The Legitimate Scientific Name of the Valuable Medicinal Mushroom" Niu

Total Page:16

File Type:pdf, Size:1020Kb

The Legitimate Scientific Name of the Valuable Medicinal Mushroom Micología Aplicada International ISSN: 1534-2581 [email protected] Colegio de Postgraduados México Jong, S.-C. The legitimate scientific name of the valuable medicinal mushroom "Niu-Chang- Chih" known only from Taiwan Micología Aplicada International, vol. 24, núm. 2, julio, 2012, pp. 43-52 Colegio de Postgraduados Puebla, México Available in: http://www.redalyc.org/articulo.oa?id=68524018002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MTICHEOLOGIA MEDICINAL APLIC ADAMUSHROOM INTERNATIO “NIUNAL-C, HA24(2),NG-C 2012,HIH” pp. 43-5243 © 2012, BERKELEY, CA, U.S.A. www.micaplint.com THE LEGITIMATE SCIENTIFIC NAME OF THE VALUABLE MEDICINAL MUSHROOM “NIU-CHANG- CHIH” KNOWN ONLY FROM TAIWAN S.-C. JONG Consultant for Global Affairs, Emeritus Director of Microbiology, ATCC, 10801 University Blvd., Manassas, VA 20110-2209, U.S.A. Tel: 703-365-2742. Fax: 703-365-2760. E-mails: [email protected] ; [email protected] Internet: http://www.atcc.org/ Accepted for publication July 20, 2012 ABSTRACT “Niu-Chang-Chih” is a valuable medicinal mushroom known only from Taiwan. It has long been used in folk medicine as an antidote for alcohol and drug intoxication, as an anticancer agent in liver cancer and in the treatment of diarrhea, abdominal pain, hypertension and skin itching. The pharmacological activities and the chemical constituents of crude extract of “Niu-Chang-Chih” are quite different from those reported for ‘Linzhi” (Ganoderma lucidum ). Thus, a legitimate scientific name for the mushroom is essential for health, trade, conservation, property rights protection, and data retrieval systems. The desirability for use of a legitimate name is not only evident, but such use is becoming increasingly urgent with wider recognition of the important role the mushroom plays in bioindustry and biotechnology. There are four scientific names related to the mushroom “Niu-Chang-Chih” in the commercial and scientific literature: Ganoderma camphoratum Zang et Su, 1990; Antrodia cinnamomea Chang et Chou, 1995; Antrodia camphorata (Zang et Su) Wu et al., 1997; and Taiwanofungus camphoratus (Zang et Su) Wu et al., 2004. In order to determine the legitimate name from those cited for the mushroom, the nomenclatural standing with regard to legitimacy of each name is critically reviewed in accordance with particular rules of the International Code of Nomenclature for algae, fungi, and plants (ICN, the Melbourne Editorial note: The main subject of this paper is in process of being solved. The editors are open to editorials, MICOL. APL.letters INT., or 24(2), manuscripts 2012, from PP. colleagues43-52 interested in this constructive discussion. 44 S.-C. JONG Code of 2011). Clearly they all are effectively and validly published names. However, the name G. camphoratum is legitimate for a “Linzhi” mushroom, but illegitimate for the “Niu-Chang-Chih” mushroom because it is based on a mixed nomenclatural type (HKAS 22294) with two taxonomically discordant elements. The echinulate Ganoderma spore element of the mixed holotype HKAS 22294 was later separated and designated as lectotype of G. camphoratum by Chang and Chou in 2004. In addition, the new combinations A. camphorata (1997) and T. camphoratus (2004) were superfluous names for A. cinnamomea (1995) when published and must be rejected because the name A. cinnamomea was readily available. Each mushroom can bear only one legitimate name and any name that is contrary to rules of the ICN must be rejected unless conserved or sanctioned by the International Botanical Congress. Consequently, A. cinnamomea is the only “legitimate” name now available for the mushroom “Niu- Chang-Chih” with the holotype TFRI 119. It is thus incorrect (wrong) to cite these illegitimate names A. camphorata and T. camphoratus as taxonomic synonyms of the legitimate name A. cinnamomea. Unfortunately, these illegitimate names A. camphorata and T. camphoratum are still frequently cited in the literature, including the patent literature, for “Niu-Chang-Chih”. Key words: Antrodia cinnamomea, illegitimate names, legitimate name, medicinal mushroom, “Niu-Chang-Chih”, nomenclatural status, Taiwan. INTRODUCTION fying the blood, removing toxic substances, toning kidney, protecting liver, regulating The mushroom “Niu-Chang-Chih” is a intestine, strengthening the heart, adjust- fungus causing brown rot in Cinnamomum ing blood pressure, anti-bacteria, resisting kanehirai Hayata, a large evergreen broad- cold, suppressing cough, eliminating spu- leaf tree native to Taiwan. The strong bit- tum, alleviating pain, tranquilizing, anti- ter taste is believed to originate from the cancer, relieving tumor, expelling toxin, methanol-extract triterpenoids and the ef- and anti-fatigue6,8,14,15, 16,23,24. fective medicinal components3,7,8,23,24. The Because of its host specificity and scar- percentage of methanol extract (30%) ob- city in nature, and the difficulty of obtain- tained from the basidiocarp is ten times ing basidiocarps in artificial cultivation, higher than that of “Linzhi” (Ganoderma this mushroom has become very expen- lucidum)2. The mushroom has long been sive as medicinal material. Basidiocarps of used in folk medicine as an antidote for good quality cost about NT $1,340,000.00 alcohol and drug intoxication, as an an- (ca. US$44,000.00) per kilogram15. Thus, ticancer agent in liver cancer, and in the a legitimate scientific name for the mush- treatment of diarrhea, abdominal pain, hy- room “Niu-Chang-Chih” is essential for pertension and skin itching1,14,15. Like other communication among life scientists, and medicinal mushrooms, the mushroom con- in commercial trade, property rights pro- tains many biologically active ingredients tection, information storage and retrieval, that are believed to exhibit effects of puri- conservation of pure cultures, drafting of MICOL. APL. INT., 24(2), 2012, PP. 43-52 THE MEDICINAL MUSHROOM “NIU-CHANG-CHIH” 45 government legislation and regulations, as According to the rules of fungal nomencla- well as for quality control, sterility assur- ture governed by the International Code of ance and consumer safety of health food Nomenclature for algae, fungi, and plants products. Furthermore, scientific names (ICN or the Melbourne Code9,11,13,19,20,21,22), can avoid the confusion that can be created each fungus can bear only one legitimate when attempting to use common names name and any name that is contrary to one to refer to a mushroom species. Common or more rules (e.g., illegitimate) must be re- names often differ even from one part of jected. In order to determine the legitimate a country to another, and certainly vary name of the mushroom “Niu-Chang-Chih”, from one country to another. The scien- the nomenclatural status (effective or inef- tific names in Latin can be used all over fective, valid or invalid, legitimate or ille- the world, avoiding disadvantageous name gitimate) of each name concerned is criti- changes and difficulties of translation into cally reviewed in accordance with particu- different languages. lar rules of the ICN (the Melbourne Code). The mushroom “Niu-Chang-Chih” has cylindrical basidiospores, weakly amyloid skeletal hyphae, cinnamon resupinate to RULES OF FUNGAL pileate basidiocarps, as well as chlamydo- NOMENCLATURE spores and arthroconidia in pure culture. Taxonomically, these morphological and Fungal taxonomy consists of three distinct cultural characteristics place it in the genus but interrelated areas: classification, no- Antrodia P. Karst., family Fomitopsidaceae, menclature, and identification10. and order Polyporales4,5,12,25. Currently (a) Classification is the arrangement of fun- there are four scientific names related to gi into groups called taxa based on their the mushroom “Niu-Chang-Chih” in the overall similarities of phenotypes (phe- literature: netic classification) or the evolutionary Ganoderma camphoratum Zang et Su, pathways derived from genotypes and Acta Bot. Yunnanica 12: 395, 1990. macromolecular sequences (phyloge- Antrodia cinnamomea Chang et Chou, netic or phyletic classification). Mycol. Res. 99: 756, 1995. (b) Nomenclature is the assignment of for- Antrodia camphorata (Zang et Su) Wu et mal names to fungi according to rules al., Bot. Bull. Acad. Sin. 38: 273, 1997. (which are mandatory) and recommen- Taiwanofungus camphoratus (Zang et Su) dations (non-mandatory but good prac- Wu et al., Fung. Sci. 19 (3-4): 111, 2004. tice) defined in the ICN as adopted by Nomenclatural problems in the use of le- IBC. The Code is designed to provide gitimate fungal names have long been recog- a stable method of naming taxonomic nized internationally. A common complaint groups, avoiding and rejecting use of of those concerned with many different as- names which may cause “disadvanta- pects of applied mycology is the apparently geous name change” or unscientific endless change of fungal names cited in the confusion so that a fungus can bear commercial and scientific literature. For ex- only one legitimate name which is rep- ample, some 100,000 species of fungi seem resented by a nomenclatural type. acceptable at present, though about 300,000 (c) Identification is the practical use of valid names have been applied to them12. classification and nomenclature of MICOL. APL. INT., 24(2), 2012, PP. 43-52 46 S.-C. JONG fungi, upon which it follows
Recommended publications
  • From Taiwanofungus Camphoratus
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 750230, 13 pages doi:10.1155/2011/750230 Research Article Apoptotic Cell Death and Inhibition of Wnt/β-Catenin Signaling Pathway in Human Colon Cancer Cells by an Active Fraction (HS7) from Taiwanofungus camphoratus Chi-Tai Yeh,1, 2, 3 Chih-Jung Yao,2, 4 Jiann-Long Yan,5 Shuang-En Chuang,5 Liang-Ming Lee,4 Chien-Ming Chen,1 Chuan-Feng Yeh,5 Chi-Han Li,5 and Gi-Ming Lai1, 2, 4, 5 1 Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan 2 Center of Excellence for Cancer Research, Taipei Medical University, Taipei 110, Taiwan 3 Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan 4 Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan 5 National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan Correspondence should be addressed to Gi-Ming Lai, [email protected] Received 27 September 2010; Revised 6 January 2011; Accepted 11 January 2011 Copyright © 2011 Chi-Tai Yeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aberrant activation of Wnt/β-catenin signaling plays an important role in the development of colon cancer. HS7 is an active fraction extracted from Taiwanofungus camphoratus, which had been widely used as complementary medicine for Taiwan cancer patients in the past decades. In this study, we demonstrated the effects of HS7 on the growth inhibition, apoptosis induction, and Wnt/β-catenin signaling suppression in human colon cancer cells.
    [Show full text]
  • Antioxidant Properties of Antrodia Cinnamomea: an Extremely Rare 6 and Coveted Medicinal Mushroom Endemic to Taiwan
    Antioxidant Properties of Antrodia cinnamomea: An Extremely Rare 6 and Coveted Medicinal Mushroom Endemic to Taiwan K.J. Senthil Kumar and Sheng-Yang Wang Abstract Antrodia cinnamomea is an extremely rare and endemic fungal species native to forested regions of Taiwan. In modern Taiwanese culture, A. cinnamomea is believed to be a valuable gift from the heaven. Thereby, it is claimed as the “National Treasure of Taiwan” and “Ruby” among mushrooms.” Traditionally, A. cinnamomea was used to prepare Chinese medicine for treating various illness including liver diseases, food and drug intoxication, diarrhea, abdominal pain, hypertension, itchy skin, and tumorigenic diseases. Recent scientific studies strongly support that the pharmacological activities of A. cinnamomea go far beyond the original usage, as A. cinnamomea has exhibited various pharmaco- logical properties including anticancer, antioxidant, hepatoprotection, antihyper- tensive, antihyperlipidemic, immunomodulatory, and anti-inflammatory properties. Till date, more than 400 scientific reports have been published on the therapeutic potential of A. cinnamomea, or its closely related species Antrodia salmonea, and their compounds. In the present review, the taxonomic description of A. cinnamomea, ethnomedical value, chemical constituents, and pharmaco- logical effects particularly antioxidant and Nrf2-mediated cytoprotective effects will be discussed. Keywords Antioxidant • Antrodia cinnamomea • Antrodia salmonea • Cytoprotection • Medicinal fungus • Nrf2 K.J.S. Kumar Department of Forestry, National Chung Hsing University, Taichung, Taiwan S-Y. Wang (*) Department of Forestry, National Chung Hsing University, Taichung, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan e-mail: [email protected] © Springer Nature Singapore Pte Ltd. 2017 135 D.C. Agrawal et al. (eds.), Medicinal Plants and Fungi: Recent Advances in Research and Development, Medicinal and Aromatic Plants of the World 4, https://doi.org/10.1007/978-981-10-5978-0_6 136 K.J.S.
    [Show full text]
  • Four Species of Polyporoid Fungi Newly Recorded from Taiwan
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2018 January–March 2018—Volume 133, pp. 45–54 https://doi.org/10.5248/133.45 Four species of polyporoid fungi newly recorded from Taiwan Che-Chih Chen1, Sheng-Hua Wu1,2*, Chi-Yu Chen1 1 Department of Plant Pathology, National Chung Hsing University, Taichung 40227 Taiwan 2 Department of Biology, National Museum of Natural Science, Taichung 40419 Taiwan * Correspondence to: [email protected] Abstract —Four wood-rotting polypores are reported from Taiwan for the first time: Ceriporiopsis pseudogilvescens, Megasporia major, Phlebiopsis castanea, and Trametes maxima. ITS (internal transcribed spacer) sequences were obtained from each specimen to confirm the determinations. Key words—aphyllophoroid fungi, fungal biodiversity, DNA barcoding, fungal cultures, ITS rDNA Introduction Polypores are a large group of Basidiomycota with poroid hymenophores on the underside of fruiting bodies, which may be pileate, resupinate, or effused-reflexed, and with textures that are typically corky, leathery, tough, or even woody hard (Härkönen & al. 2015). Formerly, polypores were treated mostly in Polyporaceae Corda s.l. (under Polyporales) and Hymenochaetaceae Imazeki & Toki s.l. (under Hymenochaetales), with some species in Corticiaceae Herter s.l. (Gilbertson & Ryvarden 1986, 1987; Ryvarden & Melo 2014). However, modern DNA-based phylogenetic studies distribute polyporoid genera across at least 12 orders of Agaricomycetes Doweld, e.g., Polyporales Gäum., Hymenochaetales Oberw., Russulales Kreisel ex P.M. Kirk & al., Agaricales Underw. (Hibbett & al. 2007, Zhao & al. 2015). 46 ... Chen & al. Most polypores are wood-rotters that decompose the cellulose, hemicellulose, or lignin of woody biomass in forests; these fungi are either saprobes on trees, stumps, and fallen branches or parasites on living tree trunks or roots and therefore play a crucial role in nutrient recycling for the earth (Härkönen & al.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Taiwanofungus Camphoratus Un Hongo Medicinal Endémico De Taiwán
    TAIWANOFUNGUS CAMPHORATUS UN HONGO MEDICINAL ENDÉMICO DE TAIWÁN C. ILLANA-ESTEBAN Dpto. Ciencias de la Vida (Botánica), Facultad de Ciencias, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid. [email protected] Summary. ILLANA-ESTEBAN, C. (2014). Taiwanofungus camphoratus a medicinal endemic mushroom of Taiwan. Bol. Soc. Micol. Madrid 38: 215-221. Taiwanofungus camphoratus is a polyporaceous fungus and has been used in Taiwan traditionally due to its medical properties. A review of previously published literature about this fungus is made, dealing with its ethnomycological, nutritional, pharmacological and medical aspects. Key words: niu-chang-chih, medicinal fungi, Polyporaceae. Resumen. ILLANA-ESTEBAN, C. (2014). Taiwanofungus camphoratus un hongo medicinal endémico de Taiwán. Bol. Soc. Micol. Madrid 38: 215-221. Taiwanofungus camphoratus es un hongo poliporáceo usado en Taiwán tradicionalmente por sus propiedades medicinales. Se hace una revisión de lo publicado con anterioridad sobre este hongo en la literatura, en relación a aspectos etnomicológicos, nutricionales, farmacológicos y médicos. Palabras clave: hongos medicinales, niu-chang-chih, Polyporaceae. INTRODUCCIÓN gástricas, tumorales y para controlar la hiperten- sión) y para aliviar las consecuencias del cansan- Taiwanofungus camphoratus es un hongo pa- cio o el consumo de alcohol. Es conocido cómo rásito que crece en la cavidad interna del árbol niu-chang-chih ó niu zhang zhi (niu-chang es Cinnamomum kanehirae Hayata, pertenecien- el nombre chino de Cinnamomum kanehirae y te a la familia Laureaceae. C. kanehirae es un chih hace referencia a su parecido con los basi- árbol endémico de la isla de Taiwán que vive diocarpos del hongo Ganoderma). La población entre los 450-2000 m en las sierras de Taoyuan, taiwanesa también le menciona popularmente Miaoli, Nantou, Kaohsiung, Hualien y Taitung.
    [Show full text]
  • A Revised Family-Level Classification of the Polyporales (Basidiomycota)
    fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification.
    [Show full text]
  • Finding of a Novel Fungal Immunomodulatory Protein Coding
    ARTÍCULO DE INVESTIGACIÓN Finding of a novel fungal immunomodulatory protein coding sequence in Ganoderma australe Hallazgo de una nueva secuencia codificadora para una proteína inmunomoduladora de origen fúngico en Ganoderma australe Andrea González Muñoz*, Kelly Johana Botero Orozco**, Germán Ariel López Gartner*** Abstract Among the most common human diseases with immune system compromise are autoimmune diseases, cancer, and the acquired immunodeficiency syndrome (AIDS). Many of these diseases still have no treatment or their therapies have un- desirable side effects. This has aroused a great interest in the search for new natural products with therapeutic potential and scientifically proven effects, showing minimal side effects. Formal clinical and pharmacological investigation in various medicinal fungi of the genus Ganoderma (Ganodermataceae) has shown immunomodulatory effects and tumor growth inhibition in mammals, attributable to the presence of immunomodulatory proteins and other secondary metabolites. To date, six fungal immunomodulatory proteins (FIPs) have been reported in Ganoderma. This paper seeks to advance in the discovery of immunomodulatory proteins present in Ganoderma australe, through mycelium transcriptome 454 Roche® pyrosequencing (RNA-seq) and bioinformatics analyses. The results suggest the presence of gene sequences related to an immunomodulatory protein which has been reported in another fungal species Taiwanofungus camphoratus. The candidate gene sequences found in G. australe exhibit high identity values in their amino acid composition and predicted protein secondary structure with the protein reported for Tai. camphoratus. According to present knowledge about the action mechanisms of these proteins, it is possible to suggest that this is a promising molecule for the treatment and prevention of diseases associated with certain immune deficiencies, cancer, and other diseases with compromised immune systems.
    [Show full text]
  • Antrodia Camphorata with Potential Anti- Cancerous Activities: a Review
    Journal of Medicinal Plants Studies 2017; 5(1): 284-291 ISSN 2320-3862 JMPS 2017; 5(1): 284-291 Antrodia camphorata with potential anti- © 2017 JMPS Received: 12-11-2016 cancerous activities: A review Accepted: 13-12-2016 Dr. Rashmi A Joshi Scientist, Patanjali Herbal Dr. Rashmi A Joshi Research Department, Patanjali Research Institute, Abstract Uttarakhand, India Antrodia camphorata has long been used in traditional medicines of Taiwan for protection of diverse health related conditions as this fungal species possess over more than 78 active compounds which are responsible for its medicinal properties. These compounds are mainly terpenoids, polysaccharides, benzoquinone derivatives, succinic and maleic derivatives. The purpose of this review is to summarize available information about the anticancer activities of the crude extract and the different main bioactive compounds of A. camphorata. The clinical trials of its crude extract or pure compounds on humans are either limited or not performed, but still based on the research activities A. camphorata can be considered as an alternative synergizer or phytotherapeutic agent in the treatment of cancer and reflects that the present situation promise to prepare some medicines from it so that the mankind can be benefited. Keywords: Anticancer activities, cytotoxicity, polysaccharides, terpenoids 1. Introduction st Cancer is one of the most deadly disease in the 21 century and globally remains one of the leading cause of morbidity and mortality. After cardiovascular disease, it is the second noncommunicable diseases causing death [1-4] and is responsible for one in eight deaths worldwide, more than AIDS, tuberculosis, and malaria together [5] and accounting for about 8 million deaths worldwide [6].
    [Show full text]
  • Anthoporia, a New Genus in the Polyporales (Agaricomycetes)
    Polish Botanical Journal 61(1): 7–14, 2016 DOI: 10.1515/pbj-2016-0017 ANTHOPORIA, A NEW GENUS IN THE POLYPORALES (AGARICOMYCETES) Dariusz Karasiński & Tuomo Niemelä Abstract: A new genus, Anthoporia Karasiński & Niemelä, is proposed for the brown-rot polypore Polyporus albobrunneus Romell [= Antrodia albobrunnea (Romell) Ryvarden]. The new genus is separated from Antrodia P. Karst. s.str. in several morphological features, and it is only distantly related to Antrodia serpens (Fr.) P. Karst. (generic type of Antrodia) in recently published phylogenies. Additionally, Anthoporia albobrunnea (Romell) Karasiński & Niemelä is described and illustrated based on material collected in Białowieża National Park in northeastern Poland. Key words: Antrodia albobrunnea, Białowieża Primeval Forest, polypores, systematics, wood-inabiting fungi Dariusz Karasiński, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Tuomo Niemelä, Botany Unit, Finnish Museum of Natural History, P.O. Box 7, FI-00014 Helsinki, Finland; e-mail: tuomo. [email protected] Introduction Polyporales is one of the largest orders of the 26 traditionally accepted genera. They showed that class Agaricomycetes (Basidiomycota) including many of these genera are poly- or paraphyletic and ca 1800 species, 150 genera and 40 described in need of a generic reclassification. families (Hibbett et al. 2014). It contains species The genus Antrodia P. Karst. (Polyporales) was having pileate, pileate-stipitate, multiple flabel- described by Karsten (1879) and later redefined liform or resupinate basidiomata with a poroid, by Donk (1960, 1966), who selected Daedalea hydnoid, lamellate, merulioid or smooth hyme- serpens Fr. as its type.
    [Show full text]
  • Download Download
    IJM - Italian Journal of Mycology ISSN 2531-7342 - Vol. 50 (2021): 30-43 Journal homepage: https://italianmycology.unibo.it/ Review Agaricomycetes mushrooms (Basidiomycota) as potential neuroprotectants Susanna M. Badalyan1* and Sylvie Rapior2* 1 Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Department of Biomedicine, Yerevan State University, Yerevan, Armenia - E-mail: [email protected] 2 Laboratoire de Botanique, Phytochimie et Mycologie, CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France - E-mail: [email protected] Corresponding author e-mail: [email protected], [email protected] ARTICLE INFO Received 22/2/2021; accepted 14/4/2021 https://doi.org/10.6092/issn.2531-7342/12542 Abstract The edible and medicinal agaricoid and polyporoid mushrooms (phylum Basidiomycota, order Agaricomycetes) have long been known by humans as valuable food and medicines. They are producers of different groups of high- and low- molecular weight bioactive compounds (alkaloids, phenolics, polysaccharides, proteins, terpenoids, vitamins etc.) with around 130 therapeutic effects, including neuroprotective. Mushroom-derived biotech products are reported as effective neuroprotectants, however their potential to prevent or mitigate several neurodegenerative pathologies, such as Alzheimer and Parkinson diseases, epilepsy, depression and others has not been fully explored. This review discusses the neuroprotective potential of Agaricomycetes fungi and possibilities for their application as natural neuroprotectants. Keywords Agaricomycetes, antioxidant, anti-inflammatory, bioactive compounds, neurodegenerative, neuroprotective Introduction Neurodegeneration is incurable pathological process of progressive loss of structure and function of nerve cells, which lead to their death. In recent years age-related neurodegenerative diseases (NDD), such as Alzheimer’s, Parkinson’s and Meniere’s diseases, multiple sclerosis affecting more than 35 million people worldwide.
    [Show full text]
  • Hepatoprotective Effects of Mushrooms
    Molecules 2013, 18, 7609-7630; doi:10.3390/molecules18077609 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Hepatoprotective Effects of Mushrooms Andréia Assunção Soares 1, Anacharis Babeto de Sá-Nakanishi 1, Adelar Bracht 1, Sandra Maria Gomes da Costa 2, Eloá Angélica Koehnlein 3, Cristina Giatti Marques de Souza 1 and Rosane Marina Peralta 1,* 1 Department of Biochemistry, State University of Maringá, Maringá 87015-900, Brazil; E-Mails: [email protected] (A.S.S.); [email protected] (A.B.S.-N.); [email protected](A.B.); [email protected] (C.G.M.S.) 2 Department of Biology, State University of Maringá, Maringá 87015-900, Brazil; E-Mail: [email protected] 3 Department of Nutrition, Federal University of the Southern Frontier, Realeza 85770-000, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +55-44-3011-4715. Received: 27 May 2013; in revised form: 26 June 2013 / Accepted: 27 June 2013 / Published: 1 July 2013 Abstract: The particular characteristics of growth and development of mushrooms in nature result in the accumulation of a variety of secondary metabolites such as phenolic compounds, terpenes and steroids and essential cell wall components such as polysaccharides, β-glucans and proteins, several of them with biological activities. The present article outlines and discusses the available information about the protective effects of mushroom extracts against liver damage induced by exogenous compounds. Among mushrooms, Ganoderma lucidum is indubitably the most widely studied species. In this review, however, emphasis was given to studies using other mushrooms, especially those presenting efforts of attributing hepatoprotective activities to specific chemical components usually present in the mushroom extracts.
    [Show full text]
  • Anticancer Effects of Taiwanofungus Camphoratus Extracts, Isolated Compounds and Its Combinational Use
    J Exp Clin Med 2010;2(6):274e281 Contents lists available at ScienceDirect Journal of Experimental and Clinical Medicine journal homepage: http://www.jecm-online.com REVIEW ARTICLE Anticancer Effects of Taiwanofungus camphoratus Extracts, Isolated Compounds and its Combinational use Ying-Chen Chen 1, Hsio-O Ho 1, Chin-Hua Su 2, Ming-Thau Sheu 1,3,* 1 School of Pharmacy, College of Pharmacy, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan 2 School of Medicine, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan 3 Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan article info Taiwanofungus camphoratus is an indigenous mushroom in Taiwan, which has been used as a traditional Article history: medicine to treat many health-related problems. Several biological activities have been reported on Received: Jun 23, 2010 T. camphoratus ranging from anti-inflammatory antihypertension to anticancer and so on. Cancer is Revised: Aug 1, 2010 a major cause of death in Taiwan, and unfortunately, there is no satisfied treatment presently. Thus, Accepted: Aug 31, 2010 a review article about the anticancer effect of T. camphoratus would be a great importance. This article Available online 20 October 2010 reviews anticancer activities being performed with crude extracts and isolated compounds from T. camphoratus and their synergistic effects. The source of T. camphoratus might be from its fruiting KEY WORDS: bodies, mycelia, and fermented culture broth and be extracted from water, methanol, ethanol, ethyl anticancer; acetate, or chloroform, which showed versatile anticancer activities. In addition, various compounds combination; have been further purified from these extracts, such as terpenoids, maleic and succinic acids derivatives, crude extracts; polysaccharides, and other compounds, and they also showed potent cytotoxicity.
    [Show full text]