Einfluss Forstlicher Maßnahmen Auf Raubmilben (Gamasida, Acari) Temperierter Mitteleuropäischer Wälder

Total Page:16

File Type:pdf, Size:1020Kb

Einfluss Forstlicher Maßnahmen Auf Raubmilben (Gamasida, Acari) Temperierter Mitteleuropäischer Wälder Einfluss forstlicher Maßnahmen auf Raubmilben (Gamasida, Acari) temperierter mitteleuropäischer Wälder vom Fachbereich Biologie der Technischen Universität Darmstadt genehmigte Dissertation zur Erlangung des akademischen Grades eines Doctor rerum naturalium von Dipl.-Biol. Romuald Buryn aus Szczecin Referent: Prof. Dr. Stefan Scheu Koreferent: PD Dr. Mark Maraun Tag der Einreichung: 14. Mai 2008 Tag der mündlichen Prüfung: 01. Juli 2008 Darmstadt 2008 D17 Inhaltsverzeichnis 1. EINLEITUNG.................................................................................................................. 1 1.1. GAMASIDA........................................................................................................................ 1 1.2. SOLLING .......................................................................................................................... 3 1.3. FORSTWIRTSCHAFTLICHE MAßNAHMEN.............................................................................. 4 1.3.1. Zusammensetzung des Baumbestandes.................................................................... 4 1.3.2. Kalkung ....................................................................................................................... 5 1.3.3. Femelschlag................................................................................................................ 6 1.4. ÖKOLOGISCHE CHARAKTERISIERUNG DER ARTEN .............................................................. 6 2. UNTERSUCHUNGSGEBIETE ...................................................................................... 8 2.1. SOLLING .......................................................................................................................... 8 2.2. GEOGRAPHISCHE LAGE DER UNTERSUCHUNGSFLÄCHEN .................................................... 8 2.2.1. Der 30-jährige Bestand ............................................................................................. 10 2.2.2. Der 120-jährige Bestand ........................................................................................... 10 2.2.3. Der 150-jährige Bestand ........................................................................................... 12 2.3. KLIMA ............................................................................................................................ 12 2.4. GEOLOGIE UND BODEN ................................................................................................... 14 2.4.1. Pedobiologische Beschreibung der Untersuchungsstandorte .................................. 14 2.4.2. Bodenfeuchte ............................................................................................................ 15 2.4.3. pH-Wert des Bodens................................................................................................. 16 2.5. VEGETATION .................................................................................................................. 17 3. METHODEN................................................................................................................. 19 3.1. PROBENAHME ................................................................................................................ 19 3.1.1. Probenahme in 30- und 120-jährigen Fichten-, Buchen- und Mischwäldern............ 19 3.1.2. Probenahme auf 150-jährigen Buchenwälder- und Femelflächen; gekalkte und nicht gekalkte Standorte ................................................................................... 20 3.2. EXTRAKTION................................................................................................................... 20 3.3. AUSZÄHLUNG, PRÄPARATION UND BESTIMMUNG .............................................................. 21 3.4. STATISTISCHE METHODEN .............................................................................................. 22 3.4.1. Dominanzanalyse...................................................................................................... 22 3.4.2. Diversität (Shannon-Wiener-Index, Evenness)......................................................... 23 3.4.3. Rarefaction-Modell .................................................................................................... 24 3.4.4. Vertikalverteilung....................................................................................................... 24 3.4.5. Phänologie ................................................................................................................ 25 3.4.6. Ähnlichkeitsanalyse................................................................................................... 25 i 3.4.7. Varianzanalyse (ANOVA).......................................................................................... 26 3.4.8. Kanonische Korrespondenzanalyse und Ordination................................................. 26 3.4.9. Feuchte- und pH-Indices........................................................................................... 27 4. ERGEBNISSE.............................................................................................................. 28 4.1. ARTENSPEKTRUM DER GAMASIDA.................................................................................... 28 4.2. EINFLUSS DER BAUMARTENZUSAMMENSETZUNG UND DES BESTANDESALTERS AUF DIE GAMASIDA-ZÖNOSE IN 30- UND 120-JÄHRIGEN REIN- UND MISCHBESTÄNDEN VON FICHTE UND BUCHE ................................................................................................. 32 4.2.1. Abundanz .................................................................................................................. 32 4.2.2. Phänologie ................................................................................................................ 37 4.2.3. Vertikalverteilung....................................................................................................... 47 4.2.4. Diversität und Dominanzstruktur............................................................................... 57 4.2.5. Ähnlichkeiten der Flächen......................................................................................... 61 4.2.6. Ökologische Charakterisierung der Standorte anhand der Lebensraumansprüche der Gamasida........................................................................................................... 66 4.2.6.1. Habitat (Wald – Offenland)................................................................................ 66 4.2.6.2. Höhenverbreitung.............................................................................................. 68 4.2.6.3. Feuchte und pH................................................................................................. 69 4.2.6.4. Nahrung............................................................................................................. 74 4.2.6.5. Ausbreitung ....................................................................................................... 78 4.2.6.6. Andere ökologische Kriterien ............................................................................ 80 4.2.6.7. Ordinationsanalyse der ökologischen Werte..................................................... 81 4.3. EINFLUSS VON FEMELSCHLAG UND KALKUNG AUF DIE GAMASIDAZÖNOSE.......................... 84 4.3.1. Artenspektrum der Gamasida ................................................................................... 84 4.3.2. Abundanz .................................................................................................................. 84 4.3.3. Diversität und Dominanzstruktur............................................................................... 87 4.3.4. Ähnlichkeiten der Flächen......................................................................................... 91 4.3.5. Ökologische Charakterisierung der Standorte anhand der Lebensraumansprüche der Gamasida........................................................................................................... 96 4.3.5.1. Habitat (Wald – Offenland)................................................................................ 96 4.3.5.2. Feuchte ............................................................................................................. 99 4.3.5.3. Nahrung........................................................................................................... 100 4.3.5.4. Ausbreitung ..................................................................................................... 103 4.4. RAUBMILBENZÖNOSE DES SOLLINGS ............................................................................. 105 5. DISKUSSION............................................................................................................. 109 5.1. METHODENPROBLEMATIK.............................................................................................. 110 5.2. ABUNDANZ, DIVERSITÄT, DOMINANZSTRUKTUR, PHÄNOLOGIE UND VERTIKALVERTEILUNG DER MESOSTIGMATA................................................................... 112 5.2.1. Dichten, Diversität und Dominanzstruktur der Gamasida....................................... 112 5.2.2. Phänologie der Gamasida....................................................................................... 117 ii 5.2.3. Vertikalverteilung der Gamasida............................................................................. 119 5.2.4. Ähnlichkeiten der Raubmilbenzönosen im Solling.................................................. 121 5.3. ÖKOLOGISCHE CHARAKTERISIERUNG DER STANDORTE ANHAND DER LEBENSRAUMANSPRÜCHE DER
Recommended publications
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • The Maturity Index Applied to Soil Gamasine Mites from Five Natural
    Applied Soil Ecology 34 (2006) 1–9 www.elsevier.com/locate/apsoil The maturity index applied to soil gamasine mites from five natural forests in Austria Tamara Cˇ oja *, Alexander Bruckner Institute of Zoology, Department of Integrative Biology, University of Natural Resources and Applied Life Sciences, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria Received 27 June 2005; received in revised form 9 January 2006; accepted 16 January 2006 Abstract In this study, we tested the performance of the gamasine mites maturity index of (Ruf, A., 1998. A maturity index for gamasid soil mites (Mesostigmata: Gamsina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil Ecol. 9, 447– 452) in five natural forest reserves in eastern Austria. These sites were assumed to be stable and undisturbed reference habitats. The maturity indices of the gamasine communities were near their maximum in the investigated stands, and thus performed well towards the ‘‘high end’’ of the total range of the index. An occasionally inundated floodplain forest yielded much lower values. However, the correlation of the index with humus type, as proposed by Ruf et al. (Ruf, A., Beck, L., Dreher, P., Hund-Rienke, K., Ro¨mbke, J., Spelda, J., 2003. A biological classification concept for the assessment of soil quality: ‘‘biological soil classification scheme’’ (BBSK). Agric. Ecosyst. Environ. 98, 263–271) for managed forests, was not found. This indicates that the humus form is not a good predictor of the index over its entire range and is inappropriate to assess the fit of test communities. Fourteen percent of the species in this study were omitted from index calculation because adequate data for their families are lacking.
    [Show full text]
  • Download (8MB)
    dc_1615_18 MTA Doktora pályázat Doktori értekezés Akarológia: a taxonómiától a növényvédelemig Dr. Kontschán Jenő Magyar Tudományos Akadémia Agrártudományi Kutatóközpont Növényvédelmi Intézet Budapest, 2019 1 Powered by TCPDF (www.tcpdf.org) dc_1615_18 Tartalomjegyzék 1. Bevezetés 3 2. Célkitűzés és a dolgozat szerkezete 3 3. Az atkák világa 4 3.1. Az atkák taxonómiai helyzete és aktuális rendszere 4 3.2. Az atkák általános morfológiája 5 4. Anyag és módszer 8 5. Eredmények és értékelésük 10 5.1. A Rotundabaloghia Hirschmann, 1975 nem revíziója 10 5.2. Adatok a szántóföldi és a kertészeti kultúrák talajlakó atkáihoz 54 5.2.1. Hazai mezőgazdasági kultúrák talajlakó atkái 54 5.2.1.1.Szántóföldi kultúrák vizsgálata 54 5.2.1.2. Egy idegen honos hazai kertészeti kultúra (botnád) atkái 57 5.2.2. Trópusi és szubtrópusi mezőgazdasági kultúrák vizsgálata 60 5.2.2.1. Ázsia 60 5.2.2.1.1. Atkák botnád kultúrákból 1. Kínai Népköztársaság 60 5.2.2.1.2. Atkák botnád kultúrákból 2. Kínai Köztársaság 63 5.2.2.1.2. Atkák japán szugifenyő (Cryptomera japonica) ültetvényből 69 5.2.2.2. Afrika 73 5.2.2.2.1. Atkák Monterey-fenyő ültetvényekből 73 5.2.2.3. Dél-Amerika, Ecuador 79 5.2.3. A szántóföldi és a kertészeti kultúrák talajlakó atkáinak rövid értékelése 82 5.3. Növényeket károsító atkák 84 5.3.1. A Penthaleidae családelső hazai előfordulásai 84 5.3.2. Magyarország takácsatkái és laposatkái 86 5.4. A kártevők atkái 117 5.4.1. Hazai kártevők atkái 117 5.4.1.1. A meztelen csigák atkái 117 5.4.1.2.
    [Show full text]
  • A Contribution to the Knowledge of Oribatid and Mesostigmatic Mites (Acari) with New Records in Georgia
    Persian J. Acarol., 2019, Vol. 8, No. 4, pp. 309–325. http://dx.doi.org/10.22073/pja.v8i4.51419 Journal homepage: http://www.biotaxa.org/pja Article A contribution to the knowledge of oribatid and mesostigmatic mites (Acari) with new records in Georgia Maka Murvanidze1*, Levan Mumladze2 and Nino Todria1 1. Institute of Entomology, Agricultural University of Georgia. 240, D. Aghmashenebely Alley 0131, Tbilisi, Georgia; E- mail: [email protected], [email protected] 2. Institute of Ecology of Ilia State University, Cholokashvili ave 3/5, 0165, Tbilisi, Georgia; E-mail: lmumladze@ gmail.com * Corresponding author ABSTRACT We provide new records of five oribatid and 10 mesostigmatic mite species for Georgia. As a result, the number of oribatid mites registered for Georgia increased to 548 and the preliminary number of Mesostigmata species to 136. For each record, diagnostic characters, coordinate data, habitat and information about regional and world distribution are provided. KEY WORDS: Biodiversity; Caucasus; checklist; Gamasina; Cryptostigmata. PAPER INFO.: Received: 20 March 2019, Accepted: 26 June 2019, Published: 15 October 2019 INTRODUCTION The Caucasus is one of the few temperate biodiversity hot-spots harboring great variety of habitats and species (Mittermeier et al. 2004). On the other hand, the information about most of invertebrate taxa is still insufficient to be used in practical applications like decision making for conservation or biomonitoring programs. The few exceptions include oribatid mites (Acari, Oribatida) which are the best-studied arthropod group in Georgia. According to a recent checklist by Murvanidze and Mumladze (2016), there were 534 oribatid species known for Georgia.
    [Show full text]
  • Terestrické Článkonožce (Arthropoda) Vybraných Jaskýň Silickej Planiny
    TeresTrické článkonožce (ArThropodA) vybrAných jAskýň silickej plAniny vladimír papáč1 – Ľubomír kováč2,3 – Andrej Mock2 – vladimír košel4 – peter Fenďa4 1 Správa slovenských jaskýň, Železničná 31, 979 01 Rimavská Sobota; [email protected] 2 Ústav biologických a ekologických vied, Prírodovedecká fakulta, Univerzita P. J. Šafárika, Moyzesova 11, 040 01 Košice; [email protected]; 3 Ústav zoológie SAV, Lőfflerova 10, 040 01 Košice 4 Katedra zoológie, Prírodovedecká fakulta, Univerzita Komenského, Mlynská dolina B-1, 842 15 Bratislava; [email protected] v. papáč, Ľ. kováč, A. Mock, v. košel & p. Fenďa: Terrestrial Arthropods of selected caves in the silica plateau Abstract: In 1997, 1998 and 2002 a biospeleological research was carried out in three caves of the Slovak Karst orographic unit. The cavernicolous arthropods were investigated in the following caves, that are not open to public: (1) active fluviokarstic Milada Cave (length 800 m, entrance 420 m a. s. l.), (2) active fluviokarstic Majkova Cave (length 400 m, entrance 490 m a. s. l.) and (3) Drienka Cave (length 300 m, depth -85 m, entrance 508 m a. s. l.). Pitfall trapping with different fixation liquids, extraction of baits and organic debris (rotten wood) and hand collecting were used as basic collecting methods. In total over 120 arthropod species were registered during this study. Majority of collected species were belonged to inhabitants of entrance parts of the caves. Some troglobitic forms were restricted to the deeper spaces, e. g. palpigrade Eukoenenia spelaea (Peyerimhoff, 1902) and springtails Arrhopalites aggtelekiensis Stach, 1929, A. bifidus Stach, 1945, Pseudosinella aggtelekiensis (Stach, 1929) and Deuteraphorura schoenviszkyi (Loksa, 1967).
    [Show full text]
  • Characterisic Soil Mite's Communities (Acari: Gamasina) for Some Natural
    PERIODICUM BIOLOGORUM UDC 57:61 VOL. 116, No 3, 303–312, 2014 CODEN PDBIAD ISSN 0031-5362 Original scientific paper Characterisic soil mite’s communities (Acari: Gamasina) for some natural forests from Bucegi Natural Park – Romania ABSTRACT MINODORA MANU1 STELIAN ION2 Background and Purpose: One of the most important characteristics 1Romanian Academy, Institute of Biology, of a natural ecosystem is its stability, due to the species’ and communities’ Department of Ecology, Taxonomy and diversity. Natural forest composition model constitute the main task of the Nature Conservation, street Splaiul Independentsei, present-day management plans. Soil mites are one of the most abundant no. 296, PO-BOX 56-53 edaphic communities, with an important direct and indirect role in decom- 0603100, Bucharest, Romania posing, being considered bioindicators for terrestrial ecosystems. The aim of 2Romanian Academy, Institute of Statistics and the paper was to identify characteristics of soil mites community’s structure. Applied Mathematics “Gheorghe Mihoc-Caius Iacob” – ISMMA Materials and Methods: Soil mites community’s structure (composition street Calea 13 Septembrie, no. 13, sector 5, of the species assemblage, abundance of the species, species associations and Bucharest, Romania interdependence between species) from three mature natural forest ecosys- E-mail: [email protected] tems, from Bucegi Natural Park -Romania, were analyzed using statistical Correspondence: analyses, which combine two different methods: cluster analysis and correla- Minodora Manu tions. Romanian Academy, Institute of Biology Results: Two different species associations were described. One of them Department of Ecology, Taxonomy and Nature Conservation was identified as stable association in a hierarchical cluster and another, street Splaiul Independentsei, no.
    [Show full text]
  • Feeding Design in Free-Living Mesostigmatid Chelicerae
    Experimental and Applied Acarology (2021) 84:1–119 https://doi.org/10.1007/s10493-021-00612-8 REVIEW PAPER Feeding design in free‑living mesostigmatid chelicerae (Acari: Anactinotrichida) Clive E. Bowman1 Received: 4 April 2020 / Accepted: 25 March 2021 / Published online: 30 April 2021 © The Author(s) 2021 Abstract A model based upon mechanics is used in a re-analysis of historical acarine morphologi- cal work augmented by an extra seven zoophagous mesostigmatid species. This review shows that predatory mesostigmatids do have cheliceral designs with clear rational pur- poses. Almost invariably within an overall body size class, the switch in predatory style from a worm-like prey feeding (‘crushing/mashing’ kill) functional group to a micro- arthropod feeding (‘active prey cutting/slicing/slashing’ kill) functional group is matched by: an increased cheliceral reach, a bigger chelal gape, a larger morphologically estimated chelal crunch force, and a drop in the adductive lever arm velocity ratio of the chela. Small size matters. Several uropodines (Eviphis ostrinus, the omnivore Trachytes aegrota, Urodi- aspis tecta and, Uropoda orbicularis) have more elongate chelicerae (greater reach) than their chelal gape would suggest, even allowing for allometry across mesostigmatids. They may be: plesiosaur-like high-speed strikers of prey, scavenging carrion feeders (like long- necked vultures), probing/burrowing crevice feeders of cryptic nematodes, or small mor- sel/fragmentary food feeders. Some uropodoids have chelicerae and chelae which probably work like a construction-site mechanical excavator-digger with its small bucket. Possible hoeing/bulldozing, spore-cracking and tiny sabre-tooth cat-like striking actions are dis- cussed for others.
    [Show full text]
  • Two New Species of Pachyseius Berlese, 1910 from Spain (Acari, Mesostigmat a : Pachylaelapidae)
    TWO NEW SPECIES OF PACHYSEIUS BERLESE, 1910 FROM SPAIN (ACARI, MESOSTIGMAT A : PACHYLAELAPIDAE). TAXONOMIE SUMMARYT:wo new pachylaelapid species, PacHyseius iraola and PacHyseius morenoI, PACHYSEIUS are described from litter and soil of forests in Navarra, northerm Spain. A diagnostic SPAIN key is given for the known species of PacHyseius occurring in Europe. TAXONOMIE RESUME:Deux nouvelles especes de pachylaelapides, PacHyseius Iraola et PacHyseius PACHYSEIUS morenoi, ont ete trouvees dans la litiere et Ie sol mineral des fon~ts de Navarre, au ESPAGNE Nord de l'Espagne. Vne clef est donnee pour les especes de PacHyseIus d'Europe. type tectum. Cornicu1i short, bladelike. Palp with tibio-tarsus slightly enlarged and palp claw three- Among the mesostigmatic mites collected for soil tined. Dorsal shield with 30 pairs of setae :j1-j6, zl, ecological and taxonomic studies in Navarra, two z2, z4-z6, s2, s4-s5, r2-r5, J1, lJ-J5, 21-25, S2-S4; unknown species of PacHyseius were found. This setae r6 and R1-R5 on soft cuticle. Female with free genus was proposed by BERLESE(1910) and until peritrematal shields extending beyond coxa IV. now was represented in Europe by the type species Presternal shields present or absent. Sternal shield Pachyseius humeralis Berlese, 1910, P. angustiven- extends to level of middle of coxa III and is not tris Willmann, 1935 and P. anzustus Hyatt, 1956 fused to endopodal III; st4 and iv3 on small (HYATT,1956, KARG, 1971, KOROLEVA,1977). The metasternal shields. Endopodal not continuous original description of the genus was completed by with exopodal sclerites. Parapodal sclerites not HYATT(1956) but since no males and immatures abutting genital shield.
    [Show full text]
  • A New Species of Pachyseius Berlese (Acari: Pachylaelapidae) from South Siberia (Russia), with a Key to the Species Known from Asia
    Zootaxa 3905 (2): 221–232 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3905.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:3FF7EC6E-3F6B-49C8-8C1B-6537B1D408F8 A new species of Pachyseius Berlese (Acari: Pachylaelapidae) from South Siberia (Russia), with a key to the species known from Asia IRINA I. MARCHENKO Institute of Systematics and Ecology of Animals, Frunze str. 11, Novosibirsk 630091, Russia. E-mail: [email protected] Abstract Pachyseius anisimovi sp. nov. is described based on specimens from soil and litter in the Altai Mountains and the West and East Sayan Mountains in South Siberia, Russia. A key to ten Pachyseius species known from Asia is provided. Key words: Acari, Mesostigmata, Pachylaelapidae, Pachyseius, new species, Russia, Siberia Introduction The small genus Pachyseius Berlese, 1910 belongs to the family Pachylaelapidae, which includes 16 genera and about 250 species world-wide (Mašán, 2007; Mašán & Halliday, 2014). Mites of the genus Pachyseius are free- living representatives of the soil fauna in the temperate zone of the northern hemisphere (Mašán, 2008). The genus currently includes 20 recognised species distributed mainly throughout the Palaearctic Region, except that P. humeralis may have been introduced into Australia by human activities (Halliday, 2001) and unidentified species have been collected in northern Australia (Lindquist et al., 2009) and Canada (Broadbent & Tomlin, 1979). To the present 13 species of the genus Pachyseius have been described from Europe: Italy (Berlese, 1910), France (Willmann, 1935), Great Britain (Hyatt, 1956), Romania (Solomon, 1982; Mašán & Fenďa, 2014), Netherlands (Afifi & Nasr, 1984), Spain (Moraza, 1993), Slovakia (Mašán, 2007), Bulgaria (Mašán & Mihál, 2007) and Germany (Mašán, 2008).
    [Show full text]
  • ECOLOGY and DIVERSITY of URBAN PINE FOREST SOIL INVERTEBRATES in RÎGA, LATVIA Dmitry Telnov and Ineta Salmane
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 69 (2015), No. 3 (696), pp. 120–131. DOI: 10.1515/prolas-2015-0017 ECOLOGY AND DIVERSITY OF URBAN PINE FOREST SOIL INVERTEBRATES IN RÎGA, LATVIA Dmitry Telnov and Ineta Salmane# Institute of Biology, University of Latvia, 3 Miera Str., LV-2169 Salaspils, LATVIA # Corresponding author: [email protected] Communicated by Viesturs Melecis A study on ecology and diversity of soil invertebrates of urban pine and mixed pine forests was carried out in seven different sampling plots in Rîga during 2014. Ninety eight soil samples were processed and in total, 40 426 specimens were extracted (of them, 25 237 specimens were iden- tified to species level and 15 189 to order level). Indices (abundance, community similarity etc.) characterising faunal diversity and species communities of Rîga city soil fauna were estimated. The most numerous soil invertebrate groups were Collembola, Oribatida and Mesostigmata, ac- counting for 95% of all collected animals. There was rather high diversity of soil invertebrates in the disturbed urban forest habitats, but undisturbed soils harbour a greater species richness of mite fauna than disturbed soils. Key words: soil invertebrate fauna, urban forest, bioindication. INTRODUCTION Urban forests are green islands in an anthropogenic land- scape and support biological diversity within surrounding Urbanisation is increasing worldwide. Today, 45% of the built-up areas and streets (McPherson et al, 1997). Urban human population lives in cities, and in industrialised coun- forests are typical but specific ecosystems for Latvia, where tries this proportion increases to about 80% (Magura et al., nearly 20% of urban areas are forested.
    [Show full text]
  • The Importance of Forest Islands for Invertebrate Biodiversity: a Case Study in Western Poland
    Travaux du Muséum National d’Histoire Naturelle © 30 Juin Vol. LIV (1) pp. 263–281 «Grigore Antipa» 2011 DOI: 10.2478/v10191-011-0016-0 THE IMPORTANCE OF FOREST ISLANDS FOR INVERTEBRATE BIODIVERSITY: A CASE STUDY IN WESTERN POLAND TRAIAN MANOLE, JÓZEF BANASZAK, HALINA RATYÑSKA, IRINA IONESCU-MÃLÃNCUª, EUGENIA PETRESCU, GABRIELA MÃRGÃRIT Abstract. Ecological landscape studies are carried out concerning the ecosystem biocenosis restore and conservation and to define the ecological terms like “ecosystem services” which have increasingly caught the interest of both environmental researchers and policy makers. Ecosystems, if properly protected and maintained, provide a wide array of valuable services to humans, ranging from the air purification by carbon sequestration to preserve biodiversity of natural capital. The agricultural landscape predominating in Western and Central Europe occupies a significant place in Poland deciding, to a large extent, about the quality of the whole natural environment. Forest island studies were carried out in the agricultural landscape of Western Poland, 15 km north-east of Poznañ town. Ten forest islands of varying size (from 0.5 ha to 1.5 ha) were investigated. Flora and plant communities of small forests were examined and 58 plant associations were found. Small areas of forest islands became the refuges of forest plant species and invertebrate fauna in an agricultural landscape. Differentiation, number and domination structure of invertebrate fauna (Acari, Araneae, Apoidea and Curculionidae) were studied. The studied forest islands provide suitable conditions for survival and reproduction of many animal species, and for other accidental species which use these areas for feeding or as a temporary shelter.
    [Show full text]
  • Investigation of the Seasonal Dynamics of Soil Gamasina Mites (Acari: Mesostigmata) in Pinaceum Myrtilosum, Latvia
    Ekológia (Bratislava) Vol. 19, Supplement 3, 245-252, 2000 INVESTIGATION OF THE SEASONAL DYNAMICS OF SOIL GAMASINA MITES (ACARI: MESOSTIGMATA) IN PINACEUM MYRTILOSUM, LATVIA INETA SALMANE Institute of Biology, University of Latvia, Miera iela 3, LV-2169, Salaspils, Latvia. Fax: +371-9-345 412. E- mail: [email protected] Abstract Salmane I.: Investigation of the seasonal dynamics of soil Gamasina mites (Acari: Mesostigmata) in Pinaceum myrtilosum, Latvia. In Gajdoš P., Pekár S. (eds): Proceedings of the 18th European Colloquium of Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 3/ 2000, p. 245-252. Investigation was made because of the lack of data on soil Gamasina mite seasonal dynamics in coniferous forests of Latvia and their relation to the changes of soil ecological conditions during the season. Investigations were carried out on the seasonal dynamics of some soil microarthropod groups, numbers of Gamasina species and individuals, and species diversity, in relation to soil ecological conditions. Soil microarthropods, including Gamasina mites, were shown to depend on soil ecological conditions. The soil relative humidity must be recognised as a limiting factor. It was found that when there is enough humidity, the decisive factor is soil temperature. Introduction Soil-dwelling mites are a widely distributed group of soil microarthropods. Among them, a numerous group of predators is the Gamasina mites (Acari, Mesostigmata), represented by many species and widely distributed in the whole world, and found in diverse habitats such as forests, meadows, marshes, and coastal habitats. As Gamasina mites live in the soil and therefore are dependent on it’s ecological conditions, they could be good indicators of soil conditions.
    [Show full text]