Cape Preston Services Corridor Culverts

Total Page:16

File Type:pdf, Size:1020Kb

Cape Preston Services Corridor Culverts Appendix E Tidal Flow Monitoring GEMS 2008 GEMS GLOBAL ENVIRONMENTAL MODELLING S Y S T E M S GLOBAL ENVIRONMENTAL MAPPING S Y S T E M S GLOBAL ENVIRONMENTAL MONITORING S Y S T E M S Technical Report OCEANOGRAPHIC STUDIES FOR THE DEVELOPMENT OF THE CAPE PRESTON SERVICES CORRIDOR CAUSEWAY February 2008 GEMS GEMS CONTACT DETAILS Melbourne Office Perth Office Telephone: +61 (0)3 9712 0016 Telephone: +61 (0)8 6364 0880 PO Box 149 PO Box 1432 Warrandyte VIC 3113 Subiaco WA 6097 Dr Graeme D Hubbert Matt Eliot Head of Oceanographic Studies Coastal Engineer Mobile: +61 (0)418 36 63 36 Mobile: +61 (0)408 414 225 Email: [email protected] Email: [email protected] Steve Oliver Jason Catlin Head of Meteorological and Wave Studies Head of GIS Mapping Systems Mobile: +61 (0)408 81 8702 Mobile: +61 (0)407 048 458 Email: [email protected] Email: [email protected] Website: www.gems-aus.com ABOUT GEMS Global Environmental Modelling Systems (GEMS), a wholly owned Australian company, has expertise in the development and application of high-resolution computer models to realistically predict atmospheric and oceanographic conditions for use in riverine, coastal and oceanic settings. The GEMS team is made up of qualified and experienced physical oceanographers, meteorologists, numerical modellers and environmental scientists. GEMS is a leading developer of numerical models in Australia. It has developed a system of validated environmental models and rigorous analytical procedures that provide solutions to a variety of environmental, engineering and operational problems. DISCLAIMER This report and the work undertaken for its preparation, is presented for the use of the client. Global Environmental Modelling Systems (GEMS) warrants that the study was carried out in accordance with accepted practice and available data, but that no other warranty is made as to the accuracy of the data or results contained in the report. This GEMS report may not contain sufficient or appropriate information to meet the purpose of other potential users. GEMS, therefore, does not accept any responsibility for the use of the information in the report by other parties. Page | 2 GEMS TABLE OF CONTENTS GEMS Contact Details ............................................................................................................ 2 About GEMS........................................................................................................................... 2 Disclaimer .............................................................................................................................. 2 1 Introduction.................................................................................................................. 6 2 Tidal Flow Studies......................................................................................................... 8 2.1 Tidal Modelling............................................................................................................. 8 2.2 Sources of Bathymetry and Topography.................................................................... 10 2.3 Simulation of tidal flows under Existing Conditions................................................... 10 2.3.1 Verification of Large Scale Tidal Dynamics ......................................................... 10 2.3.2 Simulation of the Local Tidal Flows through the Causeway Region ................... 12 2.4 Area of culverts required to minimise disturbance to tidal levels............................. 12 2.5 Effects of the temporary causeway as currently designed ........................................ 15 2.6 Effects of Sea Level Rise ............................................................................................. 15 3 Storm Surge Studies ................................................................................................... 17 3.1 Existing Conditions ..................................................................................................... 19 3.1.1 Methodology....................................................................................................... 19 3.1.2 Modelling Process............................................................................................... 20 3.1.3 Description of Numerical Models ....................................................................... 21 3.1.4 Storm Surge Validation ....................................................................................... 24 3.1.5 Storm Surge Return Periods at the Causeway.................................................... 28 3.2 Effects of the temporary Causeway with culverts ..................................................... 28 3.3 Effects of the permanent Causeway with culverts..................................................... 29 3.4 Effects of sea level rise on the 1 in 100 year storm surge.......................................... 30 4 Summary of findings................................................................................................... 31 4.1 Verification of tidal/storm surge model..................................................................... 31 4.2 Existing Tidal Conditions............................................................................................. 31 4.3 Area of culverts required to minimise interference with tidal flows......................... 31 Page | 3 GEMS 4.4 Impacts of the Temporary Causeway with culverts on Tidal Flows........................... 31 4.5 The Impacts of the permanent Causeway with culverts on Tidal Flows.................... 32 4.6 The Impacts of a sea level rise of 0.5 metre on the Tidal Flow results ...................... 32 4.7 The existing 1 in 100 year storm surge event at the causeway ................................. 32 4.8 Effects of the temporary Causeway with culverts on storm surges .......................... 32 4.9 Effects of the permanent Causeway with culverts on storm surges.......................... 33 5 References.................................................................................................................. 34 TABLE OF FIGURES Figure 1.1: Plan of the proposed services corridor causeway route superimposed on high resolution (20metres) model grid showing the two creek flat crossings. ................ 7 Figure 2.1: The domain for GEMSURGE showing the location of the verification data (CM1b). ......................................................................................................................... 9 Figure 2.2: Very high resolution grid (3 metres) of proposed causeway region at high tide. ......................................................................................................................... 9 Figure 2.3: Comparison of tidal levels predicted by GEMSURGE (red) with observations (blue) from September 15 to December 31, 2006. ........................................................ 11 Figure 2.4: Comparison of tidal heights during a spring tide event before (blue) and after (red) the causeway and culverts are installed................................................................ 14 Figure 2.5: Comparison of tidal heights during a spring tide event before (blue) and after (red) the causeway and 109 m2 culverts are installed.................................................... 16 Figure 3.1: Components of sea level elevation during cyclones...................................... 18 Figure 3.2: Tracks of cyclones included in cyclone climatology in the vicinity of Cape Preston. ....................................................................................................................... 19 Figure 3.3: Flowchart of model components for determination of waves and water levels for a cyclone event. .............................................................................................. 20 Figure 3.4: Evolution of model wind field for Cyclone Orson passing close to Cape Preston, April 1989. ........................................................................................................ 22 Figure 3.5: Model wind time series for tip of Cape Preston............................................ 22 Page | 4 GEMS Figure 3.6: Tracks of cyclones Clare and Glenda. ............................................................ 24 Figure 3.7: Cape Lambert tide gauge and residual during TC Clare (courtesy WA DPI).. 25 Figure 3.8: Observed and modelled winds at Roebourne – Cyclone Clare. .................... 26 Figure 3.9: Observed winds at Roebourne during Cyclone Glenda and modeled winds for the event with radius of maximum winds set to 30 and 35 km. .................................... 26 Figure 3.10: Observed and modeled water level at Cape Lambert Jetty during Cyclone Clare ....................................................................................................................... 27 Figure 3.11: Modeled water level for Cyclone Glenda compared with tidal prediction at Cape Lambert.................................................................................................................. 27 Figure 3.12: Comparison of modeled peak water level at three locations during Glenda.27 Figure 3.13: Results for the 1 in 100 year storm surge at the southern creek crossing for the three cases studied................................................................................................... 30 Page | 5 GEMS 1 INTRODUCTION CP Mining Management Pty Ltd (CPMM) are developing the Austeel Project at Cape Preston, located some 60 km west of Dampier in North West Australia.
Recommended publications
  • SOPAC Coastal Protection Feasibility Study
    SOPAC Coastal Protection Feasibility Study Final Report August 2005 Executive Summary i 1. Introduction 1 2. Cyclone Design Condition Methodology Overview 3 2.1 Overall Philosophy 3 2.2 Detailed Methodology 4 2.3 Assessment of Recorded Data 4 2.3.1 Deterministic Model Checks 4 2.3.2 Simulation Production Modelling 5 3. Regional Tropical Cyclone Climatology 6 3.1 Statistical Assessment of the Tropical Cyclone Hazard 6 3.2 Parameterisation for Modelling Purposes 12 3.3 Regional Wind Speed and Pressure Data 15 3.4 Selection of Hindcast Storms 19 4. Numerical Modelling 21 4.1 Representation of Localities 21 4.2 Wind and Pressure Field Modelling 22 4.2.1 Wind and Pressure Calibration 22 4.3 Spectral Wave Modelling 31 4.3.1 Wave Model Details 31 4.3.2 Wave Model Calibration 31 4.4 Parametric Wave Model Performance 35 4.5 Tide, Surge and Wave Setup Modelling 37 4.5.1 TC Sally 1987 38 4.5.2 TC Gene 1992 41 4.5.3 TC Pam 1997 42 4.5.4 Commentary 42 4.6 Statistical Model Validation 46 4.6.1 Astronomical Tide 46 4.6.2 Wind 46 4.7 Statistical Storm Tide Model Estimates 49 4.8 Limitations of the Numerical Modelling 51 5. Coastal Protection Issues 52 5.1 Reef Top Conditions 52 5.2 Reef Opening Conditions 54 41/13806/316133 Coastal Protection Feasibility Study Final Report ii 5.3 Factors affecting Reef Setup and their influence on coastal protection choices. 55 5.3.1 Drainage 55 5.3.2 Barriers 55 5.3.3 Incremental Protection 55 5.4 Influence of Sea Level Rise and Climate Change 56 5.4.1 Sea Level Rise 56 5.4.2 Climate Change 56 6.
    [Show full text]
  • Severe Tropical Cyclone Glenda 27 - 31 March 2006
    Severe Tropical Cyclone Glenda 27 - 31 March 2006 Perth Tropical Cyclone Warning Centre Bureau of Meteorology A. Summary Severe Tropical Cyclone Glenda was a small and intense system that developed very rapidly after moving off the northwest Kimberley coast. Glenda reached category 5 intensity but weakened as it approached the Pilbara coast. Although threatening to cross the coast near the populated Dampier/Karratha region as a Category 4 system close to the time of high tide, Glenda took a more SW course towards Onslow and weakened before finally crossing the coast near Onslow at 2200 WST 30 March as a marginal category 3 system. Very destructive winds were recorded on the coast at Mardie prior to crossing. A total of 206 mm of rain fell at Onslow in the 24 hours to 0900 WST 31 March, representing the sixth wettest day on record for the town. Other centres in the Pilbara also recorded cumulative totals of over 200mm, and although in general Glenda produced less than average rainfall for a landfalling tropical cyclone, rainfall was sufficient to cause problems for transport. The weakening of TC Glenda prior to impact on Onslow, together with the preparedness of the town helped to avert major damage. B. Meteorological Description A weak low developed in the Gulf of Carpentaria during the middle of March and slowly progressed westwards over the Northern Territory. On 24 March it moved temporarily into the Joseph Bonaparte Gulf north of Wyndham, then accelerated across the Kimberley overnight. On 26 March vertical wind shear eased and by about 1200 UTC the system moved off the coast and developed rapidly.
    [Show full text]
  • 6. Annual Review and Significant Events
    6. Annual Review and Significant Events January-April: wet in the tropics and WA, very hot in central to eastern Australia For northern Australia, the tropical wet season (October 2005 – April 2006) was the fifth wettest on record, with an average of 674 mm falling over the period. The monsoon trough was somewhat late in arriving over the Top End (mid-January as opposed to the average of late December), but once it had become established, widespread heavy rain featured for the next four months, except over the NT and Queensland in February. One particularly noteworthy event occurred towards the end of January when an intense low (central pressure near 990 hPa) on the monsoon trough, drifted slowly westward across the central NT generating large quantities of rain. A two-day deluge of 482 mm fell at Supplejack in the Tanami Desert (NT), resulting in major flooding over the Victoria River catchment. A large part of the central NT had its wettest January on record. Widespread areas of above average rain in WA were mainly due to the passages of several decaying tropical cyclones, and to a lesser extent southward incursions of tropical moisture interacting with mid-latitude systems. Severe tropical cyclone Clare crossed the Pilbara coast on 9t h January and then moved on a southerly track across the western fringes of WA as a rain depression. Significant flooding occurred around Lake Grace where 226 mm of rain fell in a 24-hour period from 12 t h to 13 t h January. Tropical cyclone Emma crossed the Pilbara coast on 28 th February and moved on a southerly track; very heavy rain fell in the headwaters of the Murchison River on 1s t March causing this river’s highest flood on record.
    [Show full text]
  • Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts
    Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts Issued: 15th May 2006 by Professor Mark Saunders and Dr Adam Lea Benfield Hazard Research Centre, UCL (University College London), UK. Summary ¢¡¤£¦¥¨§¨§¨© £¨¨ £¨£¨ ¨£"!$#%¨&('(¨)¨'*+%,¨-'(.¨&/%¨01¨.%'23'(%546¨7+£¨ ¤£¨ ¨£8!$#%¨&('(¨9&*¨¤7:¨&(&*'( ;¨.%'23'*%54=<3 ¢¡¤'*>.¨¤%¨%?@'(%¡9%¡£A:B¨#A-,£C3'(¨#/!$#%¨&('(¨ %,¨-¤'*.¨&%¨0D£¨¨E@¡'(.¡F¨&(&3¡¤¨7F)£&(,@£¨ ¨£"¨.%'23'(%54¨<G ¢¡£" ¢HIJ%£,.'(&(£K-,¨)¤¨)'(&*'(%54 :B¨,£.¨%¦:L¨M%¡¤£¥¨§¨§¨© N £¨¨O¡,@£7P£Q¨.£&*&(£%$R¤'*&(&(ST-,£7'(.%'( :,¨0VUW 4X¥¨§¨§¨©+%¡¨% !K#%¨&('*¨ )¨'( ¨7 &(¨7¤:¨&*&('( Y¨.%'Z3'(%54Y[¨#&(7 )£\.&*¨£\%Y£¨ ¨£<X ¢¡¤£] ¢H¤I 7¤£%£0^'*¤'*%'*.¦:B¨,£.¨%A¡,@£76 ¨¨¨76R¤'*&(&_:B¨;)¤¨'(`¨.%'23'(%54a¨76:B¨¦&*¨¤7:¨&(&*'( M%,¨-'(.¨& %¨0b¤#0^)£_:,¨0bUc 4d¥¨§¨§¨©¨< egf3hejilk m3n(opqsr=t k iu1vKn(wyxOze{r|vK}$ok ~3wk it nZ¨u1m¨ilhwh~¨tNw@pFwy¨u[upiOk¨st(f3h¨¨¨ ^"3wyt(ilpq(n*p~3 ilh,¨n(k ~;t*ilk m3n(opqwtNk iyuwhpwk ~9p~3¦p8gpq(n(¨pt n(k ~k¨t(f3hniwhpwk ~3pqm¨ilk 3p3n(q*n(wyt n(oAp~3¦¨ht hiunZ~3n(wyt n*o k ilhopwyt w>k i?t(f3n(w>potNn 3nZt*¨¤egf3hwh$k ilhopwyt w{@hilh$n*wwy3hKuk ~¨t(f3qZ95ilk ut*f3h$ t(f¦Wp9¨¨¨ "tNk"t*f3h t(f@hohu[3hi8¨¨¨ p~3nZ~3oqZ3¨hKwhm3pilptNhTm¨ilh¨n(otNn(k ~3wsk i{~¨¨u3hilwsk¨¤t*ilk m3n(opqwyt k iuw~¨¨u[3hilw k¨¢wh¤hilh t(ilk m3n(opq¡oC3oq(k ~3hw"p~3¢t(f3h A£E¤¥z5@oo¨u3q(ptNh^£E3oq*k ~3h¦¤¡~3hi 3}snZ~3¨h§3egf3h[q*pt(tNhiKn(w ¨n ¤h~dk i¨t*f3h/"f3k¨q(h/"3wyt(ilpq*n(p~35ilh ¨n(k ~3 Features of the 2005/6 Australian-Region Season • The 2005/6 Australian-region tropical storm season featured 11 storms of which 7 made severe tropical cyclone strength (U.S.
    [Show full text]
  • The Cyclone As Trope of Apocalypse and Place in Queensland Literature
    ResearchOnline@JCU This file is part of the following work: Spicer, Chrystopher J. (2018) The cyclone written into our place: the cyclone as trope of apocalypse and place in Queensland literature. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/7pjw%2D9y76 Copyright © 2018 Chrystopher J. Spicer. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] The Cyclone Written Into Our Place The cyclone as trope of apocalypse and place in Queensland literature Thesis submitted by Chrystopher J Spicer M.A. July, 2018 For the degree of Doctor of Philosophy College of Arts, Society and Education James Cook University ii Acknowledgements of the Contribution of Others I would like to thank a number of people for their help and encouragement during this research project. Firstly, I would like to thank my wife Marcella whose constant belief that I could accomplish this project, while she was learning to live with her own personal trauma at the same time, encouraged me to persevere with this thesis project when the tide of my own faith would ebb. I could not have come this far without her faith in me and her determination to journey with me on this path. I would also like to thank my supervisors, Professors Stephen Torre and Richard Landsdown, for their valuable support, constructive criticism and suggestions during the course of our work together.
    [Show full text]
  • Developing Impact-Based Thresholds for Coastal Inundation from Tide Gauge Observations
    CSIRO PUBLISHING Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 252–272 https://doi.org/10.1071/ES19024 Developing impact-based thresholds for coastal inundation from tide gauge observations Ben S. HagueA,B,C, Bradley F. MurphyA, David A. JonesA and Andy J. TaylorA ABureau of Meteorology, GPO Box 1289, Melbourne, Vic. 3001, Australia. BSchool of Earth, Atmosphere and Environment, Monash University, Clayton, Vic., Australia. CCorresponding author. Email: [email protected] Abstract. This study presents the first assessment of the observed frequency of the impacts of high sea levels at locations along Australia’s northern coastline. We used a new methodology to systematically define impact-based thresholds for coastal tide gauges, utilising reports of coastal inundation from diverse sources. This method permitted a holistic consideration of impact-producing relative sea-level extremes without attributing physical causes. Impact-based thresh- olds may also provide a basis for the development of meaningful coastal flood warnings, forecasts and monitoring in the future. These services will become increasingly important as sea-level rise continues.The frequency of high sea-level events leading to coastal flooding increased at all 21 locations where impact-based thresholds were defined. Although we did not undertake a formal attribution, this increase was consistent with the well-documented rise in global sea levels. Notably, tide gauges from the south coast of Queensland showed that frequent coastal inundation was already occurring. At Brisbane and the Sunshine Coast, impact-based thresholds were being exceeded on average 21.6 and 24.3 h per year respectively. In the case of Brisbane, the number of hours of inundation annually has increased fourfold since 1977.
    [Show full text]
  • Western Australia Cyclone Preparedness Guide
    Is your property ready? Western Australia Cyclone Preparedness Guide Cyclone Preparedness Guide This Guide has been prepared for WA property owners to provide information on tropical cyclones and their effect on buildings. It provides recommendations about things you can do before the cyclone season to minimise damage to your property from severe winds and rain during a cyclone. The key to preparing your property is regular inspection and continued maintenance. The checklists at the back of this Guide will help you identify any potential problems with your property and ensure that it is kept in good condition. Seek advice from a building professional to address any issues if required. TABLE OF CONTENTS WHAT IS A CYCLONE? ............................................................................................................................... 3 What are the Characteristics of a Cyclone? .............................................................................................. 3 Strong winds and rain ............................................................................................................................ 3 Storm surge and storm tide ................................................................................................................... 3 WHEN AND WHERE DO CYCLONES OCCUR? ......................................................................................... 4 Wind Loading Regions .............................................................................................................................
    [Show full text]
  • Tropical Cyclone Vance 18 – 24 March 1999
    Tropical Cyclone Vance 18 – 24 March 1999 Perth Tropical Cyclone Warning Centre Bureau of Meteorology A. Summary Severe tropical cyclone Vance was one of the strongest cyclones ever to affect mainland Australia. After developing off Darwin on 17-18 March, Vance gradually intensified as it tracked to the west southwest then to the south before crossing the coast near Exmouth on 22 March as a category 5 system. Vance caused severe structural damage to about 10 per cent of buildings in the town though many more experienced less obvious damage due to intrusion of rainwater. A high storm tide caused coastal erosion and damage between Exmouth and Onslow - the estimated peak storm surge west of Onslow was estimated at over 5 m. In addition to damage in the far west Pilbara, water and power supplies throughout the Gascoyne and Goldfields were disrupted and many homesteads sustained wind or flooding damage. The main rail and road links to the eastern states were cut. B. Meteorological Description As the circulation associated with tropical cyclone Elaine moved slowly west, another low within the monsoon trough, which persisted over the north coast of Australia near Darwin for several days, moved into the Timor Sea. The low- level circulation, favourably situated beneath the upper ridge in a region of weak wind shear quickly intensified to cyclone intensity. Vance moved quite steadily west-southwest at first, then towards the southwest during 20-21 March. It intensified steadily and was declared a severe Category 3 cyclone late on 19 March. It was further upgraded to a Category 5 overnight on 20 March.
    [Show full text]
  • When Disaster Strikes … How Communities Cope and Adapt: a Social Capital Perspective
    In: Social Capital: Theory, Measurement and Outcomes ISBN: 978-1-62417-822-1 Editor: C. Douglas Johnson © 2013 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 6 WHEN DISASTER STRIKES … HOW COMMUNITIES COPE AND ADAPT: A SOCIAL CAPITAL PERSPECTIVE Lisa J. Wood, Bryan J. Boruff and Helen M. Smith The University of Western Australia, Crawley, WA, Australia ABSTRACT Human beings have had to co-exist with natural disasters and environmental calamity since the dawn of time, and our vulnerability to disasters is potentially increased in the 21st century as we contend with exponential population growth and the volatilities of climate change. When a disaster strikes, a community has no choice but to respond and cope with the event. But why is it that some communities cope and adapt better than others in the face of adversity? Underlying a well-integrated, resilient community is social capital, which can play an important role in enabling communities to work together to recover from a disaster. Social capital also provides a useful framework for assessing a community’s mechanisms for preventing or preparing for disasters before they occur.
    [Show full text]
  • Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions
    GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS For more information, please contact: World Meteorological Organization Communications and Public Affairs Office Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27 E-mail: [email protected] Tropical Cyclone Programme Weather and Disaster Risk Reduction Services Department Tel.: +41 (0) 22 730 84 53 – Fax: +41 (0) 22 730 81 28 E-mail: [email protected] 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int D-WDS_101692 WMO/TD-No. 1555 GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS by B. A. Harper1, J. D. Kepert2 and J. D. Ginger3 August 2010 1BE (Hons), PhD (James Cook), Systems Engineering Australia Pty Ltd, Brisbane, Australia. 2BSc (Hons) (Western Australia), MSc, PhD (Monash), Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne, Australia. 3BSc Eng (Peradeniya-Sri Lanka), MEngSc (Monash), PhD (Queensland), Cyclone Testing Station, James Cook University, Townsville, Australia. © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Identification of Climate Change Adaptation Best Practices in the Waste Management Sector ______
    Identification of climate change adaptation Best Practices in the Waste Management Sector ___________________________________________ Disaster Waste Management Best practices FINAL REPORT – SEPTEMBER 4TH , 2013 IDENTIFICATION OF CLIMATE CHANGE ADAPTATION BEST PRACTICES IN THE WASTE MANAGEMENT SECTOR PART I REVISIONS VERSION DATE COMMENTS AUTHOR : CHECKED Final document incl. 2 02/09/2013 MLL ThM comments from client 1 19/08/2013 Final document MLL & JW ThM 0 09/08/2013 Draft document part I MLL & JW ThM This document is submitted by Pöyry France – Pöyry France becomes Naldeo Contact : Thierry Martin Manager International Department Naldeo France Phone + 33.4.91.13.97.56 Mobile + 33.6.82.56.92.94 55 rue de la Villette 69425 Lyon cedex 03 - France E-mail : [email protected] Page 2 NALDEO- PÖYRY 2013 IDENTIFICATION OF CLIMATE CHANGE ADAPTATION BEST PRACTICES IN THE WASTE MANAGEMENT SECTOR PART I CONTENTS PART I 1 IDENTIFICATION OF GEOGRAPHIC AREAS AFFECTED BY DESTRUCTIVE EVENTS LINKED TO CLIMATE CHANGE ................................................................................................................ 11 1.1 Effects of climat change .............................................................................................................. 11 1.1.1 Effects of climate change in the Pacific Region .....................................................................................................................11 1.1.2 Affected geographic areas ......................................................................................................................................................13
    [Show full text]
  • The Age Natural Disaster Posters
    The Age Natural Disaster Posters Wild Weather Student Activities Wild Weather 1. Search for an image on the Internet showing damage caused by either cyclone Yasi or cyclone Tracy and insert it in your work. Using this image, complete the Thinking Routine: See—Think— Wonder using the table below. What do you see? What do you think about? What does it make you wonder? 2. World faces growing wild weather threat a. How many people have lost their lives from weather and climate-related events in the last 60 years? b. What is the NatCatService? c. What does the NatCatService show over the past 30 years? d. What is the IDMC? e. Create a line graph to show the number of people forced from their homes because of sudden, natural disasters. f. According to experts why are these disasters getting worse? g. As human impact on the environment grows, what effect will this have on the weather? h. Between 1991 and 2005 which regions of the world were most affected by natural disasters? i. Historically, what has been the worst of Australia’s natural disasters? 3. Go to http://en.wikipedia.org/wiki/File:Global_tropical_cyclone_tracks-edit2.jpg and copy the world map of tropical cyclones into your work. Use the PQE approach to describe the spatial distribution of world tropical cyclones. This is as follows: a. P – describe the general pattern shown on the map. b. Q – use appropriate examples and statistics to quantify the pattern. c. E – identifying any exceptions to the general pattern. 4. Some of the worst Question starts a.
    [Show full text]