THE GEOCHEMISTRY of ENCELADUS' OCEAN TOWARD the END of the CASSINI MISSION. C. R. Glein1, M. Y. Zolotov2, S. D. Vance3, E. L

Total Page:16

File Type:pdf, Size:1020Kb

THE GEOCHEMISTRY of ENCELADUS' OCEAN TOWARD the END of the CASSINI MISSION. C. R. Glein1, M. Y. Zolotov2, S. D. Vance3, E. L Enceladus and the Icy Moons of Saturn (2016) 3042.pdf THE GEOCHEMISTRY OF ENCELADUS’ OCEAN TOWARD THE END OF THE CASSINI MISSION. C. R. Glein1, M. Y. Zolotov2, S. D. Vance3, E. L. Shock2,4, and F. Postberg5,6. 1Southwest Research Institute ([email protected]), 2School of Earth and Space Exploration, Arizona State University, 3Jet Propulsion Laboratory, California Institute of Technology, 4Department of Chemistry and Biochemistry, Arizona State University, 5Institut für Geowissenschaften, Universität Heidelberg, 6Institut für Raumfahrtsysteme, Universität Stuttgart. Introduction: Enceladus has put on a great perfor- example, the low pH endmember would be consistent with mance. By erupting gases and solids in a cryovolcanic plume fluid buffering by an ocean floor mineral assemblage of that emanates from an ice-covered ocean, we are able to quartz-talc-magnesite-dolomite (high activities of SiO2 and obtain constraints that allow us to assemble the geochemical CO2), while the high pH endmember can be reproduced by a story of this world. Here, we focus on the chemistry of the model assemblage of chrysotile-talc-calcite-dolomite. subsurface ocean, and associated geochemical processes. Geochemical processes: Four processes have emerged Observations: Plume compositionl constraints are pro- as plausible “forces of geochemistry” on Enceladus: (1) vided by the Ion and Neutral Mass Spectrometer (INMS), the aqueous alteration of ultramafic rocks [9,11], (2) hydrother- Ultraviolet Imaging Spectrograph (UVIS), and the Cosmic mal (>0°C) mass transfer [8], (3) formation of gas hydrates Dust Analyzer (CDA). INMS and UVIS measured the gase- (clathrates) [e.g., 12], and (4) organic compound transfor- ous component of the plume, while CDA characterized mations [13]. These processes may have been active during plume particles. All three instruments showed that H2O is the the history of Enceladus, and today if there are sources of dominant constituent. INMS determined that CO2, CH4, thermal or chemical disequilibria that have not been dissipat- NH3, and possibly H2 are key minor constituents [1,2]. Nu- ed or are replenished by a geophysically active interior. merous trace organic species were also detected [1,2]. UVIS Aqueous alteration of ultramafic rocks would produce an has helped to constrain the abundances of CO, N2, and H2 alkaline pH and abundant H2 that may be present in the [3,4]. CDA data showed that Enceladus’ salty ocean is a plume [2]. In low CO2 cases, the formation of serpentine source of the plume, and the dominant salts are NaCl and (serpentinization) would lead to a pH of ~11-12. The pH NaHCO3 or Na2CO3 [5,6]. Potassium is a minor species, and would not be as high (~8-9) in high CO2 cases because of sulfates were not observed. In addition, CDA detected organ- carbonation reactions [10]. The latter scenario would be ic mass fragments [7] complementary to those observed by more consistent with a hydrothermal model of nanosilica INMS [1,2]. Recent CDA observations indicate that SiO2 formation [8]. However, a high pH ocean would be rich in nanoparticles are sourced from Enceladus’ plume [8]. dissolved Si, which could facilitate alternative mechanisms Ocean chemistry: Initial chemical models of ocean wa- of forming SiO2 nanoparticles [14]. If hydrothermal fluids ter on Enceladus [9-11] are generally consistent with the are present today, they may provide volatile species (e.g., observational constraints and with each other. The most CH4) that can be outgassed or sequestered into clathrates striking similarity between Enceladus’ ocean and terrestrial [15]. In addition to CH4, there are other more complex but seawater (as a reference) is the dominance of NaCl, which less abundant organic compounds inside Enceladus, which stems from its high solubility, which allows efficient extrac- may be dissolved in ocean water, or present as oil droplets or tion from rocky sources. However, Enceladus’ ocean may be suspended particulates [2,7]. Hypothesized sources of these less concentrated in NaCl than terrestrial seawater because of organic compounds include leached primordial species, the much greater abundance of water relative to rock on thermally processed organic materials, abiotic (e.g., Fischer- Enceladus. Enceladus’ ocean also appears to differ from Tropsch-type) synthesis, and biological carbon fixation. terrestrial seawater in being relatively rich in dissolved inor- References: [1] Waite J. H. et al. (2009) Nature, 460, ganic carbon, and apparently poor in MgSO4. This may im- 487. [2] Waite J. H. et al. (2015) AGU Fall Meeting, P11D- ply that Enceladus accreted abundant CO2 or CO as in many 02. [3] Hansen C. J. et al. (2008) Nature, 456, 477. [4] Han- comets; and its ocean may be relatively reduced if significant sen C. J. et al. (2011) Geophys. Res. Lett., 38, L11202. [5] amounts of oxidants (H2O2, O2) were not accreted, or pro- Postberg F. et al. (2009) Nature, 459, 1098. [6] Postberg F. duced and delivered to the water-rock system over time. et al. (2011) Nature, 474, 620. [7] Postberg F. et al. (2015) Enceladus’ ocean has an alkaline pH. There is not yet a AGU Fall Meeting, P11D-03. [8] Hsu H-W. et al. (2015) reconciliation between estimated pH values of ~9 [5,8] or Nature, 519, 207. [9] Zolotov M. Y. (2007) Geophys. Res. ~11 [9,11], depending on assumptions in interpreting CDA Lett., 34, L23203. [10] Zolotov M. Y. (2012) Icarus, 220, or INMS data. Nevertheless, it is encouraging that there is 713. [11] Glein C. R. et al. (2015) Geochim. Cosmochim. general agreement because it is not simple to estimate the pH Acta, 162, 202. [12] Kieffer S. W. et al. (2006) Science, 314, of a liquid water body from measurements in space. Minerals 1764. [13] McKay C. P. et al. (2012) Planet. Space Sci., 71, play a key role in regulating the activities ≈ concentrations of 73. [14] Zolotov M. Y. and Postberg F. (2014) LPSC, 45, SiO2 and CO2, which affect the pH via fluid speciation. For 2496. [15] Bouquet A. et al. (2015) GRL, 42, 1334. .
Recommended publications
  • Purification and Characterization of Bromocresol Purple for Spectrophotometric Seawater Alkalinity Titrations
    University of Montana ScholarWorks at University of Montana Undergraduate Theses and Professional Papers 2016 PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS Taymee A. Brandon The University Of Montana, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/utpp Part of the Analytical Chemistry Commons, and the Environmental Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Brandon, Taymee A., "PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS" (2016). Undergraduate Theses and Professional Papers. 97. https://scholarworks.umt.edu/utpp/97 This Thesis is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in Undergraduate Theses and Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS By TAYMEE ANN MARIE BRANDON Undergraduate Thesis presented in partial fulfillment of the requirements for the University Scholar distinction Davidson Honors College University of Montana Missoula, MT May 2016 Approved by: Dr. Michael DeGrandpre Department of Chemistry and Biochemistry ABSTRACT Brandon, Taymee, B.S., May 2016 Chemistry Purification and Characterization of Bromocresol Purple for Spectrophotometric Seawater Alkalinity Titrations Faculty Mentor: Dr. Michael DeGrandpre The topic of my research is the purification of the sulfonephthalein indicator bromocresol purple (BCP). BCP is used as an acid-base indicator in seawater alkalinity determinations. Impurities in sulfonephthalein indicator salts often result in significant errors in pH values3.
    [Show full text]
  • Geochemistry of Corals: Proxies of Past Ocean Chemistry, Ocean Circulation, and Climate
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8354–8361, August 1997 Colloquium Paper This paper was presented at a colloquium entitled ‘‘Carbon Dioxide and Climate Change,’’ organized by Charles D. Keeling, held November 13–15, 1995, at the National Academy of Sciences, Irvine, CA. Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate ELLEN R. M. DRUFFEL Department of Earth System Science, University of California, Irvine, CA 92697 ABSTRACT This paper presents a discussion of the status Second, a synthesis is presented of the available proxy of the field of coral geochemistry as it relates to the recovery of records from corals as they relate to past climate, ocean past records of ocean chemistry, ocean circulation, and climate. circulation changes, and anthropogenic input of excess CO2. The first part is a brief review of coral biology, density banding, For some databases, the anthropogenic CO2 appears clear and and other important factors involved in understanding corals as globally distributed. For other databases it appears that vari- proxies of environmental variables. The second part is a syn- ability on interannual to decadal time scales complicates a thesis of the information available to date on extracting records straightforward attempt to separate natural perturbations of the carbon cycle and climate change. It is clear from these from the anthropogenic CO2 signal on the Earth’s environ- proxy records that decade time-scale variability of mixing pro- ment. Shen (4) presents a review of the types of coral archives cesses in the oceans is a dominant signal. That Western and available from the perspective of historical El Nin˜o-Southern Eastern tropical Pacific El Nin˜o-Southern Oscillation (ENSO) Oscillation (ENSO) influences on the tropical Pacific Ocean.
    [Show full text]
  • Ocean Acidification in the Geological Past
    UK Ocean Acidification programme synopsis Ocean acidification in the geological past www.oceanacidification.org.uk Lessons from the past Global-scale ocean acidification is happening now, as a result of human activities adding CO2 to the atmosphere. But ocean acidity has increased previously in the Earth’s history, as a result of natural changes in atmospheric composition. Of particular interest are past releases of CO2 that have occurred relatively rapidly in geological terms, since they may provide natural analogues for the effects of current acidification on chemical processes and marine life. Calcifying organisms (that construct their shells out of calcium carbonate) provide an important research focus, since they are preserved in the fossil record and are also likely to be especially sensitive to changes in ocean chemistry. Most of the palaeo-oceanographic Specific aims of the consortium study were: work in UKOA was carried out by a consortium project Abrupt ocean l To produce new estimates of seawater acidity and atmospheric CO2 levels for acidification events and their effects the period 40-65 million years ago in the Earth’s past, led by Paul l To study the response of the carbon cycle during the onset of the Paleocene - Pearson at Cardiff University. Formal Eocene thermal maximum (PETM) using new data from Tanzania and elsewhere partners were at Southampton, and new computer models University College London and the l To compare the PETM with other known ocean acidification events in the Open University, with additional Earth’s past contributions by researchers at Bristol, l To quantify the biotic response to ocean acidification events both directly Oxford, Yale and elsewhere.
    [Show full text]
  • The Physical and Chemical Characteristics of Marine Primary Open Access Organic Aerosol: a Review Biogeosciences Biogeosciences Discussions B
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmos. Chem. Phys., 13, 3979–3996, 2013 Atmospheric Atmospheric www.atmos-chem-phys.net/13/3979/2013/ doi:10.5194/acp-13-3979-2013 Chemistry Chemistry © Author(s) 2013. CC Attribution 3.0 License. and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access The physical and chemical characteristics of marine primary Open Access organic aerosol: a review Biogeosciences Biogeosciences Discussions B. Gantt and N. Meskhidze Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA Open Access Open Access Correspondence to: N. Meskhidze ([email protected]) Climate Climate Received: 19 July 2012 – Published in Atmos. Chem. Phys. Discuss.: 23 August 2012 of the Past of the Past Revised: 5 March 2013 – Accepted: 24 March 2013 – Published: 18 April 2013 Discussions Open Access Open Access Abstract. Knowledge of the physical characteristics and 1 Introduction Earth System chemical composition of marine organic aerosols is needed Earth System for the quantification of their effects on solar radiation trans- Dynamics Dynamics fer and cloud processes. This review examines research per- One of the largest uncertainties of the aerosol-cloud sys- Discussions tinent to the chemical composition, size distribution, mixing tem is the background concentration of natural aerosols, es- state, emission mechanism, photochemical oxidation and cli- pecially over clean marine regions where cloud condensa- Open Access Open Access matic impact of marine primary organic aerosol (POA) asso- tion nuclei (CCN) concentrationGeoscientific ranges from less than 100 Geoscientific −3 ciated with sea-spray.
    [Show full text]
  • Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
    Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans
    [Show full text]
  • Analysis of Seawater a Guide for the Analytical and Environmental Chemist T.R
    Analysis of Seawater A Guide for the Analytical and Environmental Chemist T.R. Crompton Analysis of Seawater A Guide for the Analytical and Environmental Chemist With 48 Figures and 45 Tables 123 T.R. Crompton Hill Cottage (Bwthyn Yr Allt) Anglesey, Gwynedd United Kingdom Library of Congress Control Number: 2005929412 ISBN-10 3-540-26762-X Springer Berlin Heidelberg New York ISBN-13 978-3-540-26762-1 Springer Berlin Heidelberg New York DOI 10.1007/b95901 This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.
    [Show full text]
  • The Origin of Life in Alkaline Hydrothermal Vents
    ASTROBIOLOGY Volume 16, Number 2, 2016 Review Article ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1406 The Origin of Life in Alkaline Hydrothermal Vents Victor Sojo,1,2 Barry Herschy,1 Alexandra Whicher,1 Eloi Camprubı´,1 and Nick Lane1,2 Abstract Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents.
    [Show full text]
  • A Deductive Approach to Biogenesis! Rob Hengeveld* Vrije Universiteit, Amsterdam, the Netherlands
    ry: C ist urr m en e t Hengeveld, Organic Chem Curr Res 2015, 4:1 h R C e c s i e DOI: 10.4172/2161-0401.1000135 n a a r Organic Chemistry c g r h O ISSN: 2161-0401 Current Research ResearchReview Article Article OpenOpen Access Access A Deductive Approach to Biogenesis! Rob Hengeveld* Vrije Universiteit, Amsterdam, The Netherlands Abstract This article reviews the main arguments on the nature of the early startup of life. It first puts the biogenetical processes into a physical and systems-theoretical perspective. Biogenesis in this case would not be about the construction of individual molecules according to a chemical approach, but about building up an energetically self- sustaining, dynamically organized chemical system from scratch. Initially, this system would have separated out from generally operating physicochemical processes, gradually becoming more independent of them. As a system, it had to build up its structure stepwise, each stage being more complex and stable than the previous one, without, however, changing its basic structure too much; as long as the structure of a system stays intact, it still operates in the same way even if chemical constituents change. This property of a system became especially useful when the systems, which had already evolved and operated for some 1.3 billion years, had to adapt to new environmental conditions at the time of the Great Oxygen Event, the GOE, and some 2.5 billion years ago. As energy processing systems, their constituent molecules carry the energy and can as such be replaced by other, more efficient ones as soon as the system require, or as soon as external chemical conditions change.
    [Show full text]
  • Arctic Ocean Acidification
    Abstract Volume Arctic Ocean Acidification Bergen, Norway 6-8 May, 2013 Arctic Ocean Acidification Bergen, Norway 6-8 May, 2013 Abstract Volume Contents Preface ................................................................................................................................................................................................................................................... 7 Background .................................................................................................................................................................................................................................... 7 Session 1 Acidification in the Arctic Ocean – set the scene ...................................................................................... 8 Plankton community responses to ocean acidification: implications for food webs and biogeochemical cycling..................... 8 Ulf Riebesell The alpha and omega of ocean acidification – biological impacts on benthic organisms .................................................................... 8 Sam Dupont Policy and Ocean Acidification ........................................................................................................................................................................................ 9 Carol Turley Session 2 Chemistry .......................................................................................................................................................................................................
    [Show full text]
  • The West Coast Ocean Acidification and Hypoxia Science Panel MAJOR FINDINGS, RECOMMENDATIONS, and ACTIONS
    The West Coast Ocean Acidification and Hypoxia Science Panel MAJOR FINDINGS, RECOMMENDATIONS, AND ACTIONS APRIL 2016 Table of Contents I. Introduction ............................................................................................................................................................................................................................. 4 II. Major Findings ......................................................................................................................................................................................................................... 5 III. Panel Recommendations ......................................................................................................................................................................................................... 6 IV. Appendices...............................................................................................................................................................................................................................13 Appendix A: Why West Coast managers should care about ocean acidification .......................................................................................................................................................14 Appendix B: Why the West Coast is vulnerable to ocean acidification – and what we can learn from it .............................................................................................................16 Appendix c: Managing for resilience
    [Show full text]
  • History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification
    EA40CH07-Zeebe ARI 1 April 2012 7:44 History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification Richard E. Zeebe School of Ocean and Earth Science and Technology, Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii 96822; email: [email protected] Annu. Rev. Earth Planet. Sci. 2012. 40:141–65 Keywords First published online as a Review in Advance on carbon dioxide, paleochemistry, fossil fuels January 3, 2012 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Humans are continuing to add vast amounts of carbon dioxide (CO2)tothe This article’s doi: atmosphere through fossil fuel burning and other activities. A large fraction by University of Hawaii at Manoa Library on 05/03/12. For personal use only. 10.1146/annurev-earth-042711-105521 of the CO2 is taken up by the oceans in a process that lowers ocean pH Copyright c 2012 by Annual Reviews. Annu. Rev. Earth Planet. Sci. 2012.40:141-165. Downloaded from www.annualreviews.org and carbonate mineral saturation state. This effect has potentially serious All rights reserved consequences for marine life, which are, however, difficult to predict. One 0084-6597/12/0530-0141$20.00 approach to address the issue is to study the geologic record, which may provide clues about what the future holds for ocean chemistry and marine organisms. This article reviews basic controls on ocean carbonate chemistry on different timescales and examines past ocean chemistry changes and ocean acidification events during various geologic eras. The results allow evaluation of the current anthropogenic perturbation in the context of Earth’s history.
    [Show full text]
  • An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No
    Secretariat of the CBD Technical Series Convention on No. 75 Biological Diversity 75 An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No. 75 AN UPDATED SYNTHESIS OF THE IMPACTS OF OCEAN ACIDIFICATION ON MARINE BIODIVERSITY The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the copyright holders concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that use this document as a source. Reuse of the figures is subject to permission from the original rights holders. Published by the Secretariat of the Convention on Biological Diversity. ISBN 92-9225-527-4 (print version); ISBN 92-9225-528-2 (web version) Copyright © 2014, Secretariat of the Convention on Biological Diversity Citation: Secretariat of the Convention on Biological Diversity (2014). An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity (Eds: S. Hennige, J.M. Roberts & P. Williamson). Montreal, Technical Series No. 75, 99 pages For further information, contact: Secretariat of the Convention on Biological Diversity World Trade Centre, 413 Rue St. Jacques, Suite 800, Montréal, Quebec,Canada H2Y 1N9 Tel: +1 (514) 288 2220 Fax: +1 (514) 288 6588 E-mail: [email protected] Website: www.cbd.int Cover images, top to bottom: Katharina Fabricius; N.
    [Show full text]