An Annotated Checklist of the Vascular Plants of Aberdare Ranges Forest, a Part of Eastern Afromontane Biodiversity Hotspot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem. -
Plant Fact Sheet for Annual Hairgrass (Deschampsia Danthonioides)
Plant Fact Sheet ANNUAL HAIRGRASS Status Please consult the PLANTS Web site and your State Deschampsia danthonioides Department of Natural Resources for this plant’s current (Trin.) Munro status (e.g. threatened or endangered species, state Plant Symbol = DEDA noxious status, and wetland indicator values). Contributed by: USDA NRCS Plant Materials Center, Description and Adaptation Annual hairgrass is a fine textured, native, cool season Corvallis, Oregon grass with smooth, slender stems (culms) that are 10 to 60 cm tall. The form is upright to spreading, short, and somewhat tufted. The narrow leaf blades are hairless, rough on the edges, slightly in-rolled, 0.5 to 1.5 (2) mm wide, and 1 to 10 cm long. Flower heads (panicles) are open, 7 to 25 cm long, with ascending lower branches. Annual hairgrass occurs from near sea level at the coast to 8,000 feet in the Rocky Mountains. It is primarily found from Alaska south to Baja California and east to Montana and New Mexico; also the Northeast US and Chile. Key to identification: Annual hairgrass can be distinguished from slender hairgrass (Deschampsia elongata) and tufted hairgrass (Deschampsia cespitosa) by its weaker root development, fewer leaves, and smaller stature. Without close inspection it may be confused with other annual grasses, such as annual fescues (Vulpia spp.). Both may occur in waste areas. Consult botanical keys for proper identification. Relative abundance in wild: While most common in the Photo by Dale Darris, USDA NRCS Corvallis PMC. Pacific Coast states, the species can still be hard to locate. However, it can occur in large stands, especially in vernal Alternative Names pools dominated by annuals. -
Diversity of Pteridophytes in Western Ghats
Plant Archives Volume 21, No 1, 2021 pp. 1115-1129 e-ISSN:2581-6063 (online), ISSN:0972-5210 Plant Archives Journal home page: www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.148 DIVERSITY OF PTERIDOPHYTES IN WESTERN GHATS- A REVIEW Athira Krishnan1 and Rekha K.2* 1Department of Botany, Sree Narayana College, Nattika, Thrissur, Kerala, India-680566 2Department of Botany, St. Mary’s College,Thrissur, Kerala, India- 680020. *E-mail: [email protected] (Date of Receiving-28-11-2020 ; Date of Acceptance-19-02-2021) Pteridophytes are vascular cryptogams that dominated the earth 250 million years ago. Currently, there are 13,600 species of pteridophytes around the world, and is the second most dominant plant group. In India, there are 1200 pteridophyte species with 70 families and 192 genera. The pteridophyte hotspots in India are the Himalayas, Western Ghats, Eastern Ghats, Central India, and Andaman and the Nicobar Islands. The Western Ghats occupies only 6% of the Indian landmass and still holds a pteridophyte diversity of 383 species. Fern and fern allies are highly sensitive to changes in their natural habitat, thus habitat ABSTRACT destruction, anthropogenic influences, climate change, etc., are causing a fast decline in their population. Epiphytic species are easily destroyed due to the felling of trees and because of this at present 41- 43% of epiphytic pteridophytes in India are reported to be threatened. It necessitates the frequent analysis of the pteridophyte flora of a region to ensure the existence of its species diversity. The potential of in-vitro and ex-situ conservation techniques can be explored for the conservation of threatened pteridophyte species. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Cop16 Prop. 65
Original language: French CoP16 Prop. 65 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Sixteenth meeting of the Conference of the Parties Bangkok (Thailand), 3-14 March 2013 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Include the species Adenia firingalavensis in CITES Appendix II, in accordance with Article II, paragraph 2(a) of the Convention and Resolution Conf. 9.24 (Rev. CoP13), Annex 2 a, paragraph A. B. Proponent Madagascar* C. Supporting statement 1. Taxonomy 1.1 Class: Dicotyledones 1.2 Order: Violales 1.3 Family: Passifloraceae 1.4 Genus, species, including author and year: Adenia firingalavensis (Drake ex Jum.) Harms 1.5 Scientific synonyms: Ophiocaulon firingalavense Drake ex Jum. (1903) 1.6 Common names: English: Bottle liana Malagasy: holabe (Sakalava), holaboay, Kajabaka (North of Madagascar), lazamaitso (Tuléar), Lokoranga (Morondava), Olabory, Trangahy. Vietnamese: Ga loi lam mao den 1.7 Code numbers: 2. Overview Adenia firingalavensis is a climbing shrub that often has swollen roots and stem bases. Its leaves are deciduous and usually appear after the plant has flowered. This endemic species to Madagascar is collected from the wild and has become rare. However, it is not yet protected by the CITES Convention. The present document suggests that the species Adenia firingalavensis meets the criteria for inclusion in CITES Appendix II in accordance with Article II, paragraph 2(a) of the Convention and Resolution * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. -
Epiparasitism in Phoradendron Durangense and P. Falcatum (Viscaceae) Clyde L
Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 2 2009 Epiparasitism in Phoradendron durangense and P. falcatum (Viscaceae) Clyde L. Calvin Rancho Santa Ana Botanic Garden, Claremont, California Carol A. Wilson Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Calvin, Clyde L. and Wilson, Carol A. (2009) "Epiparasitism in Phoradendron durangense and P. falcatum (Viscaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/2 Aliso, 27, pp. 1–12 ’ 2009, Rancho Santa Ana Botanic Garden EPIPARASITISM IN PHORADENDRON DURANGENSE AND P. FALCATUM (VISCACEAE) CLYDE L. CALVIN1 AND CAROL A. WILSON1,2 1Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157, USA 2Corresponding author ([email protected]) ABSTRACT Phoradendron, the largest mistletoe genus in the New World, extends from temperate North America to temperate South America. Most species are parasitic on terrestrial hosts, but a few occur only, or primarily, on other species of Phoradendron. We examined relationships among two obligate epiparasites, P. durangense and P. falcatum, and their parasitic hosts. Fruit and seed of both epiparasites were small compared to those of their parasitic hosts. Seed of epiparasites was established on parasitic-host stems, leaves, and inflorescences. Shoots developed from the plumular region or from buds on the holdfast or subjacent tissue. The developing endophytic system initially consisted of multiple separate strands that widened, merged, and often entirely displaced its parasitic host from the cambial cylinder. -
Species Accounts
Species accounts The list of species that follows is a synthesis of all the botanical knowledge currently available on the Nyika Plateau flora. It does not claim to be the final word in taxonomic opinion for every plant group, but will provide a sound basis for future work by botanists, phytogeographers, and reserve managers. It should also serve as a comprehensive plant guide for interested visitors to the two Nyika National Parks. By far the largest body of information was obtained from the following nine publications: • Flora zambesiaca (current ed. G. Pope, 1960 to present) • Flora of Tropical East Africa (current ed. H. Beentje, 1952 to present) • Plants collected by the Vernay Nyasaland Expedition of 1946 (Brenan & collaborators 1953, 1954) • Wye College 1972 Malawi Project Final Report (Brummitt 1973) • Resource inventory and management plan for the Nyika National Park (Mill 1979) • The forest vegetation of the Nyika Plateau: ecological and phenological studies (Dowsett-Lemaire 1985) • Biosearch Nyika Expedition 1997 report (Patel 1999) • Biosearch Nyika Expedition 2001 report (Patel & Overton 2002) • Evergreen forest flora of Malawi (White, Dowsett-Lemaire & Chapman 2001) We also consulted numerous papers dealing with specific families or genera and, finally, included the collections made during the SABONET Nyika Expedition. In addition, botanists from K and PRE provided valuable input in particular plant groups. Much of the descriptive material is taken directly from one or more of the works listed above, including information regarding habitat and distribution. A single illustration accompanies each genus; two illustrations are sometimes included in large genera with a wide morphological variance (for example, Lobelia). -
SPECIES L RESEARCH ARTICLE
SPECIES l RESEARCH ARTICLE Species Sexual systems, pollination 22(69), 2021 modes and fruiting ecology of three common herbaceous weeds, Aerva lanata (L.) Juss. Ex Schult., Allmania nodiflora (L.) To Cite: Solomon Raju AJ, Mohini Rani S, Lakshminarayana G, R.Br. and Pupalia lappacea (L.) Venkata Ramana K. Sexual systems, pollination modes and fruiting ecology of three common herbaceous weeds, Aerva lanata (L.) Juss. Ex Schult., Allmania nodiflora (L.) R.Br. and Juss. (Family Amaranthaceae: Pupalia lappacea (L.) Juss. (Family Amaranthaceae: Sub-family Amaranthoideae). Species, 2021, 22(69), 43-55 Sub-family Amaranthoideae) Author Affiliation: 1,2Department of Environmental Sciences, Andhra University, Visakhapatnam 530 003, India Solomon Raju AJ1, Mohini Rani S2, Lakshminarayana 3Department of Environmental Sciences, Gayathri Vidya Parishad College for Degree & P.G. Courses (Autonomous), G3, Venkata Ramana K4 M.V.P. Colony, Visakhapatnam 530 017, India 4Department of Botany, Andhra University, Visakhapatnam 530 003, India ABSTRACT Correspondent author: A.J. Solomon Raju, Mobile: 91-9866256682 Aerva lanata and Pupalia lappacea are perennial herbs while Allmania nodiflora is an Email:[email protected] annual herb. A. lanata is dioecious with bisexual and female plants while P. lappacea and A. nodiflora are hermaphroditic. In P. lappacea, the flowers are borne as triads Peer-Review History with one hermaphroditic fertile flower and two sterile flowers alternately along the Received: 25 December 2020 entire length of racemose inflorescence. A. lanata and A. nodiflora flowers are Reviewed & Revised: 26/December/2020 to 27/January/2021 nectariferous while P. lappacea flowers are nectarless. The hermaphroditic flowers of Accepted: 28 January 2021 Published: February 2021 A. -
Vegetation Survey of Mount Gorongosa
VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions. -
Table 4: Pollen-Types in Amaranthaceae by Mittre (1963). Amaranthus-Type
Table 4: Pollen-types in Amaranthaceae by Mittre (1963). Amaranthus-type Amaranthus- type sensu stricto Cyathula-type Celosia-type Pollen Faintly to moderately granulate Prominently granulate Baculariate morphological characters: Sexine pattern Total number of 5 2 2 genera studied Genera Amaranthus spinosus L., Cyathula prostrate (L.) Blume, Celosia argentea L., C. cristata L., A. viridis L., A. tricolor L., C. capitata Moq., Allmania albida (Willd.) R.Br. ex Hook.f., A. hybridus L., Deeringia celosioides R.Br. A. nodiflora (L.) R.Br. ex Wight. A. polygamous L., A. tenuifolius Willd., A. spinosus L., Achyranthes aspera L., A. bidentata Blume, Aerva lanata (L.) Juss., A. sanguinolenta (L.) Blume, A. tomentosa Forssk., A. javanica (Burm.f.) Juss. ex Schult., A. monsoniae (L. f.) Mart., Digera arvensis Forssk., Pupalia lappacea (L.) Juss., P. atropurpurea (Lam.) Moq. 22 Table 4: Continued. Gomphrena-type Gomphrena-type sensu stricto Alternanthera-type Not included in any group Pollen reticulate several meshes, without reticulate with few meshes, without reticulate with several meshes and spinulate morphological spinules spinules characters: Sexine pattern Total number of 1 1 1 genera studied Genera Gomphrena globosa L., Alternanthera sessilis (L.) R.Br. ex DC., Psilotrichum ferrugineum (Roxb.) Moq. G. celosioides Mart. A. repens J.F.Gmel. 2 3 Table 5: Pollen-types in Centrospermae by Nowicke (1975). Type I Type II Type III Pollen morphological 3- Colpate Pantoporate Pantocolpate characters: apertures Family studied Aizoaceae, Cactaceae, Caryophyllaceae, Amaranthaceae, Cactaceae, Basellaceae, Cactaceae, Molluginaceae, Nyctaginaceae, Caryophyllaceae, Chenopodiaceae, Molluginaceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae Dysphaniaceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae Phytolaccaceae, Portulacaceae Genera studied in 11 Amaranthaceae Species studied in Amaranthus spinosus L., Amaranthaceae Aerva leucura Moq., Allmania nodiflora (L.) R.Br. -
Revisión Taxonómica Del Género Molineriella Rouy (Gramineae: Poeae: Airinae) En La Península Ibérica
Acta Botanica Malacitana1~P J.Cebrino Cruz & C. Romero-Zarco. Revisión taxonómica del género Molineriella Artículo203 '2,KWWSG[GRLRUJDEPYL&DEHFHUD $UWtFXOR Revisión taxonómica del género Molineriella Rouy (Gramineae: Poeae: Airinae) en la Península Ibérica Jesús Cebrino Cruz & Carlos Romero-Zarco 'HSDUWDPHQWR GH %LRORJtD 9HJHWDO \ (FRORJtD )DFXOWDG GH %LRORJtD 8QLYHUVLGDG GH 6HYLOOD & 3URIHVRU *DUFtD *RQ]iOH]VQ6HYLOOD(VSDxD Correspondencia Resumen C. Romero-Zarco e-mail: [email protected] Se presenta una revisión del género Molineriella Rouy sobre la base del Recibido: 11 septiembre 2017 estudio morfológico de 1.300 ejemplares de herbario. Se trata de un género Aceptado: 26 octubre 2017 PHGLWHUUiQHRTXHWLHQHVXPi[LPDULTXH]DHVSHFtÀFDHQOD3HQtQVXOD,EpULFD Publicado on-line: diciembre 2017 \SDUDHOTXHVHKDQUHFRQRFLGRDTXtWUHVHVSHFLHVSDUDODVFXDOHVVHDSRUWDQ descripciones y mapas de distribución en el área de estudio. Se han designado un neotipo para Aira laevis Brot. y sendos lectotipos para Periballia minuta subsp. australis3DXQHUR\Molineria minuta var. baetica Willk. Se ha descrito como nueva Molineriella laevis var. submutica Cebrino & Romero Zarco. Palabras clave: *UDPLQHDH3RHDH$LULQDH MolineriellaPeriballia3HQtQVXOD ,EpULFD7D[RQRPtD7LSLÀFDFLyQ Abstract Taxonomic revision of the genus Molineriella Rouy (Gramineae: Poeae: Airinae) in the Iberian Península We present the revision of the genus Molineriella Rouy based on a PRUSKRORJLFDOVWXG\RIKHUEDULXPVSHFLPHQV,WLVD0HGLWHUUDQHDQJHQXV ZLWKLWVPD[LPXPVSHFLHVULFKQHVVLQWKH,EHULDQ3HQLQVXOD7KUHHVSHFLHVDUH UHFRJQL]HG -
ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.