1 Quine's Interpretation Problem and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semantical Investigations
Bulletin of the Section of Logic Volume 49/3 (2020), pp. 231{253 http://dx.doi.org/10.18778/0138-0680.2020.12 Satoru Niki EMPIRICAL NEGATION, CO-NEGATION AND THE CONTRAPOSITION RULE I: SEMANTICAL INVESTIGATIONS Abstract We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CC!. Keywords: Empirical negation, co-negation, Beth semantics, Kripke semantics, intuitionism. 1. Introduction The philosophy of Intuitionism has long acknowledged that there is more to negation than the customary, reduction to absurdity. Brouwer [1] has al- ready introduced the notion of apartness as a positive version of inequality, such that from two apart objects (e.g. points, sequences) one can learn not only they are unequal, but also how much or where they are different. (cf. [19, pp.319{320]). He also introduced the notion of weak counterexample, in which a statement is reduced to a constructively unacceptable principle, to conclude we cannot expect to prove the statement [17]. Presented by: Andrzej Indrzejczak Received: April 18, 2020 Published online: August 15, 2020 c Copyright for this edition by UniwersytetL´odzki, L´od´z2020 232 Satoru Niki Another type of negation was discussed in the dialogue of Heyting [8, pp. 17{19]. In it mathematical negation characterised by reduction to absurdity is distinguished from factual negation, which concerns the present state of our knowledge. -
Introduction Nml:Syn:Int: Modal Logic Deals with Modal Propositions and the Entailment Relations Among Sec Them
syn.1 Introduction nml:syn:int: Modal logic deals with modal propositions and the entailment relations among sec them. Examples of modal propositions are the following: 1. It is necessary that 2 + 2 = 4. 2. It is necessarily possible that it will rain tomorrow. 3. If it is necessarily possible that ' then it is possible that '. Possibility and necessity are not the only modalities: other unary connectives are also classified as modalities, for instance, \it ought to be the case that '," \It will be the case that '," \Dana knows that '," or \Dana believes that '." Modal logic makes its first appearance in Aristotle's De Interpretatione: he was the first to notice that necessity implies possibility, but not vice versa; that possibility and necessity are inter-definable; that If ' ^ is possibly true then ' is possibly true and is possibly true, but not conversely; and that if ' ! is necessary, then if ' is necessary, so is . The first modern approach to modal logic was the work of C. I. Lewis,cul- minating with Lewis and Langford, Symbolic Logic (1932). Lewis & Langford were unhappy with the representation of implication by means of the mate- rial conditional: ' ! is a poor substitute for \' implies ." Instead, they proposed to characterize implication as \Necessarily, if ' then ," symbolized as ' J . In trying to sort out the different properties, Lewis identified five different modal systems, S1,..., S4, S5, the last two of which are still in use. The approach of Lewis and Langford was purely syntactical: they identified reasonable axioms and rules and investigated what was provable with those means. -
On the Logic of Two-Dimensional Semantics
Matrices and Modalities: On the Logic of Two-Dimensional Semantics MSc Thesis (Afstudeerscriptie) written by Peter Fritz (born March 4, 1984 in Ludwigsburg, Germany) under the supervision of Dr Paul Dekker and Prof Dr Yde Venema, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: June 29, 2011 Dr Paul Dekker Dr Emar Maier Dr Alessandra Palmigiano Prof Dr Frank Veltman Prof Dr Yde Venema Abstract Two-dimensional semantics is a theory in the philosophy of language that pro- vides an account of meaning which is sensitive to the distinction between ne- cessity and apriority. Usually, this theory is presented in an informal manner. In this thesis, I take first steps in formalizing it, and use the formalization to present some considerations in favor of two-dimensional semantics. To do so, I define a semantics for a propositional modal logic with operators for the modalities of necessity, actuality, and apriority that captures the relevant ideas of two-dimensional semantics. I use this to show that some criticisms of two- dimensional semantics that claim that the theory is incoherent are not justified. I also axiomatize the logic, and compare it to the most important proposals in the literature that define similar logics. To indicate that two-dimensional semantics is a plausible semantic theory, I give an argument that shows that all theorems of the logic can be philosophically justified independently of two-dimensional semantics. Acknowledgements I thank my supervisors Paul Dekker and Yde Venema for their help and encour- agement in preparing this thesis. -
Probabilistic Semantics for Modal Logic
Probabilistic Semantics for Modal Logic By Tamar Ariela Lando A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Philosophy in the Graduate Division of the University of California, Berkeley Committee in Charge: Paolo Mancosu (Co-Chair) Barry Stroud (Co-Chair) Christos Papadimitriou Spring, 2012 Abstract Probabilistic Semantics for Modal Logic by Tamar Ariela Lando Doctor of Philosophy in Philosophy University of California, Berkeley Professor Paolo Mancosu & Professor Barry Stroud, Co-Chairs We develop a probabilistic semantics for modal logic, which was introduced in recent years by Dana Scott. This semantics is intimately related to an older, topological semantics for modal logic developed by Tarski in the 1940’s. Instead of interpreting modal languages in topological spaces, as Tarski did, we interpret them in the Lebesgue measure algebra, or algebra of measurable subsets of the real interval, [0, 1], modulo sets of measure zero. In the probabilistic semantics, each formula is assigned to some element of the algebra, and acquires a corresponding probability (or measure) value. A formula is satisfed in a model over the algebra if it is assigned to the top element in the algebra—or, equivalently, has probability 1. The dissertation focuses on questions of completeness. We show that the propo- sitional modal logic, S4, is sound and complete for the probabilistic semantics (formally, S4 is sound and complete for the Lebesgue measure algebra). We then show that we can extend this semantics to more complex, multi-modal languages. In particular, we prove that the dynamic topological logic, S4C, is sound and com- plete for the probabilistic semantics (formally, S4C is sound and complete for the Lebesgue measure algebra with O-operators). -
Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e. -
Kripke Semantics for Basic Sequent Systems
Kripke Semantics for Basic Sequent Systems Arnon Avron and Ori Lahav? School of Computer Science, Tel Aviv University, Israel {aa,orilahav}@post.tau.ac.il Abstract. We present a general method for providing Kripke seman- tics for the family of fully-structural multiple-conclusion propositional sequent systems. In particular, many well-known Kripke semantics for a variety of logics are easily obtained as special cases. This semantics is then used to obtain semantic characterizations of analytic sequent sys- tems of this type, as well as of those admitting cut-admissibility. These characterizations serve as a uniform basis for semantic proofs of analyt- icity and cut-admissibility in such systems. 1 Introduction This paper is a continuation of an on-going project aiming to get a unified semantic theory and understanding of analytic Gentzen-type systems and the phenomenon of strong cut-admissibility in them. In particular: we seek for gen- eral effective criteria that can tell in advance whether a given system is analytic, and whether the cut rule is (strongly) admissible in it (instead of proving these properties from scratch for every new system). The key idea of this project is to use semantic tools which are constructed in a modular way. For this it is es- sential to use non-deterministic semantics. This was first done in [6], where the family of propositional multiple-conclusion canonical systems was defined, and it was shown that the semantics of such systems is provided by two-valued non- deterministic matrices { a natural generalization of the classical truth-tables. The sequent systems of this family are fully-structural (i.e. -
CCAM Systematic Satisfiability Programming in Hopfield Neural
Communications in Computational and Applied Mathematics, Vol. 2 No. 1 (2020) p. 1-6 CCAM Communications in Computational and Applied Mathematics Journal homepage : www.fazpublishing.com/ccam e-ISSN : 2682-7468 Systematic Satisfiability Programming in Hopfield Neural Network- A Hybrid Expert System for Medical Screening Mohd Shareduwan Mohd Kasihmuddin1, Mohd. Asyraf Mansor2,*, Siti Zulaikha Mohd Jamaludin3, Saratha Sathasivam4 1,3,4School of Mathematical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia 2School of Distance Education, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia *Corresponding Author Received 26 January 2020; Abstract: Accurate and efficient medical diagnosis system is crucial to ensure patient with recorded Accepted 12 February 2020; system can be screened appropriately. Medical diagnosis is often challenging due to the lack of Available online 31 March patient’s information and it is always prone to inaccurate diagnosis. Medical practitioner or 2020 specialist is facing difficulties in screening the disease accurately because unnecessary attributes will lead to high operational cost. Despite of acting as a screening mechanism, expert system is required to find the relationship between the attributes that lead to a specific medical outcome. Data mining via logic mining is a new method to extract logical rule that explains the relationship of the medical attributes of a patient. In this paper, a new logic mining method namely, 2 Satisfiability based Reverse Analysis method (2SATRA) will be proposed to extract the logical rule from medical datasets. 2SATRA will capitalize the 2 Satisfiability (2SAT) as a logical rule and Hopfield Neural Network (HNN) as a learning system. The extracted logical rule from the medical dataset will be used to diagnose the final condition of the patient. -
The Concept of Effective Method Applied to Computational Problems of Linear Algebra
JOURNAL OF COMPUTER AND SYSTEM SCIENCES: 5, 17--25 (1971) The Concept of Effective Method Applied to Computational Problems of Linear Algebra OLIVER ABERTH Department of Mathematics, Texas A & M University, College Station, Texas 77843 Received April 28, 1969 A classification of computational problems is proposed which may have applications in numerical analysis. The classification utilizes the concept of effective method, which has been employed in treating decidability questions within the field of com- putable numbers. A problem is effectively soluble or effectively insoluble according as there is or there is not an effective method of solution. Roughly speaking~ effectively insoluble computational problems are those whose general solution is restricted by an intrinsic and unavoidable computational difficulty. Some standard problems of linear algebra are analyzed to determine their type. INTRODUCTION Given a square matrix A with real entries, the computation of the eigenvalues of A is, more or less, a routine matter, and many different methods of calculation are known. On the other hand, the computation of the Jordan normal form of A is a problematical undertaking, since when d has multiple eigenvalues, the structure of off-diagonal l's of the normal form will be completely altered by small perturbations of the matrix elements of d. Still, one may ask whether the Jordan normal form computation can always be carried through for the case where the entries of A are known to arbitrarily high accuracy. This particular question and others like it can be given a precise answer by making use of a constructive analysis developed in the past two decades by a number of Russian mathematicians, the earliest workers being Markov, Ceitin, Zaslavskii, and Sanin [4, 6, 10, 12, 13]. -
METALOGIC METALOGIC an Introduction to the Metatheory of Standard First Order Logic
METALOGIC METALOGIC An Introduction to the Metatheory of Standard First Order Logic Geoffrey Hunter Senior Lecturer in the Department of Logic and Metaphysics University of St Andrews PALGRA VE MACMILLAN © Geoffrey Hunter 1971 Softcover reprint of the hardcover 1st edition 1971 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1971 by MACMILLAN AND CO LTD London and Basingstoke Associated companies in New York Toronto Dublin Melbourne Johannesburg and Madras SBN 333 11589 9 (hard cover) 333 11590 2 (paper cover) ISBN 978-0-333-11590-9 ISBN 978-1-349-15428-9 (eBook) DOI 10.1007/978-1-349-15428-9 The Papermac edition of this book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent, in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. To my mother and to the memory of my father, Joseph Walter Hunter Contents Preface xi Part One: Introduction: General Notions 1 Formal languages 4 2 Interpretations of formal languages. Model theory 6 3 Deductive apparatuses. Formal systems. Proof theory 7 4 'Syntactic', 'Semantic' 9 5 Metatheory. The metatheory of logic 10 6 Using and mentioning. Object language and metalang- uage. Proofs in a formal system and proofs about a formal system. Theorem and metatheorem 10 7 The notion of effective method in logic and mathematics 13 8 Decidable sets 16 9 1-1 correspondence. -
Kripke Semantics a Semantic for Intuitionistic Logic
Kripke Semantics A Semantic for Intuitionistic Logic By Jonathan Prieto-Cubides Updated: 2016/11/18 Supervisor: Andr´esSicard-Ram´ırez Logic and Computation Research Group EAFIT University Medell´ın,Colombia History Saul Kripke He was born on November # 13, 1940 (age 75) Philosopher and Logician # Emeritus Professor at # Princeton University In logic, his major # contributions are in the field of Modal Logic Saul Kripke In Modal Logic, we # attributed to him the notion of Possible Worlds Its notable ideas # ◦ Kripke structures ◦ Rigid designators ◦ Kripke semantics Kripke Semantics The study of semantic is the study of the truth Kripke semantics is one of many (see for instance # (Moschovakis, 2015)) semantics for intuitionistic logic It tries to capture different possible evolutions of the world # over time The abstraction of a world we call a Kripke structure # Proof rules of intuitionistic logic are sound with respect to # krikpe structures Intuitionistic Logic Derivation (proof) rules of the ^ connective Γ ` ' ^ ^-elim Γ ` ' 1 Γ ` ' Γ ` ^-intro Γ ` ' ^ Γ ` ' ^ ^-elim Γ ` 2 Intuitionistic Logic Derivation (proof) rules of the _ connective Γ ` ' _-intro1 Γ ` ' _ Γ ` ' _ Γ;' ` σ Γ; ` σ _-elim Γ ` σ Γ ` _-intro Γ ` ' _ 2 Intuitionistic Logic Derivation (proof) rules of the ! connective Γ;' ` Γ ` ' Γ ` ' ! !-intro !-elim Γ ` ' ! Γ ` Intuitionistic Logic Derivation (proof) rules of the : connective where :' ≡ ' !? Γ;' ` ? Γ ` ? :-intro explosion Γ ` :' Γ ` ' Intuitionistic Logic Other derivation (proof) rules Γ ` ' unit assume weaken Γ ` > Γ;' ` ' Γ; ` ' Classical Logic The list of derivation rules are the same above plus the following rule Γ; :' ` ? RAA Γ ` ' Kripke Model Def. -
1. Kripke's Semantics for Modal Logic
Ted Sider Kripke Modality seminar 1. Kripke’s semantics for modal logic 2A “Necessarily, A” 3A “Possibly, A” Lewis’s system K: Rules of inference: modus ponens, plus the rule of necessitation, which lets · you infer 2A from A. Axioms: those of propositional logic, plus: · 2(A B) (2A 2B) (K) ! ! ! Lewis’s system S4: Rules of inference: same as K · Axioms: those of K, plus: · 2A A (T) ! 2A 22A (S4) ! Proof-theoretic approach A logically implies B iff you can reason, using speci ed axioms and rules of inference, from A to B Model-theoretic approach A logically implies B iff B is true in every model in which A is true propositional logic model: an assignment of truth-values to sentence letters. predicate logic model: a domain and an interpretation function that assigns denotations to names and extensions to predicates. modal logic model: a set of “possible worlds”, each one containing an entire model of the old sort. 1 2A is true at world w iff A is true at every world accessible from w 3A is true at world w iff A is true at some world accessible from w Promising features of Kripke semantics: • Explaining logical features of modal logic (duality of 2 and 3; logical truth of axiom K) • Correspondence of Lewis’s systems to formal features of accessibility A cautionary note: what good is all this if 2 doesn’t mean truth in all worlds? 2. Kripke’s Naming and Necessity Early defenders of modal logic, for example C. I. Lewis, thought of the 2 as meaning analyticity. -
The AND/OR Process Model for Parallel Interpretation of Logic Program^
6ff dS UNTV^RSITY OF a\I.UORNIA Irvine The AND/OR Process Model for Parallel Interpretation of Logic Program^ John S. Coneri^ Technical Report 204 A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Information and Computer Science June 1983 Committee in charge: Professor Dennis Kibler, Chair Professor Liibomir Bic Professor James Neighbors © 1983 JOHN S. CONERY ALL RIGHTS RESERVED Dedication For my teachers ~ For my parents, Pat and Elaine, both secondary school teachers, who started this whole process; For Betty Benson, John Sage, and the other outstanding teachers at John Burroughs High School, who inspired me to continue; For Larry Rosen and Jay Russo, valued friends and colleagues as well as teachers at UC San Diego, who introduced me to the world of scientific research. This work does not represent the end of my education; it is simply a milestone in the career of a "professional student" who will, thanks to you, never stop learning. Ill Contents List of Figures vii Acknowledgements viii Abstract ix Chapter 1: Introduction 1 Chapter 2: Logic Programming 5 2.1. Syntax 6 2.2. Semantics 9 2.3; Control 13 2.4. Prolog 17 2.5. Alternate Control Strategies 28 2.6. Sources of Parallelism 37 2.7. Chapter Summary 38 Chapter 3: The AND/OR Process Model 41 3.1. Oracle 41 3.2. Messages 43 3.3. OR Processes 44 3.4. AND Processes 46 3.5. Interpreter 46 3.6. Programming Language 49 3.7. Chapter Summary 50 Chapter 4: Parallel OR Processes 52 iv I I 4.1.