic. We include a list of references together with the corresponding related results aiming at being as much exhaustive as possible. The paper is, nonetheless, self-contained in such a way that all the main results on the inverse integrating factor are stated and a complete overview of the subject is given. Each section contains a different issue to which the inverse integrating factor plays a role: the integrability problem, relation with Lie symmetries, the center problem, vanishing set of an inverse integrating factor, bifurcation of limit cycles from either a period annulus or from a monodromic ω-limit set and some generalizations. 2000 AMS Subject Classification: 34C07, 37G15, 34-02. Key words and phrases: inverse integrating factor, bifurcation, Poincar´emap, limit cycle, Lie symmetry, integrability, monodromic graphic. arXiv:0903.0941v1 [math.DS] 5 Mar 2009 1 The Euler integrating factor The method of integrating factors is, in principle, a means for solving ordinary differential equations of first order and it is theoretically important. The use of integrating factors goes back to Leonhard Euler. Let us consider a first order differential equation and write the equation in the Pfaffian form ω = P (x, y) dy Q(x, y) dx =0 .
    [Show full text]
  • Handbook of Mathematics, Physics and Astronomy Data
    Handbook of Mathematics, Physics and Astronomy Data School of Chemical and Physical Sciences c 2017 Contents 1 Reference Data 1 1.1 PhysicalConstants ............................... .... 2 1.2 AstrophysicalQuantities. ....... 3 1.3 PeriodicTable ................................... 4 1.4 ElectronConfigurationsoftheElements . ......... 5 1.5 GreekAlphabetandSIPrefixes. ..... 6 2 Mathematics 7 2.1 MathematicalConstantsandNotation . ........ 8 2.2 Algebra ......................................... 9 2.3 TrigonometricalIdentities . ........ 10 2.4 HyperbolicFunctions. ..... 12 2.5 Differentiation .................................. 13 2.6 StandardDerivatives. ..... 14 2.7 Integration ..................................... 15 2.8 StandardIndefiniteIntegrals . ....... 16 2.9 DefiniteIntegrals ................................ 18 2.10 CurvilinearCoordinateSystems. ......... 19 2.11 VectorsandVectorAlgebra . ...... 22 2.12ComplexNumbers ................................. 25 2.13Series ......................................... 27 2.14 OrdinaryDifferentialEquations . ......... 30 2.15 PartialDifferentiation . ....... 33 2.16 PartialDifferentialEquations . ......... 35 2.17 DeterminantsandMatrices . ...... 36 2.18VectorCalculus................................. 39 2.19FourierSeries .................................. 42 2.20Statistics ..................................... 45 3 Selected Physics Formulae 47 3.1 EquationsofElectromagnetism . ....... 48 3.2 Equations of Relativistic Kinematics and Mechanics . ............. 49 3.3 Thermodynamics and Statistical Physics
    [Show full text]
  • FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS III: Numerical and More Analytic Methods
    FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS III: Numerical and More Analytic Methods David Levermore Department of Mathematics University of Maryland 30 September 2012 Because the presentation of this material in lecture will differ from that in the book, I felt that notes that closely follow the lecture presentation might be appreciated. Contents 8. First-Order Equations: Numerical Methods 8.1. Numerical Approximations 2 8.2. Explicit and Implicit Euler Methods 3 8.3. Explicit One-Step Methods Based on Taylor Approximation 4 8.3.1. Explicit Euler Method Revisited 4 8.3.2. Local and Global Errors 4 8.3.3. Higher-Order Taylor-Based Methods (not covered) 5 8.4. Explicit One-Step Methods Based on Quadrature 6 8.4.1. Explicit Euler Method Revisited Again 6 8.4.2. Runge-Trapezoidal Method 7 8.4.3. Runge-Midpoint Method 9 8.4.4. Runge-Kutta Method 10 8.4.5. General Runge-Kutta Methods (not covered) 12 9. Exact Differential Forms and Integrating Factors 9.1. Implicit General Solutions 15 9.2. Exact Differential Forms 16 9.3. Integrating Factors 20 10. Special First-Order Equations and Substitution 10.1. Linear Argument Equations (not covered) 25 10.2. Dilation Invariant Equations (not covered) 26 10.3. Bernoulli Equations (not covered) 27 10.4. Substitution (not covered) 29 1 2 8. First-Order Equations: Numerical Methods 8.1. Numerical Approximations. Analytic methods are either difficult or impossible to apply to many first-order differential equations. In such cases direction fields might be the only graphical method that we have covered that can be applied.
    [Show full text]
  • Phase-Space Matrix Representation of Differential Equations for Obtaining the Energy Spectrum of Model Quantum Systems
    Phase-space matrix representation of differential equations for obtaining the energy spectrum of model quantum systems Juan C. Morales, Carlos A. Arango1, a) Department of Chemical Sciences, Universidad Icesi, Cali, Colombia (Dated: 27 August 2021) Employing the phase-space representation of second order ordinary differential equa- tions we developed a method to find the eigenvalues and eigenfunctions of the 1- dimensional time independent Schr¨odinger equation for quantum model systems. The method presented simplifies some approaches shown in textbooks, based on asymptotic analyses of the time-independent Schr¨odinger equation, and power series methods with recurrence relations. In addition, the method presented here facilitates the understanding of the relationship between the ordinary differential equations of the mathematical physics and the time independent Schr¨odinger equation of physical models as the harmonic oscillator, the rigid rotor, the Hydrogen atom, and the Morse oscillator. Keywords: phase-space, model quantum systems, energy spectrum arXiv:2108.11487v1 [quant-ph] 25 Aug 2021 a)Electronic mail: [email protected] 1 I. INTRODUCTION The 1-dimensional time independent Schr¨odinger equation (TISE) can be solved analyt- ically for few physical models. The harmonic oscillator, the rigid rotor, the Hydrogen atom, and the Morse oscillator are examples of physical models with known analytical solution of the TISE (1). The analytical solution of the TISE for a physical model is usually obtained by using the ansatz of a wavefunction as a product of two functions, one of these functions acts as an integrating factor (2), the other function produces a differential equation solv- able either by Frobenius series method or by directly comparing with a template ordinary differential equation (ODE) with known solution (3).
    [Show full text]
  • Mathematics for Chemistry Prof. Madhav Ranganathan Department of Chemistry Indian Institute of Technology, Kanpur
    Mathematics for Chemistry Prof. Madhav Ranganathan Department of Chemistry Indian Institute of Technology, Kanpur Module - 05 Lecture - 23 Integrating Factors Today I will be talking about the Integrating Factor method, which is a method for solving differential equations; first order differential equations which cannot be expressed as exact differentials. (Refer Slide Time: 00:22) (Refer Slide Time: 00:27) (Refer Slide Time: 02:59) So, just to remind ourselves about exact and in exact differentials. We said that, we can write our first order differential equation as M times dx plus N times dy equal to 0; where M and N are functions of x and y. And what we said is at an exact differential implies. So, exact implies dou N by dou y equal to dou N by dou x. So, then you say it like that. If it is not exact; so if not exact then can we find some function alpha of x y such that alpha times M dx plus alpha times N dy equal to 0 is an exact differential. So, what I mean is that the left hand side is an exact differential. So, what I did is I just took this equation multiplied it by alpha. So, the right hand side will be 0 into alpha which will still be 0. Now, what I have is alpha M and alpha N instead of M and N. Now if this is an exact differential. So, can we find such an alpha? So, this is the main goal of this idea of integrating factor.
    [Show full text]
  • Solving 1St Order Odes
    Solving First Order ODEs Table of contents Solving First Order ODEs ............................................... 1 1. Introduction ..................................... ................. 1 Side: Two ways of writing a semilinear 1st order ODE . .............. 2 2. Integrating factors and separation of variables . ......................... 2 Side: One must be careful when multiplying an ODE by a function .............. 3 Side:Theroadahead .................................. ......... 3 3. Linear1storderequations .......................... ................... 4 Summary: Solving 1st order linear equations . ............... 6 4. Separableequations ............................... .................. 7 Summary: Solvingseparable equations . .............. 9 5. Exactequations ................................... ................ 9 Side:Theoperator“d” ................................ ........... 9 6. Non-exactequations ............................... .................. 12 7. Solvable equations in disguise: Transformation method . ......................... 18 7.1. Homogeneousequation ............................ ............... 18 7.2. dy G a x b y ................................................ 19 dx = ( + ) 7.3. Bernoulliequation .............................. ................ 19 7.4. Equations with linear coefficients (NOT REQUIRED FOR 334 FALL2010) ......... 20 8. Direction field, numerics, and well-posedness theory . ......................... 22 8.1. Directionfield .................................. ............... 22 8.2. Numerics ......................................
    [Show full text]
  • Analytic Solutions for Third Order Ordinary Differential Equations
    2019 HAWAII UNIVERSITY INTERNATIONAL CONFERENCES SCIENCE, TECHNOLOGY & ENGINEERING, ARTS, MATHEMATICS & EDUCATION JUNE 5 - 7, 2019 HAWAII PRINCE HOTEL WAIKIKI, HONOLULU, HAWAII ANALYTIC SOLUTIONS FOR THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS BECCAR-VARELA, MARIA P. ET AL UNIVERSITY OF TEXAS AT EL PASO EL PASO, TEXAS Dr. Maria P. Beccar-Varela Department of Mathematical Sciences University of Texas at El Paso El Paso, Texas Mr. Md Al Masum Bhuiyan Mr. Osei K. Tweneboah Computational Science Program University of Texas at El Paso El Paso, Texas Dr. Maria C. Mariani Department of Mathematical Sciences and Computational Science Program University of Texas at El Paso El Paso, Texas Analytic Solutions for Third Order Ordinary Differential Equations Synopsis: This work studies an analytic approach for solving higher order ordinary differential equations (ODEs). We develop alternate techniques for solving third order ODEs and discuss possible generalizations to higher order ODEs. The techniques are effective for solving complex ODEs and could be used in other application of sciences such as physics, engineering, and applied sciences. Analytic Solutions for Third Order Ordinary Differential Equations Maria P. Beccar-Varela ∗, Md Al Masum Bhuiyany, Maria C. Marianiz and Osei K. Tweneboahx Abstract This paper focuses on an analytic approach for solving higher order ordinary differential equations (ODEs). We develop a self-adjoint for- mulation and integrating-factor techniques to solve third order ODEs. The necessary conditions for ODEs to be self-adjoint are also pro- vided. Under these conditions, we find the analytic solution of the ODEs. The solutions produced in this work are exact unlike numeri- cal solutions which have approximation errors.
    [Show full text]
  • Solving Linear First-Order Differential Equations Leonard Euler's Integrating Factor Method
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Differential Equations Mathematics via Primary Historical Sources (TRIUMPHS) Summer 2020 Solving Linear First-Order Differential Equations Leonard Euler's Integrating Factor Method Adam E. Parker Wittenberg University Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_differ Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Parker, Adam E., "Solving Linear First-Order Differential Equations Leonard Euler's Integrating Factor Method" (2020). Differential Equations. 4. https://digitalcommons.ursinus.edu/triumphs_differ/4 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Differential Equations by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. Solving Linear First-Order Differential Equations Leonard Euler’s Integrating Factor Method Adam E. Parker∗ May 26, 2021 1 Introduction In 1926, British mathematician E. L. Ince (1891–1941) described the typical evolution of solution techniques from calculus (and differential equations and science in general).1 1111111111111111111111111111111111111111 The early history of the infinitesimal calculus abounds in instances of problems solved through the agency of what were virtually differential equations; it is even true to say that the problem of integration, which may be regarded as the solution of the simplest of all types of differential equations, was a practical problem even in the middle of the sixteenth century.
    [Show full text]
  • Ordinary Differential Equations Math 22B-002, Spring 2017 Final Exam: Solutions 1. [15 Pts.] Solve the Initial Value Problem
    Ordinary Differential Equations Math 22B-002, Spring 2017 Final Exam: Solutions 1. [15 pts.] Solve the initial value problem 6y00 − y0 − y = 0; y(0) = 10; y0(0) = 0: Solution. • The characteristic equation is 6r2 −r −1 = 0 with roots r = 1=2; −1=3, so the general solution is x=2 −x=3 y(x) = c1e + c2e : • The initial conditions are satisfied if 1 1 c + c = 10; c − c = 0 1 2 2 1 3 2 whose solution is c1 = 4, c2 = 6, so y(x) = 4ex=2 + 6e−x=3: 1 2. [20 pts.] (a) Let y0 is an arbitrary constant. Find the solution y(x) of the initial-value problem 0 y − 2xy = x; y(0) = y0: (b) For what initial value y0 does the solution remain bounded as x ! +1? What is the solution in that case? Solution. • The ODE is first-order, linear, and nohomogeneous, so we use the in- tegrating factor method. • The integrating factor with coefficient p(x) = −2x is given by Z µ(x) = exp − 2x dx = e−x2 : • Multiplying the ODE by the integrating factor and writing the left- hand side as an exact derivative, we get that 2 0 2 e−x y = xe−x ; so 2 Z 2 1 2 e−x y(x) = xe−x dx + c = − ex + c; 2 and the general solution is 1 2 y(x) = − + cex : 2 • The initial condition gives y0 = −1=2 + c, so c = y0 + 1=2 and 1 1 2 y(x) = − + y + ex : 2 0 2 • (b) The solution remains bounded as x ! 1 if c = 0 and y0 = −1=2.
    [Show full text]