Discovering Genes Involved in Disease and the Mystery of Missing Heritability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proquest Dissertations
Automated learning of protein involvement in pathogenesis using integrated queries Eithon Cadag A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2009 Program Authorized to Offer Degree: Department of Medical Education and Biomedical Informatics UMI Number: 3394276 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3394276 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uest ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Eithon Cadag and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Reading Committee: (SjLt KJ. £U*t~ Peter Tgffczy-Hornoch In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. -
Bonnie Berger Named ISCB 2019 ISCB Accomplishments by a Senior
F1000Research 2019, 8(ISCB Comm J):721 Last updated: 09 APR 2020 EDITORIAL Bonnie Berger named ISCB 2019 ISCB Accomplishments by a Senior Scientist Award recipient [version 1; peer review: not peer reviewed] Diane Kovats 1, Ron Shamir1,2, Christiana Fogg3 1International Society for Computational Biology, Leesburg, VA, USA 2Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel 3Freelance Writer, Kensington, USA First published: 23 May 2019, 8(ISCB Comm J):721 ( Not Peer Reviewed v1 https://doi.org/10.12688/f1000research.19219.1) Latest published: 23 May 2019, 8(ISCB Comm J):721 ( This article is an Editorial and has not been subject https://doi.org/10.12688/f1000research.19219.1) to external peer review. Abstract Any comments on the article can be found at the The International Society for Computational Biology (ISCB) honors a leader in the fields of computational biology and bioinformatics each year with the end of the article. Accomplishments by a Senior Scientist Award. This award is the highest honor conferred by ISCB to a scientist who is recognized for significant research, education, and service contributions. Bonnie Berger, Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT) is the 2019 recipient of the Accomplishments by a Senior Scientist Award. She is receiving her award and presenting a keynote address at the 2019 Joint International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Basel, Switzerland on July 21-25, 2019. Keywords ISCB, Bonnie Berger, Award This article is included in the International Society for Computational Biology Community Journal gateway. -
120421-24Recombschedule FINAL.Xlsx
Friday 20 April 18:00 20:00 REGISTRATION OPENS in Fira Palace 20:00 21:30 WELCOME RECEPTION in CaixaForum (access map) Saturday 21 April 8:00 8:50 REGISTRATION 8:50 9:00 Opening Remarks (Roderic GUIGÓ and Benny CHOR) Session 1. Chair: Roderic GUIGÓ (CRG, Barcelona ES) 9:00 10:00 Richard DURBIN The Wellcome Trust Sanger Institute, Hinxton UK "Computational analysis of population genome sequencing data" 10:00 10:20 44 Yaw-Ling Lin, Charles Ward and Steven Skiena Synthetic Sequence Design for Signal Location Search 10:20 10:40 62 Kai Song, Jie Ren, Zhiyuan Zhai, Xuemei Liu, Minghua Deng and Fengzhu Sun Alignment-Free Sequence Comparison Based on Next Generation Sequencing Reads 10:40 11:00 178 Yang Li, Hong-Mei Li, Paul Burns, Mark Borodovsky, Gene Robinson and Jian Ma TrueSight: Self-training Algorithm for Splice Junction Detection using RNA-seq 11:00 11:30 coffee break Session 2. Chair: Bonnie BERGER (MIT, Cambrige US) 11:30 11:50 139 Son Pham, Dmitry Antipov, Alexander Sirotkin, Glenn Tesler, Pavel Pevzner and Max Alekseyev PATH-SETS: A Novel Approach for Comprehensive Utilization of Mate-Pairs in Genome Assembly 11:50 12:10 171 Yan Huang, Yin Hu and Jinze Liu A Robust Method for Transcript Quantification with RNA-seq Data 12:10 12:30 120 Zhanyong Wang, Farhad Hormozdiari, Wen-Yun Yang, Eran Halperin and Eleazar Eskin CNVeM: Copy Number Variation detection Using Uncertainty of Read Mapping 12:30 12:50 205 Dmitri Pervouchine Evidence for widespread association of mammalian splicing and conserved long range RNA structures 12:50 13:10 169 Melissa Gymrek, David Golan, Saharon Rosset and Yaniv Erlich lobSTR: A Novel Pipeline for Short Tandem Repeats Profiling in Personal Genomes 13:10 13:30 217 Rory Stark Differential oestrogen receptor binding is associated with clinical outcome in breast cancer 13:30 15:00 lunch break Session 3. -
Python for Bioinformatics, Second Edition
PYTHON FOR BIOINFORMATICS SECOND EDITION CHAPMAN & HALL/CRC Mathematical and Computational Biology Series Aims and scope: This series aims to capture new developments and summarize what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged. Series Editors N. F. Britton Department of Mathematical Sciences University of Bath Xihong Lin Department of Biostatistics Harvard University Nicola Mulder University of Cape Town South Africa Maria Victoria Schneider European Bioinformatics Institute Mona Singh Department of Computer Science Princeton University Anna Tramontano Department of Physics University of Rome La Sapienza Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press, Taylor & Francis Group 3 Park Square, Milton Park Abingdon, Oxfordshire OX14 4RN UK Published Titles An Introduction to Systems Biology: Statistical Methods for QTL Mapping Design Principles of Biological Circuits Zehua Chen Uri Alon -
DREAM: a Dialogue on Reverse Engineering Assessment And
DREAM:DREAM: aa DialogueDialogue onon ReverseReverse EngineeringEngineering AssessmentAssessment andand MethodsMethods Andrea Califano: MAGNet: Center for the Multiscale Analysis of Genetic and Cellular Networks C2B2: Center for Computational Biology and Bioinformatics ICRC: Irving Cancer RResearchesearch Center Columbia University 1 ReverseReverse EngineeringEngineering • Inference of a predictive (generative) model from data. E.g. argmax[P(Data|Model)] • Assumptions: – Model variables (E.g., DNA, mRNA, Proteins, cellular sub- structures) – Model variable space: At equilibrium, temporal dynamics, spatio- temporal dynamics, etc. – Model variable interactions: probabilistics (linear, non-linear), explicit kinetics, etc. – Model topology: known a-priori, inferred. • Question: – Model ~= Reality? ReverseReverse EngineeringEngineering Data Biological System Expression Proteomics > NFAT ATGATGGATG CTCGCATGAT CGACGATCAG GTGTAGCCTG High-throughput GGCTGGA Structure Sequence Biology … Biochemical Model Validation Control X-Y- Control X+Y+ Y X Z X+Y- X-Y+ Control Control Specific Prediction SomeSome ReverseReverse EngineeringEngineering MethodsMethods • Optimization: High-Dimensional objective function max corresponds to best topology – Liang S, Fuhrman S, Somogyi (REVEAL) – Gat-Viks and R. Shamir (Chain Functions) – Segal E, Shapira M, Regev A, Pe’er D, Botstein D, KolKollerler D, and Friedman N (Prob. Graphical Models) – Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, Erich D. Jarvis (Dynamic Bayesian Networks) – … • Regression: Create a general model of biochemical interactions and fit the parameters – Gardner TS, di Bernardo D, Lorentz D, and Collins JJ (NIR) – Alberto de la Fuente, Paul Brazhnik, Pedro Mendes – Roven C and Bussemaker H (REDUCE) – … • Probabilistic and Information Theoretic: Compute probability of interaction and filter with statistical criteria – Atul Butte et al. (Relevance Networks) – Gustavo Stolovitzky et al. (Co-Expression Networks) – Andrea CaCalifanolifano et al. -
Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006
MAX PLANCK INSTITUTE FOR MOLECULAR GENETICS Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006 Published by the Max Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany, August 2006 Editorial Board Bernhard Herrmann, Hans Lehrach, H.-Hilger Ropers, Martin Vingron Coordination Claudia Falter, Ingrid Stark Design & Production UNICOM Werbeagentur GmbH, Berlin Number of copies: 1,500 Photos Katrin Ullrich, MPIMG; David Ausserhofer Contact Max Planck Institute for Molecular Genetics Ihnestr. 63–73 14195 Berlin, Germany Phone: +49 (0)30-8413 - 0 Fax: +49 (0)30-8413 - 1207 Email: [email protected] For further information about the MPIMG please see our website: www.molgen.mpg.de MPI for Molecular Genetics Research Report 2006 Table of Contents The Max Planck Institute for Molecular Genetics . 4 • Organisational Structure. 4 • MPIMG – Mission, Development of the Institute, Research Concept. .5 Department of Developmental Genetics (Bernhard Herrmann) . 7 • Transmission ratio distortion (Hermann Bauer) . .11 • Signal Transduction in Embryogenesis and Tumor Progression (Markus Morkel). 14 • Development of Endodermal Organs (Heiner Schrewe) . 16 • Gene Expression and 3D-Reconstruction (Ralf Spörle). 18 • Somitogenesis (Lars Wittler). 21 Department of Vertebrate Genomics (Hans Lehrach) . 25 • Molecular Embryology and Aging (James Adjaye). .31 • Protein Expression and Protein Structure (Konrad Büssow). .34 • Mass Spectrometry (Johan Gobom). 37 • Bioinformatics (Ralf Herwig). .40 • Comparative and Functional Genomics (Heinz Himmelbauer). 44 • Genetic Variation (Margret Hoehe). 48 • Cell Arrays/Oligofingerprinting (Michal Janitz). .52 • Kinetic Modeling (Edda Klipp) . .56 • In Vitro Ligand Screening (Zoltán Konthur). .60 • Neurodegenerative Disorders (Sylvia Krobitsch). .64 • Protein Complexes & Cell Organelle Assembly/ USN (Bodo Lange/Thorsten Mielke). .67 • Automation & Technology Development (Hans Lehrach). -
BMC Bioinformatics Biomed Central
BMC Bioinformatics BioMed Central Proceedings Open Access NIPS workshop on New Problems and Methods in Computational Biology Gal Chechik*1, Christina Leslie2, William Stafford Noble3, Gunnar Rätsch4, Quaid Morris5 and Koji Tsuda6 Address: 1Computer Science Department, Stanford University, 353 Serra Mall, Stanford University, Stanford, CA 94305, USA, 2Computational Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 460, New York, NY 10065, USA, 3Department of Genome Sciences, University of Washington, 1705 NE Pacific St, Seattle, WA 98109, USA, 4Friedrich Miescher Laboratory of the Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany, 5Terrence Donnelley Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada and 6Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany Email: Gal Chechik* - [email protected]; Christina Leslie - [email protected]; William Stafford Noble - [email protected]; Gunnar Rätsch - [email protected]; Quaid Morris - [email protected]; Koji Tsuda - [email protected] * Corresponding author from NIPS workshop on New Problems and Methods in Computational Biology Whistler, Canada. 8 December 2006 Published: 21 December 2007 BMC Bioinformatics 2007, 8(Suppl 10):S1 doi:10.1186/1471-2105-8-S10-S1 <supplement> <title> <p>Neural Information Processing Systems (NIPS) workshop on New Problems and Methods in Computational Biology</p> </title> <editor>Gal Chechik, Christina Leslie, William Stafford Noble, Gunnar Rätsch, Quiad Morris and Koji Tsuda</editor> <note>Proceedings</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-8-S10-info.pdf</url> </supplement> This article is available from: http://www.biomedcentral.com/1471-2105/8/S10/S1 © 2007 Chechik et al; licensee BioMed Central Ltd. -
BIOINFORMATICS ISCB NEWS Doi:10.1093/Bioinformatics/Btp280
Vol. 25 no. 12 2009, pages 1570–1573 BIOINFORMATICS ISCB NEWS doi:10.1093/bioinformatics/btp280 ISMB/ECCB 2009 Stockholm Marie-France Sagot1, B.J. Morrison McKay2,∗ and Gene Myers3 1INRIA Grenoble Rhône-Alpes and University of Lyon 1, Lyon, France, 2International Society for Computational Biology, University of California San Diego, La Jolla, CA and 3Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, Virginia, USA ABSTRACT Computational Biology (http://www.iscb.org) was formed to take The International Society for Computational Biology (ISCB; over the organization, maintain the institutional memory of ISMB http://www.iscb.org) presents the Seventeenth Annual International and expand the informational resources available to members of the Conference on Intelligent Systems for Molecular Biology bioinformatics community. The launch of ECCB (http://bioinf.mpi- (ISMB), organized jointly with the Eighth Annual European inf.mpg.de/conferences/eccb/eccb.htm) 8 years ago provided for a Conference on Computational Biology (ECCB; http://bioinf.mpi- focus on European research activities in years when ISMB is held inf.mpg.de/conferences/eccb/eccb.htm), in Stockholm, Sweden, outside of Europe, and a partnership of conference organizing efforts 27 June to 2 July 2009. The organizers are putting the finishing for the presentation of a single international event when the ISMB touches on the year’s premier computational biology conference, meeting takes place in Europe every other year. with an expected attendance of 1400 computer scientists, The multidisciplinary field of bioinformatics/computational mathematicians, statisticians, biologists and scientists from biology has matured since gaining widespread recognition in the other disciplines related to and reliant on this multi-disciplinary early days of genomics research. -
Machine Learning and Statistical Methods for Clustering Single-Cell RNA-Sequencing Data Raphael Petegrosso 1, Zhuliu Li 1 and Rui Kuang 1,∗
i i “main” — 2019/5/3 — 12:56 — page 1 — #1 i i Briefings in Bioinformatics doi.10.1093/bioinformatics/xxxxxx Advance Access Publication Date: Day Month Year Manuscript Category Subject Section Machine Learning and Statistical Methods for Clustering Single-cell RNA-sequencing Data Raphael Petegrosso 1, Zhuliu Li 1 and Rui Kuang 1,∗ 1Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA ∗To whom correspondence should be addressed. Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Abstract Single-cell RNA-sequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA- seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, k-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells, and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. -
F. Alex Feltus, Ph.D
F. Alex Feltus, Ph.D. Curriculum Vitae 001010101000001000100001011001010101001000101001010010000100001010101001001000010010001000100001010001001010100100010001000101001000011110101000110010100010101010101010110101010100001000010010101010100100100000101001010010001010110100010 Clemson University • Department of Genetics & Biochemistry Biosystems Research Complex Rm 302C • 105 Collings St. • Clemson, SC 29634 (864)656-3231 (office) • (864) 654-5403 (home) • Skype: alex.feltus • [email protected] https://www.clemson.edu/science/departments/genetics-biochemistry/people/profiles/ffeltus https://orcid.org/0000-0002-2123-6114 https://www.linkedin.com/in/alex-feltus-86a0073a 001010101000001010101010101010101010100110000101100101010100100010100101001000010000101010100100100001001000100010000101000100101010010001000100010100100001111010100011001010001000001000010010101010100100100000101001010010001010110100010 Educational Background: Ph.D. Cell Biology (2000) Vanderbilt University (Nashville, TN) B.Sc. Biochemistry (1992) Auburn University (Auburn, AL) Ph.D. Dissertation Title: Transcriptional Regulation of Human Type II 3β-Hydroxysteroid Dehydrogenase: Stat5- Centered Control by Steroids, Prolactin, EGF, and IL-4 Hormones. Professional Experience: 2018- Professor, Clemson University Department of Genetics and Biochemistry 2017- Core Faculty, Biomedical Data Science and Informatics (BDSI) PhD Program 2018- Faculty Member, Clemson Center for Human Genetics 2020- Faculty Scholar, Clemson University School of Health Research (CUSHR) 2019- co-Founder, -
Lecture 10: Phylogeny 25,27/12/12 Phylogeny
גנומיקה חישובית Computational Genomics פרופ' רון שמיר ופרופ' רודד שרן Prof. Ron Shamir & Prof. Roded Sharan ביה"ס למדעי המחשב אוניברסיטת תל אביב School of Computer Science, Tel Aviv University , Lecture 10: Phylogeny 25,27/12/12 Phylogeny Slides: • Adi Akavia • Nir Friedman’s slides at HUJI (based on ALGMB 98) •Anders Gorm Pedersen,Technical University of Denmark Sources: Joe Felsenstein “Inferring Phylogenies” (2004) 1 CG © Ron Shamir Phylogeny • Phylogeny: the ancestral relationship of a set of species. • Represented by a phylogenetic tree branch ? leaf ? Internal node ? ? ? Leaves - contemporary Internal nodes - ancestral 2 CG Branch© Ron Shamir length - distance between sequences 3 CG © Ron Shamir 4 CG © Ron Shamir 5 CG © Ron Shamir 6 CG © Ron Shamir “classical” Phylogeny schools Classical vs. Modern: • Classical - morphological characters • Modern - molecular sequences. 7 CG © Ron Shamir Trees and Models • rooted / unrooted “molecular • topology / distance clock” • binary / general 8 CG © Ron Shamir To root or not to root? • Unrooted tree: phylogeny without direction. 9 CG © Ron Shamir Rooting an Unrooted Tree • We can estimate the position of the root by introducing an outgroup: – a species that is definitely most distant from all the species of interest Proposed root Falcon Aardvark Bison Chimp Dog Elephant 10 CG © Ron Shamir A Scally et al. Nature 483, 169-175 (2012) doi:10.1038/nature10842 HOW DO WE FIGURE OUT THESE TREES? TIMES? 12 CG © Ron Shamir Dangers of Paralogs • Right species distance: (1,(2,3)) Sequence Homology Caused -
ACM-BCB 2016 the 7Th ACM Conference on Bioinformatics
ACM-BCB 2016 The 7th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics October 2-5, 2016 Organizing Committee General Chairs: Steering Committee: Ümit V. Çatalyürek, Georgia Institute of Technology Aidong Zhang, State University of NeW York at Buffalo, Genevieve Melton-Meaux, University of Minnesota Co-Chair May D. Wang, Georgia Institute of Technology and Program Chairs: Emory University, Co-Chair John Kececioglu, University of Arizona Srinivas Aluru, Georgia Institute of Technology Adam Wilcox, University of Washington Tamer Kahveci, University of Florida Christopher C. Yang, Drexel University Workshop Chair: Ananth Kalyanaraman, Washington State University Tutorial Chair: Mehmet Koyuturk, Case Western Reserve University Demo and Exhibit Chair: Robert (Bob) Cottingham, Oak Ridge National Laboratory Poster Chairs: Lin Yang, University of Florida Dongxiao Zhu, Wayne State University Registration Chair: Preetam Ghosh, Virginia CommonWealth University Publicity Chairs Daniel Capurro, Pontificia Univ. Católica de Chile A. Ercument Cicek, Bilkent University Pierangelo Veltri, U. Magna Graecia of Catanzaro Student Travel Award Chairs May D. Wang, Georgia Institute of Technology and Emory University JaroslaW Zola, University at Buffalo, The State University of NeW York Student Activity Chair Marzieh Ayati, Case Western Reserve University Dan DeBlasio, Carnegie Mellon University Proceedings Chairs: Xinghua Mindy Shi, U of North Carolina at Charlotte Yang Shen, Texas A&M University Web Admins: Anas Abu-Doleh, The