United States Patent Office Patented Apr

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Apr 2,931,802 United States Patent Office Patented Apr. 5, 1960 1. 2 solved. Any unreacted anhydride and acid by-product are removed by distillation under reduced pressure. To re 2931,802 move traces of acid and the salt catalyst, the residue is dis solved in a water-immiscible inert solvent and the result MXED ESTERS OF GLUCOSE AND SUCROSE ing solution is washed with dilute NaOH or Na2CO3, George P. Touey and Herman E. Davis, Kingsport, Tenn., following which the aqueous layer is removed and the assignors to Eastman Kodak Company, Rochester, N.Y., inert solvent is distilled off under reduced pressure. Ordi a corporation of New Jersey narily, 2-3 hours gives sufficient time to run the reaction No Drawing. Application April 30, 1958 to completion although longer times. may be employed. Serial No. 731,890 10 If desired, an inert diluent may be employed in the esteri fication bath such as a ketonelike diethyl ketone, a hydro 7 Claims. (CI. 260-234) carbon such as toluene, or a chlorinated hydrocarbon such as propylene chloride. If a solvent is used its boil ing point should be within the range of 90-140 C. This invention relates to organic solvent soluble short 5 Acid diluents are preferably avoided since they may react chain fatty acid esters of sucrose and of glucose and with the anhydrides used, thereby altering the anhydride their method of preparation. In particular it relates to ratio employed. ... completely esterified or highly esterified mixed fatty acid To obtain non-crystallizing esters in accordance with esters of sucrose and glucose containing a combination of our invention the proportions of the combinations acetic acetyl and propionyl groups, or acetyl (or propionyl) and 20 anhydride-propionic anhydride, acetic anhydride-isobutyric isobutyryl groups as acyl substituents. anhydride, or propionic anhydride-isobutyric anhydride Sucrose octaacetate has been previously referred to as must be controlled within definite limits. In the case of being useful in the preparation of adhesives, paper finishes, glucose the total molar quantity of anhydride must not lacquers, resins, and plastics. This material is a white be less than 5 or more than 8 for each mole of the glu crystalline solid, its crystalline nature limiting its use as 25 cose. In the case of sucrose, the total molar quantity of a plasticizing material. When this material is incorpo anhydride must be not less than 8 nor more than 12. In rated into cellulose ester film base materials at normal the case of glucose, the acetic anhydride should not be plasticizer concentrations such as 10-50%, the films cast above 2 moles or below 0.25 mole per mole of glucose. therefrom become opaque and brittle due to crystallization The preferred ratio of reactants are 0.5-1.25 moles of of the sucrose octaacetate in the film. Also, sucrose octa 30 acetic anhydride and 5.25-5.75 moles of isobutyric or acetate has relatively high solubility in water and poor propionic anhydride per mole of glucose. This gives resistance to hydrolysis. Other fatty acid esters of sucrose (when using isobutyric anhydride), a substantially com have disadvantages of one kind or another when used as pletely esterified glucose acetate isobutyrate having an a cellulose ester plasticizer. For instance, sucrose octa acetyl content within the range of 4.3-23% and an iso propionate is also a crystalline solid very similar in 35 butyryl content between 39.5 and 63%. In the case of the properties to the octaacetate. The normal butyrate ester sucrose esters, the acetic anhydride should not be above 4 of sucrose develops disagreeable odor when subjected to mcles or below 1 mole per mole of sucrose being esterified. high humidities. The incorporation of considerable The most desirable ratio of reactants are within the range amounts of this material into cellulose ester films may of i-3 moles of acetic anhydride and 7-9 moles of iso result in soft, tacky surfaces. The simple esters of glu 40 butyric anhydride or propionic anhydride per mole of su cose possess similar characteristics when used as additives crose. There is thus obtained (when isobutyric anhydride in cellulose ester compositions. is used a substantially completely esterified sucrose acetate One object of our invention is to provide as new chemi isobutyrate with an acetyl content within the range of cal compounds substantially completely esterified odor 5.0-25% and an isobutyryl content between 31.7 and less sucrose or glucose acetate isobutyrates or acetate. 45 59%. When the amounts of the lower anhydrides are propionates characterized by non-crystallizing character higher or lower than the limits specified, the products istics. Another object of our invention is to provide as have a pronounced tendency to crystallize. Also, higher new chemical compounds a substantially completely amounts of acetyl than specified gave products which esterified odcrless sucrose or glucose propionate iso are less resistant to hydrolysis. - - - butyrate which is noncrystallizing. A further object of 50. The catalyst concentration may range from 1 to 20% our invention is to provide substantially completely esteri based on the weight of the sugar. Ordinarily, a concentra fied, organic solvent soluble sugar esters which due to their tion of 8% catalyst is sufficient. The catalyst may be a non-crystallizing pronerty, lack of odor, and excellent heat sodium, potassium, lithium, or calcium salt of a weak and hydrolysis stability, are ideally suited as plasticizers organic acid. The preferred catalyst is a salt whose anion or plastirizer extenders in cellulose ester compositions. A 55 corresponds to the anhydride being used. For instance, still further object of our invention is to provide a practi in making sucrose or glucose acetate isobutyrate the pre cal procedure for producing these non-crystallizing sugar ferred catalyst is sodium isobutyrate or a mixture of esters. Other objects of our invention will appear herein. Sodium acetate and sodium isobutyrate. It is most con It has been found that if a sucrose or glucose mixed venient to form the catalyst in situ by adding sodium hy ester is prepared containing at least 20% isobutyryl or 60 droxide to the mixture of the two anhydrides in forming propionyl based on the acyl content, the remainder being the esterification mass. The following examples illustrate acetyl or propionyl, those esters when incorporated in our invention. cellulose ester compositions, do not crystallize or other wise interfere with the clarity of products prepared there Example 1.-PREPARATION OF SUCROSE from, do not develop odor at high humidities and are 65 ACETATE ISOBUTYRATES resistant to heat and hydrolysis. - 1 mole (342 grams) of sucrose and 0.69 mole (27.6 The esters in accordance with our invention are pre grams) of sodium hydroxide were added to a mixture pared by heating sucrose or glucose such as at 90-140 C. of 8 moles of isobutyric anhydride and 2 moles of acetic with a mixture of (1) isobutyric anhydride, and acetic or anhydride. The mixture was rapidly stirred and was propionic anhydride or (2) acetic and propionic heated to 130 C. and maintained at that temperature anhydride in the presence of a salt of a weak 70 for 2 hours. The faintly amber colored solution ob organic acid until the product has been completely dis tained was concentrated by removing the acids and ex 2,981,802 3 4. cess anhydride under reduced pressure (2-5 mm. Hg.) at washes. The water layer was discarded and the toluene 90-100° C. The syrupy residue was dissolved in toluene was removed by vacuum distillation. There was ob and the resulting solution was thoroughly washed with tained 460 grams of a viscous, light colored, free-flowing aqueous 5% NaOH followed by several water washes. liquid which was glucose acetate isobutyrate. The glucose * The toluene was removed by distillation yielding a clear, acetate isobutyrate thus obtained was stable at 190° C. almost colorless highly viscous liquid which is sucrose for 2 hours and had excellent hydrolysis stability in boil acetate isobutyrate. ing water treated for 96 hours. The above procedure was The procedure was repeated varying the amounts of repeated several times varying the amounts of acetic and acetic anhydride and isobutyric anhydride in the esterify isobutyric anhydride within the limits specified in the ing mixture as shown in the table. 0. description. In every case, a non-crystallizing, light Mnles Moles Percent Hydrolysis Run Moles Isnbutyr- A cetic Percent Iso- Stability, Sucrose ic Anhy. Anhy- Acetyl butyryl Percent Physical Forn dride dride 0.01 HSEays. syrup crystallized within 0.02 Heavy syrup had not crystallized after 6 Inonths' storage. 0. Do. 0.32 Do. 0,9 Do. 1 The hydrolysis stahility is expressed as percent acid formed (calculated as acctic acid) after the sample had been boiled in water for 96 hours. Yields in all the above runs were in excess of 90%. The colored, viscous liquid was obtained in a yield of at least heat stability of each product was excellent when held 90%. The products obtained had excellent heat and at 190° C. for 2 hours. Analysis indicated each of the hydrolysis stability. products were substantially the octa substituted esters. Example 4.-PREPARATION OF GLUCOSE Example 2--PREPARATION OF SUCROSE 30 ACETATE ISOBUTYRATE PROPIONATE ISOBUTYRATE A slurry was prepared by heating at 130° C. for 2 hours A slurry was obtained by rapidly stirring together i with rapidly stirring a mixture of 1 mole (180 grams) of mole (342 grams) of sucrose, 0.69 mole (27.6 grams) of glucose, 0.25 mole (10 grams) of sodium hydroxide, 1.0 sodium hydroxide, 8 moles of isobutyric anhydride and 35 mole (130 grams) of propionic anhydride, and 5.5 moles 2 moles of propionic anhydride and slowly heating to (869 grams) of isobutyric anhydride.
Recommended publications
  • Chemistry and New Uses of Sucrose: How Important?
    Pure & Appi. Chem., Vol. 56, No. 7, pp. 833—844, 1984. 0033—4545/84 $3.OO+O.OO Printed in Great Britain. Pergamon Press Ltd. ©1984 IUPAC CHEMISTRY AND NEW USES OF SUCROSE: HOW IMPORTANT? Riaz Khan Philip Lyle Memorial Research Laboratory, Tate & Lyle PLC, Whiteknights P.O. Box 68, Reading, England Abstract —Somerecent work on selective reactions of sucrose is described. These reactions reveal a profile of chemical reactivity which has been exploited to produce a number of products of commercial significance. The potential of sucrose as a raw material for chemicals and energy is also indicated. INTRODUCTION The world economy is critically dependent upon oil which is a non—regenerable material. In order to maintain an economic order in the world it is therefore imperative that the future energy and chemical needs are secured. In the short—term we must curb on wasteful consumption of oil and in the long—term dependence on oil must be reduced. Alternative resources such as coal, tarsands, shale oil, natural gas and lignite, agricultural and aquatic materials must be considered as sources of energy and chemicals. The potential of carbohydrates as feedstocks for chemicals has been demonstrated, but not yet significantly commercially realised except in a few instances. Although cellulose is the most abundant carbohydrate, several technical difficulties in its processing makes it economically unattractive as a raw material for energy and chemicals. In contrast sucrose and starch are readily amenable to chemical and biochemical modifications giving a range of compounds presently derived through petrochemical routes, as well as new derivatives of potential commercial significance.
    [Show full text]
  • Natured Alcohol and Spe- Cially Denatured
    Alcohol and Tobacco Tax and Trade Bureau, Treasury § 21.141 (c) Purity. Technical grade or better. droxide. Reflux for 1 hour on a steam bath, cool and titrate the excess so- [T.D. ATF–133, 48 FR 24673, June 2, 1983. Re- designated by T.D. ATF–442, 66 FR 12854, dium hydroxide with 0.5 N sulfuric acid Mar. 1, 2001] using phenolphthalein indicator. Percent sucrose octaacetate=(ml NaOH¥ml § 21.129 Spearmint oil, terpeneless. H2SO4)×4.2412/weight of sample (a) Carvone content. Not less than 85 percent by weight. [T.D. ATF–133, 48 FR 24673, June 2, 1983. Re- ° designated by T.D. ATF–442, 66 FR 12854, (b) Refractive index at 20 C. 1.4930 to Mar. 1, 2001] 1.4980. (c) Specific gravity at 25 °/25 °C. 0.949 to § 21.132 Toluene. 0.956. (d) Odor. Characteristic odor. (a) Distillation range. (For applicable ASTM method, see 1980 Annual Book of [T.D. ATF–133, 48 FR 24673, June 2, 1983. Re- ASTM Standards, Part 29, page 569, designated by T.D. ATF–442, 66 FR 12854, Standard No. D 362–75 for industrial Mar. 1, 2001] grade toluene; for incorporation by ref- § 21.130 Spike lavender oil, natural. erence, see § 21.6(b).) When 100 ml of tol- uene are distilled by this method, not (a) Alcohol content (as borneol). Not more than 1 ml should distill below 109 less than 30 percent by weight. °C., and not less than 99 ml below 112 (b) Esters (as bornyl acetate). Not less °C. than 1.5 percent by weight.
    [Show full text]
  • SDS Contains All of the Information Required by the HPR
    SAFETY DATA SHEET Preparation Date: 01/26/2015 Revision Date: 7/25/2018 Revision Number: G2 1. IDENTIFICATION Product identifier Product code: SU104 Product Name: SUCROSE OCTAACETATE, NF Other means of identification Synonyms: alpha-d-glucopyranoside; 1,3,4,6-tetra-O-acetyl-beta-D-Frutofuranosyl; tetraacetate; Octaacetylsucrose CAS #: C28H38O19 RTECS # WN6620000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: No information available. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is not considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Not a dangerous substance or mixture according to the Globally Harmonized System (GHS) Label elements Not classified Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Product code: SU104 Product name: SUCROSE 1 / 10 OCTAACETATE, NF 3. COMPOSITION/INFORMATION ON INGREDIENTS Components CAS-No. Weight % Sucrose Octaacetate 126-14-7 100 4. FIRST AID MEASURES First aid measures General Advice: National Capital Poison Center in the United States can provide assistance if you have a poison emergency and need to talk to a poison specialist. Call 1-800-222-1222. Skin Contact: Wash off immediately with soap and plenty of water removing all contaminated clothing and shoes. Get medical attention if irritation develops. Consult a physician if necessary.
    [Show full text]
  • Optimization of Ultrasound Synthesis of Sucrose Esters by Selection of a Suitable Catalyst and Reaction Conditions
    JournalJournal of Chemical of Chemical Technology Technology and Metallurgy,and Metallurgy, 56, 2, 56, 2021, 2, 2021 268-274 OPTIMIZATION OF ULTRASOUND SYNTHESIS OF SUCROSE ESTERS BY SELECTION OF A SUITABLE CATALYST AND REACTION CONDITIONS Dragomir Vassilev1, Nadezhda Petkova2, Milena Koleva1, Panteley Denev2 1 Technical University of Gabrovo, 4 Hadji Dimitar str., 5300 Gabrovo, Bulgaria Received 25 October 2019 2 University of Food Technologies, 26 Maritza blv., 4002 Plovdiv, Bulgaria Accepted 10 January 2020 E-mail: [email protected] ABSTRACT Sucrose is used as a renewable raw material for the preparation of esters in various fields such as detergents, whitening boosters, cosmetics, medicines, nutritional supplements, emulsifiers, stabilizing agents, etc. By transes- terification of all hydroxyl groups with fatty acids, the polysubstituted sucrose esters acquire specific physical and organoleptic properties of fats. Sucrose esters, with three or less substituted OH groups with fatty acids, are suitable as surfactants and nutritional supplements due to their emulsification, stabilizing and conditioning properties. The main problem with the synthesis of sucrose esters relates to the high functionality of the sucrose molecule - eight hydroxyl groups that compete during the synthesis and lead to the formation of mixtures of monoesters, diesters and even higher esters. Transesterification can be oriented to a specific substitution model by carefully selecting the reaction conditions. Therefore, the focus of this study was to clarify the effects of the sucrose to fatty acid molar ratio, catalyst and reaction temperature on the rate of sucrose ester formation in a specific substitution mode (monoesters). Keywords: sucrose, transesterification, ultrasound synthesis, sucrose esters. INTRODUCTION rate of chemical reactions in solution through the phe- nomenon of cavitation and the generation of microbub- The interest in sucrose esters, which are surfactants bles.
    [Show full text]
  • Temporary Compounding of Certain Alcohol-Based Hand Sanitizer Products During the Public Health Emergency Immediately in Effect Guidance for Industry
    Policy for Temporary Compounding of Certain Alcohol-Based Hand Sanitizer Products During the Public Health Emergency Immediately in Effect Guidance for Industry FDA is issuing this guidance for immediate implementation in accordance with 21 CFR 10.115(g)(2). Comments may be submitted at any time for Agency consideration. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. Submit electronic comments to https://www.regulations.gov. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. For questions regarding this document, contact FDA’s human drug compounding team (CDER) at [email protected]. March 2020 Updated February 10, 2021 Compounding Contains Nonbinding Recommendations Policy for Temporary Compounding of Certain Alcohol-Based Hand Sanitizer Products During the Public Health Emergency Immediately in Effect Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: [email protected] https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: CHEMICAL PRODUCT and COMPANY IDENTIFICATION Product Name: Sucrose octaacetate 98% Product Code: S10780 Supplier: Pfaltz & Bauer, Inc. 172 E. Aurora Street Waterbury, CT 06708 USA Phone: 203-574-0075 FAX: 203-574-3181 Emergency Phone: INFOTRAC, US: 1-800-535-5053 INFOTRAC, INTERNATIONAL: +1-352-323-3500 SECTION 2: HAZARDS IDENTIFICATION Statement of Hazard: Irritant, Respiratory irritant Acute Health Hazard: Irritant to eyes, skin, mucous membranes and respiratory system. May be harmful by ingestion, skin absorption and inhalation. Chronic Health Hazard: Not Available HMIS Rating: H: 1 F: 0 P: 0 NFPA Rating: H: 1 F: 0 R: 0 To the best of our knowledge, the toxicological properties of this chemical have not been thoroughly investigated. Use appropriate procedures and precautions to prevent or minimize exposure. GHS Classification in accordance with 29 CFR 1910 (OSHA HCS): Acute toxicity, dermal (Category 4), H312 Acute toxicity, inhalation (Category 4), H332 Acute toxicity, oral (Category 4), H302 Serious eye damage/eye irritation (Category 2A), H319 Skin corrosion/irritation (Category 2), H315 Specific target organ toxicity, single exposure; Respiratory tract irritation (Category 3), H335 Page 1 of 6 Pictogram: Signal Word: Warning Hazard Statement(s): H302 Harmful if swallowed. H312 Harmful in contact with skin. H315 Causes skin irritation. H319 Causes serious eye irritation. H332 Harmful if inhaled. H335 May cause respiratory irritation. Precautionary Statement(s): P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P280 Wear protective gloves/protective clothing/eye protection/face protection. P301+P312 IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell.
    [Show full text]
  • SU104 12 KG Sucrose Octaacetate
    Scientific Documentation SU104, Sucrose Octaacetate, NF Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.01 27.April.2016 Dear Customer, Thank you for your interest in Spectrum’s quality products and services. Spectrum has been proudly serving our scientific community for over 45 years. It is our mission to manufacture and distribute fine chemicals and laboratory products with Quality and delivery you can count on every time. To accomplish our mission, Spectrum utilizes our sourcing leverage and supplier qualification expertise in offering one of the industry’s most comprehensive line of fine chemical products under one brand, in packaging configurations designed to meet your research and production requirements. Our product grades include: USP, NF, BP, EP, JP, FCC, ACS, KSA, Reagent grade, as well as DEA controlled substances. We operate facilities in the United States on the East Coast, West Coast, as well as in Shanghai, China in order to provide the best logistical support for our customers. At Spectrum, Quality is priority number one. Suppliers with the best qualifications are preferred and we employ full-functioning in-house analytical laboratories at each of our facilities. Our facilities and systems are USFDA registered and ISO certified. We frequently host customer audits and cherish opportunities for improvements. Quality is engrained into our culture. Quality is priority number one. In the following pages, we have designed and prepared documented scientific information to aid you in your initial qualification or your continual use of our products.
    [Show full text]
  • Synthesis of Sucrose Fatty Acid Esters by Using Mixed
    Journal of Oleo Science Copyright ©2020 by Japan Oil Chemists’ Society doi : 10.5650/jos.ess19239 J. Oleo Sci. 69, (7) 693-701 (2020) Synthesis of Sucrose Fatty Acid Esters by Using Mixed Carboxylic-fatty Anhydrides Iteb Trabelsi, Kamel Essid* , and Mohamed Hedi Frikha Laboratory of Organic Chemistry LR17ES08: Faculty of sciences in Sfax, Route de Soukra Km 3,5 – BP 1171-3000. Sfax. TUNISIA Abstract: Fatty acid sugar esters are non-ionic surfactant active agents with excellent performance and many uses. This work is devoted to the synthesis of sugar esters by the esterification reaction of sugar with mixed carboxylicpalmitic anhydrides using resin Amberlyst-15 as heterogeneous acid catalyst. These anhydrides should be stable and react as acylating agents. Influence of different reaction parameters, such as the molar ratio (sucrose/anhydride), the type of solvent and the reaction time on the yield of the esterification reaction were studied. The esterification reaction of sucrose with mixed palmitic benzoic anhydride leads to a mixture of sucrose esters of palmitic acid with a good percentage of conversion. The mixed anhydride was both reactive and selective for the preparation of fatty acid ester. Key words: fatty acid, mixed anhydride, heterogeneous acid catalyst, resin Amberlyst-15, esterification, sucrose, acylation of sucrose, sucrose fatty acid esters (SEs) 1 Introduction mixed anhydrides have been often employed in order to Sucrose fatty acid esters(SEs), commonly called sugar obtain a high yield of ester16). Mixed anhydrides obtained esters, are nonionic surfactants that have excellent emulsi- from two different carboxylic acids are molecules finding fying, stabilizing, detergency and other useful effect1-4).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,906,413 B2 Chang Et Al
    USOO8906413B2 (12) United States Patent (10) Patent No.: US 8,906,413 B2 Chang et al. (45) Date of Patent: Dec. 9, 2014 (54) DRUG FORMULATIONS HAVING REDUCED (56) References Cited ABUSE POTENTIAL U.S. PATENT DOCUMENTS (75) Inventors: Rong-Kun Chang, Rockville, MD (US); 3,079,303 A 2f1963 Raffet al. 3,383,283 A * 5, 1968 Brindamour .................. 424/490 Richard A. Couch, Chevy Chase, MD 4,070,494 A 1/1978 Hoffmeister et al. ............. 424.2 (US); Beth A. Burnside, Bethesda, MD 4,401,672 A 8/1983 Portoghese ... ... 424,260 (US) 4,457.933 A 7/1984 Gordon et al. ... 424,260 4,834,965 A 5/1989 Martani et al. 5,162.341 A 1 1/1992 Cook ............................ 514,317 (73) Assignee: Supernus Pharmaceuticals, Inc., 5,236,714 A 8/1993 Lee et al. ...................... 424/449 Rockville, MD (US) (Continued) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP 1382.331 A1 1, 2004 U.S.C. 154(b) by 1073 days. OTHER PUBLICATIONS (21) Appl. No.: 10/435,597 Non-Final Office Action mailed on Apr. 7, 2009 in U.S. Appl. No. 1 1/250,309, 11 pages. Matschiner et al. “Characterization of ion pair formation between (22) Filed: May 12, 2003 erythromycin and lipophilic counter ions.” Pharmazie, 1995, vol. 50. pp. 462-464. (65) Prior Publication Data (Continued) US 2004/02288O2A1 Nov. 18, 2004 Primary Examiner — Lakshmi Channavaljala (74) Attorney, Agent, or Firm — Foley & Lardner LLP; Sunit Talapatra (51) Int. C. (57) ABSTRACT A6K9/20 (2006.01) Drug formulations having reduced abuse potential which A 6LX 9/50 (2006.01) contain one or more of (1) a bittering agent, (2) a bright A 6LX 9/70 (2006.01) deterrent/indicator dye and (3) fine insoluble particulate mat A6 IK3I/00 (2006.01) ter.
    [Show full text]
  • Ultrasound-Assisted Synthesis of Antimicrobial Inulin and Sucrose Esters with 10-Undecylenic Acid
    Article Volume 11, Issue 4, 2021, 12055 - 12067 https://doi.org/10.33263/BRIAC114.1205512067 Ultrasound-Assisted Synthesis of Antimicrobial Inulin and Sucrose Esters with 10-Undecylenic Acid Nadezhda Petkova 1,* , Radka Arabadzhieva 1, Ivanka Hambarliyska 1, Dragomir Vassilev 2 , Gergana Gencheva 1, Yulian Tumbarski 3 , Tsveteslava Ignatova-Ivanova 4, Sevginar Ibryamova 4 , Milena Koleva 2, Panteley Denev 1 1 Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv 4002, Bulgaria; [email protected] (N.P.); [email protected] (R.A.); [email protected] (V.H.); [email protected] (P.D.); 2 Department of Physics, Chemistry and Ecology, Technical University of Gabrovo, 4, Hadji Dimitar Str., Gabrovo 5300, Bulgaria; e-mail: [email protected] (D.V.); [email protected] (M.K.); 3 Department of Microbiology, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria; [email protected] (Y.T.); 4 Department of Biology, Konstantin Preslavsky University of Shumen, Shumen, Bulgaria; [email protected] (T.I.); e-mail: [email protected] (S.I); * Correspondence: [email protected]; Scopus Author ID 56507003400 Received: 1.12.2020; Revised: 28.12.2020; Accepted: 30.12.2020; Published: 2.01.2021 Abstract: An environmentally friendly and sustainable ultrasound-assisted esterification of long- chained inulin and sucrose with monounsaturated 10-undecylenic acid was performed. The obtained esters were characterized by thin-layer chromatography (TLC), Fourier transforms infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The spectral analyses demonstrated the successful incorporation of the hydrophobic 10-undecylenoyl residue in the water- soluble carbohydrate backbone. Additionally, the antimicrobial potential of 10-undecylenic esters of inulin and sucrose were tested against nine microorganisms (Gram-positive and Gram-negative bacteria, yeasts, and fungi).
    [Show full text]
  • JI470-002 Sucrose Octaacetate
    Version: 1.0 Revision date: Safety Data Sheet 12/09/2015 Supersedes: 03/01/2013 Sucrose Octaacetate 1. Product and Company Identification 1.1. Product Identifiers Product Form: powder Substance Name: Sucrose Octaacetate CAS No.: 126-14-7 Product Code: UIC, Inc. Catalog Number CM300-011 1.2. Intended Use of the Product Use of the substance/mixture: Laboratory chemicals, Manufacture of substances, Combustion tubes Name, Address, and Telephone of the Responsible Party UIC Inc 1225 Channahon Rd Joliet, IL 60436 Phone: (815) 744-4477 Fax: (815) 744-1561 Emergency Telephone Number For Chemical Emergency, Spill, Leak, Fire, Exposure, or Accident, call emergency number: 1-815-474-8753 2. Hazards Identification of the product 2.1. Classification of the substance or mixture Not a hazardous substance or mixture. 2.2. GHS Label elements, including precautionary statements Not a hazardous substance or mixture. 2.3. Hazards not otherwise classified (HNOC) or not covered by GHS – none 3. Composition/information on ingredients 3.1. Substances Chemical name: Sucrose octaacetate Synonyms: D-(+)-Sucrose octaacetate Formula: C28H38O19 Molecular weight: 678.59 g/mol CAS-No.: 126-14-7 EC-No.: 204-772-1 No components need to be disclosed according to the applicable regulations. 4. First Aid Measures 4.1. Description of first aid measures General advice Consult a physician. Show this safety data sheet to the doctor in attendance. If inhaled If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician. In case of skin contact Wash off with soap and plenty of water. Consult a physician.
    [Show full text]
  • Safety Assessment of Saccharide Esters As Used in Cosmetics
    Safety Assessment of Saccharide Esters as Used in Cosmetics Status: Final Report Release Date: January 13, 2017 Panel Meeting Date: December 5-6, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This safety assessment was prepared by Laura N. Scott, Scientific Writer/Analyst. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] ABSTRACT This is a safety assessment of 40 saccharide ester ingredients as used in cosmetics. The saccharide esters function in cosmetics as, emollients, skin conditioning-agents, fragrance ingredients, and emulsion stabilizers. The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the relevant data for these ingredients. The Panel concluded that the saccharide esters are safe in cosmetics in the present practices of use and concentrations described in this safety assessment. INTRODUCTION This safety assessment includes the 40 saccharide esters listed below. Maltitol Laurate has been reviewed previously by the Panel; in 2008, the Panel concluded that this ingredient is safe as used in cosmetics.1 Although no safety test data were available for Maltitol Laurate, nor was it used in cosmetics at the time it was previously reviewed, available Maltitol and Lauric Acid safety test data were used by the Panel to infer safety for Maltitol Laurate.
    [Show full text]