Evidence for a Cenozoic Radiation of Ferns in an Angiosperm-Dominated Canopy

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for a Cenozoic Radiation of Ferns in an Angiosperm-Dominated Canopy Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy Eric Schuettpelz1 and Kathleen M. Pryer Department of Biology, Duke University, Durham, NC 27708 Edited by Peter R. Crane, University of Chicago, Chicago, IL, and approved May 27, 2009 (received for review November 3, 2008) In today’s angiosperm-dominated terrestrial ecosystems, leptospo- that the bulk of polypod diversity arose following the rise of rangiate ferns are truly exceptional—accounting for 80% of the flowering plants (15). Subsequent divergence-time estimates Ϸ11,000 nonflowering vascular plant species. Recent studies have suggested that this pattern of recent diversification—in the shown that this remarkable diversity is mostly the result of a major shadow of angiosperms—might be echoed in other leptospor- leptosporangiate radiation beginning in the Cretaceous, following angiate orders (16). Thus, it appears that the remarkable diver- the rise of angiosperms. This pattern is suggestive of an ecological sity of leptosporangiate ferns on Earth today is not simply the opportunistic response, with the proliferation of flowering plants result of being adept at holding on in the face of angiosperm across the landscape resulting in the formation of many new domination. Rather, it seems that ferns may have somehow been niches—both on forest floors and within forest canopies—into able to capitalize upon it. which leptosporangiate ferns could diversify. At present, one-third One plausible explanation for the success of leptosporangiates of leptosporangiate species grow as epiphytes in the canopies of involves an ecological opportunistic response to the rise of angiosperm-dominated tropical rain forests. However, we know angiosperms (12, 15, 17). In such a scenario, the proliferation of too little about the evolutionary history of epiphytic ferns to assess angiosperms across the landscape and the ensuing establishment whether or not their diversification was in fact linked to the of more complex ecosystems would have resulted in a plethora establishment of these forests, as would be predicted by the of new niches into which leptosporangiate ferns could have ecological opportunistic response hypothesis. Here we provide diversified. But why were leptosporangiates able to flourish as new insight into leptosporangiate diversification and the evolu- other nonflowering vascular plant lineages floundered? In part, tion of epiphytism by integrating a 400-taxon molecular dataset their success may be linked to acquiring a unique photoreceptor with an expanded set of fossil age constraints. We find evidence that enhanced their sensitivity to light (in orienting leaves and for a burst of fern diversification in the Cenozoic, apparently driven chloroplasts) (18) and likely allowed them to better occupy the by the evolution of epiphytism. Whether this explosive radiation shady floors of angiosperm-dominated forests (15). Traits asso- was triggered simply by the establishment of modern angiosperm- ciated with the evolution of epiphytism—a capacity to reside on dominated tropical rain forest canopies, or spurred on by some an above-ground plant surface while not extracting water or other large-scale extrinsic factor (e.g., climate change) remains to nutrients from the host plant or the ground (19)—may also have be determined. In either case, it is clear that in both the Cretaceous played an important role. Desiccation tolerance has been doc- and Cenozoic, leptosporangiate ferns were adept at exploiting umented both in fern sporophytes and (especially) gametophytes newly created niches in angiosperm-dominated ecosystems. (20), and many epiphytic ferns also possess features (e.g., leathery leaves and thick cuticles) that allow them to withstand ͉ ͉ divergence-time estimates diversification ecological opportunistic dry conditions (21, 22). Some are even able to absorb water ͉ ͉ response epiphytes modern tropical rain forests directly into their leaves or stems (23), while others have specialized in the impoundment of leaf litter to form suspended hrough the 80 million years composing the Cretaceous soils (24). Tperiod (145.5–65.5 Ma; time scale follows ref. 1), the Earth’s With this suite of adaptations, leptosporangiate ferns have vegetation changed dramatically from a landscape populated by shown an extraordinary ability to colonize the canopies of gymnosperms and seed-free vascular plants to one dominated by modern, angiosperm-dominated, tropical rain forests (21, 25– angiosperms (2–8). As flowering plants rose to prominence, 29). Although these ferns account for just 3% of the world’s other vascular plant lineages were largely relegated to the vascular plant diversity, they comprise more than 10% of the sidelines, if not driven completely to extinction. Today, angio- epiphytic species (see Table S1 and ref. 30). Unfortunately, we sperms account for about 96% of vascular plant diversity, know too little about the evolutionary history of epiphytic whereas nearly all of the 12 remaining major vascular plant leptosporangiates to assess whether or not their diversification lineages comprise just a few—or perhaps a few hundred— was in fact linked to the establishment of angiosperm-dominated species [supporting information (SI) Table S1]. Leptosporangi- tropical rain forests, as would be predicted by the ecological ate ferns are the only exception. Although not as diverse as opportunistic response hypothesis. There is not even a consensus flowering plants, this group comprises more than 9,000 living as to how many times epiphytism has arisen within leptospor- species—4 times the number of extant species in all other angiates. In this study, we combine the best-sampled molecular nonflowering lineages combined. dataset for ferns to date with an expanded set of age constraints Leptosporangiate ferns originated near the start of the Car- from the fossil record to obtain a more complete picture of boniferous period (359.2 Ma) (9, 10)—about 200 million years leptosporangiate diversification. We then reconstruct habit before the evolution of angiosperms (11). Based on the fossil record, this group of ferns is thought to have undergone 3 successive radiations (12–14): an initial radiation in the Carbon- Author contributions: E.S. and K.M.P. designed research; E.S. performed research; E.S. iferous, giving rise to 6 now-extinct families; a second radiation analyzed data; and E.S. and K.M.P. wrote the paper. in the late Paleozoic and early Mesozoic, resulting in several The authors declare no conflict of interest. families with extant representatives; and a third radiation be- This article is a PNAS Direct Submission. ginning in the Cretaceous, primarily within what is now referred 1To whom correspondence should be addressed. E-mail: [email protected]. to as the ‘‘polypod’’ clade. An analysis combining fossil and living This article contains supporting information online at www.pnas.org/cgi/content/full/ data confirmed the timing of this third radiation, demonstrating 0811136106/DCSupplemental. 11200–11205 ͉ PNAS ͉ July 7, 2009 ͉ vol. 106 ͉ no. 27 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0811136106 Downloaded by guest on September 24, 2021 across the resulting phylogenetic chronogram (timetree) to more resulting in 2 extant lineages). For the osmundaceous ferns fully understand the evolution of epiphytism and the timing of (Osmundales; node 1) (see Fig. 1), diversification was delayed epiphytic radiations. This allows us to recognize what factors until near the Triassic/Jurassic boundary (199.6 Ma) (see Table may have been responsible for epiphytic diversification— S4), the time at which the earliest crown group fossils appear (see ultimately providing further insight into the leptosporangiate Table S2). For filmy ferns (Hymenophyllales; node 4), we success story. estimate the initial divergence yielding the 2 major extant lineages—hymenophylloids and trichomanoids—to have oc- Results and Discussion curred somewhat later, in the Lower Jurassic (185.1 Ma). But Leptosporangiate Phylogeny. Phylogenetic analysis of our 3-gene although the trichomanoids (node 5) began to diversify soon dataset yielded a well-resolved and well-supported evolutionary thereafter (147.3 Ma), the hymenophylloids (node 18) did not framework (80% of the nodes received maximum likelihood begin their diversification until the Eocene (41.9 Ma). Gleichen- bootstrap support Ն 70%), while also providing an unprece- ioid ferns (Gleicheniales; node 32) are rather exceptional, having dented picture of relationships across leptosporangiate ferns. begun to diversify before the end of the Paleozoic (262.2 The tree topology is presented in Fig. S1; branch lengths, support Ma)—only 14.2 Ma after their inferred origin. For the schizaeoid values, and a thorough discussion of relationships are provided ferns (Schizaeales; node 43), we again see a substantial lag elsewhere (31). between origin (264.6 Ma) and crown group diversification (218.4 Ma); however, this latter date is still much older than the Leptosporangiate Diversification. Divergence-time estimates, re- oldest crown group fossils for this clade (see Table S2). Based on sulting from the integration of our molecular phylogeny (see Fig. our estimates, crown group diversification for both the heteros- S1) with age constraints from the fossil record (see Table S2), porous ferns (Salviniales; node 50) and the tree ferns (Cya- suggest that there was very little accumulation of extant fern theales; node 55) began in the Lower Jurassic (186.8 Ma and diversity in the Permian, Triassic,
Recommended publications
  • Pteridophyte Fungal Associations: Current Knowledge and Future Perspectives
    This is a repository copy of Pteridophyte fungal associations: Current knowledge and future perspectives. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/109975/ Version: Accepted Version Article: Pressel, S, Bidartondo, MI, Field, KJ orcid.org/0000-0002-5196-2360 et al. (2 more authors) (2016) Pteridophyte fungal associations: Current knowledge and future perspectives. Journal of Systematics and Evolution, 54 (6). pp. 666-678. ISSN 1674-4918 https://doi.org/10.1111/jse.12227 © 2016 Institute of Botany, Chinese Academy of Sciences. This is the peer reviewed version of the following article: Pressel, S., Bidartondo, M. I., Field, K. J., Rimington, W. R. and Duckett, J. G. (2016), Pteridophyte fungal associations: Current knowledge and future perspectives. Jnl of Sytematics Evolution, 54: 666–678., which has been published in final form at https://doi.org/10.1111/jse.12227. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.
    [Show full text]
  • (Lygodium ×Fayae : Abrindo O Caminho Para Uma Maior Compreensão
    A morphological and anatomical study of Brazilian Lygodium species (Lygodiaceae), focusing on spore and stomata morphology and spore germination (Lygodium ×fayae: abrindo o caminho para uma maior compreensão sobre híbridos de samambaias brasileiras) REBEKAH HELEN LINDSEY Dissertação apresentada ao Instituto de Biociências, Câmpus de Botucatu, UNESP, para obtenção do título de Mestre no Programa de Pós-Graduação em Ciências Biológicas (Botânica), Área de concentração Sistemática Vegetal BOTUCATU – SP 2020 2 UNIVERSIDADE ESTADUAL PAULISTA “Júlio de Mesquita Filho” INSTITUTO DE BIOCIÊNCIAS DE BOTUCATU REBEKAH HELEN LINDSEY ORIENTADORA ANA PAULA FORTUNA-PEREZ CO-ORIENTADOR PEDRO BOND SCHWARTSBURD CO-ORIENTADORA ANA PAULA MORAES Dissertação apresentada ao Instituto de Biociências, Câmpus de Botucatu, UNESP, como parte dos créditos para obtenção do título de Mestre no Programa de Pós-Graduação em Ciências Biológicas (Botânica), Área de concentração Sistemática Vegetal BOTUCATU – SP 2020 Lindsey, Rebekah Helen L753l Lygodium ×fayae: abrindo o caminho para uma maior compreensão sobre híbridos de samambaias brasileiras : um estudo morfológico e anatômico sobre as espécies brasileiras de Lygodium (Lygodieaceae), focado em morfologia de estômatos e esporos, e germinação de esporos / Rebekah Helen Lindsey. -- Botucatu, 2020 30 p. : il., tabs., fotos, mapas Dissertação (mestrado) - Universidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatu Orientadora: Ana Paula Fortuna-Perez Coorientador: Pedro Bond Schwartsburd 1. Botânica. 2. Taxonomia.
    [Show full text]
  • International Journal of Current Research In
    Int.J.Curr.Res.Aca.Rev.2017; 5(3): 80-85 International Journal of Current Research and Academic Review ISSN: 2347-3215 (Online) ҉҉ Volume 5 ҉҉ Number 3 (March-2017) Journal homepage: http://www.ijcrar.com doi: https://doi.org/10.20546/ijcrar.2017.503.012 General Aspects of Pteridophyta – A Review Teena Agrawal*, Priyanka Danai and Monika Yadav Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India *Corresponding author Abstract Article Info Pteridophyta is a phylum of plants which is commonly known as ferns. About more Accepted: 28 February 2017 than 12,000 different species of ferns are distributed worldwide. They are distinguished Available Online: 10 March 2017 from flowering plants by not producing seeds & fruit. The members of Pteridophyta reproduce through spores. Ferns were some of the Earth‟s first land plants. They are Keywords vascular and have true leaves. In evolutionary history, the advent of vascular plants changed the way the world looked. Prior to the spread of vascular plants, the land had Pteridophyta, Ferns, only plants that were no more than a few centimeters tall; the origin of the vascular Vascular plants, system made it possible for plants to be much taller. As it became possible for plants to Evolutionary history. grow taller, it also became necessary – otherwise, they would get shaded by their taller neighbors. With the advent of vascular plants, the competition for light became intense, and forests started to cover the earth. (A forest is simply a crowd of plants competing for light). The earliest forests were composed of vascular non-seed plant, though modern forests are dominant by seed plant.
    [Show full text]
  • The Complex Origins of Strigolactone Signalling in Land Plants
    bioRxiv preprint doi: https://doi.org/10.1101/102715; this version posted January 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Article - Discoveries The complex origins of strigolactone signalling in land plants Rohan Bythell-Douglas1, Carl J. Rothfels2, Dennis W.D. Stevenson3, Sean W. Graham4, Gane Ka-Shu Wong5,6,7, David C. Nelson8, Tom Bennett9* 1Section of Structural Biology, Department of Medicine, Imperial College London, London, SW7 2Integrative Biology, 3040 Valley Life Sciences Building, Berkeley CA 94720-3140 3Molecular Systematics, The New York Botanical Garden, Bronx, NY. 4Department of Botany, 6270 University Boulevard, Vancouver, British Colombia, Canada 5Department of Medicine, University of Alberta, Edmonton, Alberta, Canada 6Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada 7BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China. 8Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA 9School of Biology, University of Leeds, Leeds, LS2 9JT, UK *corresponding author: Tom Bennett, [email protected] Running title: Evolution of strigolactone signalling 1 bioRxiv preprint doi: https://doi.org/10.1101/102715; this version posted January 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Strigolactones (SLs) are a class of plant hormones that control many aspects of plant growth.
    [Show full text]
  • Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China
    diversity Article Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China Xiaohua Dai 1,2,* , Chunfa Chen 1, Zhongyang Li 1 and Xuexiong Wang 1 1 Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; [email protected] (C.C.); [email protected] (Z.L.); [email protected] (X.W.) 2 National Navel-Orange Engineering Research Center, Ganzhou 341000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-137-6398-8183 Received: 16 March 2020; Accepted: 30 March 2020; Published: 1 April 2020 Abstract: Human disturbances are greatly threatening to the biodiversity of vascular plants. Compared to seed plants, the diversity patterns of ferns have been poorly studied along disturbance gradients, including aspects of their taxonomic, phylogenetic, and functional diversity. Longnan County, a biodiversity hotspot in the subtropical zone in South China, was selected to obtain a more thorough picture of the fern–disturbance relationship, in particular, the taxonomic, phylogenetic, and functional diversity of ferns at different levels of disturbance. In 90 sample plots of 5 5 m2 along roadsides × at three sites, we recorded a total of 20 families, 50 genera, and 99 species of ferns, as well as 9759 individual ferns. The sample coverage curve indicated that the sampling effort was sufficient for biodiversity analysis. In general, the taxonomic, phylogenetic, and functional diversity measured by Hill numbers of order q = 0–3 indicated that the fern diversity in Longnan County was largely influenced by the level of human disturbance, which supports the ‘increasing disturbance hypothesis’.
    [Show full text]
  • FLORA DE GUERRERO FLORA DE GUERRERO NELLY DIEGO-PÉREZ / ROSA MARÍA FONSECA / Editoras Gleicheniaceae (Pteridophyta)
    FLORA DE GUERRERO FLORA DE GUERRERO NELLY DIEGO-PÉREZ / ROSA MARÍA FONSECA / editoras Gleicheniaceae (Pteridophyta) El estado de Guerreroen México ocupa el treceavo lugar en extensión y el cuarto sitio en cuanto a diversidad vegetal, con aproximadamente siete mil especies de plantas vasculares, solamente sobrepasado por los estados de Oaxaca, Chiapas y Veracruz. Esta riqueza biológica, por años desconocida, ha sido desde tiempos de la Colonia objeto de exploraciones botánicas por parte de investigadores mexicanos y de otros países, que han recorrido la entidad recolectando ejemplares, gracias a lo cual se cuenta actualmente con una colección representativa de plantas de la entidad, depositada principalmente en herbarios nacionales y en algunos del extranjero. La serieFLORA DE GUERRERO representa un esfuerzo por dar a conocer de manera formal y sistematizada la riqueza que alberga el estado. Consta de fascículos elaborados por taxónomos especialistas en diferentes grupos de 53 53 plantas, que incluyen la descripción botánica de las familias, géneros y especies, así como mapas con la distribución geográfica dentro del estado, claves para la ubicación taxonómica de los taxa y láminas que ilustran las características de las especies representativas. 978-607-02-3888-8 Ernesto Velázquez Montes 9 786070 238888 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS LABORATORIO DE PLANTAS VASCULARES FLORA DE GUERRERO No. 53 Gleicheniaceae (Pteridophyta) ERNESTO VELÁZQUEZ MONTES 2012 UNIVERSIDAD NACIONAL AU TÓNOMA DE MÉXICO FAC U LTAD DE CIENCIAS COMITÉ EDITORIAL Alan R. Smith Leticia Pacheco University of California, Barkeley Universidad Autónoma Metropolitana, Iztapalapa Blanca Pérez García Francisco Lorea Hernández Universidad Autónoma Metropolitana, Iztapalapa Instituto de Ecología A.
    [Show full text]
  • University of Birmingham an Anatomically Advanced Species Of
    University of Birmingham An anatomically advanced species of the fern Botryopteris Renault from the Permian of southwestern China He, Xiao-Yuan; Wang, Shi-Jun; Hilton, Jason; Galtier, Jean; Jiang, Hong-Guan DOI: 10.1016/j.revpalbo.2019.104136 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): He, X-Y, Wang, S-J, Hilton, J, Galtier, J & Jiang, H-G 2020, 'An anatomically advanced species of the fern Botryopteris Renault from the Permian of southwestern China', Review of Palaeobotany and Palynology, vol. 273, 104136, pp. 1-13. https://doi.org/10.1016/j.revpalbo.2019.104136 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Exploring Lycopodiaceae Endophytes, Dendrolycopodium
    EXPLORING LYCOPODIACEAE ENDOPHYTES, DENDROLYCOPODIUM SYSTEMATICS, AND THE FUTURE OF FERN MODEL SYSTEMS A Thesis Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Science By Alaina Rousseau Petlewski May 2020 ©2020 Alaina Rousseau Petlewski i ABSTRACT This thesis consists of three chapters addressing disparate topics in seed-free plant biology. Firstly, I begin to describe the endophyte communities of lycophytes by identifying the culturable endophytes of five Lycopodiaceae species. Microbial endophytes are integral factors in plant evolution, ecology, and physiology. However, the endophyte communities of all major groups of land plants have yet to be characterized. Secondly, I begin to re-evaluate the systematics of a historically perplexing genus, Dendrolycopodium (Lycopodiaceae). Lastly, I assess the status of developing fern model systems and discuss possible future directions for this work. ii BIOGRAPHICAL SKETCH Alaina was born in 1995 near Dallas, TX, but was largely raised in central California. In high school, she developed a love of plants and chemistry. She graduated summa cum laude from Humboldt State University in 2017 with a B.S. in botany and minor in chemistry. After graduating from Cornell, she plans to move back to the West Coast. She aspires to find a way to combine her love of plants and admiration for the arts, have a garden, be kind, share her knowledge, and raise poodles with her partner. iii ACKNOWLEDGEMENTS I would like to thank my advisor Fay-Wei Li and committee members Chelsea Specht and Robert Raguso, for their advisement on this work and for supporting me beyond my research pursuits by helping me to discover and act on what is right for me.
    [Show full text]
  • An Enhanced Calibration of a Recently Released Megatree for the Analysis of Phylogenetic Diversity M
    http://dx.doi.org/10.1590/1519-6984.20814 Original Article An enhanced calibration of a recently released megatree for the analysis of phylogenetic diversity M. Gastauera,b* and J. A. A. Meira-Netoa,b aLaboratório de Ecologia e Evolução de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa – UFV, Campus UFV, s/n, CEP 36570-000, Viçosa, MG, Brazil bCentro de Ciências Ambientais Floresta-Escola – FLORESC, Av. Prof. Mário Palmeiro, 1000, CEP 38200-000, Frutal, MG, Brazil *e-mail: [email protected] Received: October 2, 2014 – Accepted: March 31, 2015 – Distributed: August 31, 2016 (With 2 figures) Abstract Dated or calibrated phylogenetic trees, in which branch lengths correspond to evolutionary divergence times between nodes, are important requirements for computing measures of phylogenetic diversity or phylogenetic community structure. The increasing knowledge about the diversification and evolutionary divergence times of vascular plants requires a revision of the age estimates used for the calibration of phylogenetic trees by the bladj algorithm of the Phylocom 4.2 package. Comparing the recently released megatree R20120829.new with two calibrated vascular plant phylogenies provided in the literature, we found 242 corresponding nodes. We modified the megatree (R20120829mod. new), inserting names for all corresponding nodes. Furthermore, we provide files containing age estimates from both sources for the updated calibration of R20120829mod.new. Applying these files consistently in analyses of phylogenetic community
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]
  • A Roadmap for Fern Genome Sequencing
    A Roadmap for Fern Genome Sequencing Authors: Li-Yaung Kuo, and Fay-Wei Li Source: American Fern Journal, 109(3) : 212-223 Published By: The American Fern Society URL: https://doi.org/10.1640/0002-8444-109.3.212 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/American-Fern-Journal on 15 Oct 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Cornell University American Fern Journal 109(3):212–223 (2019) Published on 16 September 2019 A Roadmap for Fern Genome Sequencing LI-YAUNG KUO AND FAY-WEI LI* Boyce Thompson Institute, Ithaca, New York 14853, USA and Plant Biology Section, Cornell University, New York 14853, USA ABSTRACT.—The large genomes of ferns have long deterred genome sequencing efforts. To date, only two heterosporous ferns with remarkably small genomes, Azolla filiculoides and Salvinia cucullata, have been sequenced.
    [Show full text]
  • Phytochemicals and Antioxidative Properties of Edible Fern, Stenochlaena Palustris (Burm
    PHYTOCHEMICALS AND ANTIOXIDATIVE PROPERTIES OF EDIBLE FERN, STENOCHLAENA PALUSTRIS (BURM. F.) BEDD NELSON CHEAR JENG YEOU UNIVERSITI SAINS MALAYSIA 2015 PHYTOCHEMICALS AND ANTIOXIDATIVE PROPERTIES OF EDIBLE FERN, STENOCHLAENA PALUSTRIS (BURM. F.) BEDD By NELSON CHEAR JENG YEOU Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Pharmacy) February 2015 ACKNOWLEDGEMENT First and foremost, I would like to express my deepest gratitude to my supervisor, Dr. Lai Choon Sheen for her continuous supervision and advices in helping me to complete the whole research project and thesis writing as well. I would like to thank her for being an open person to ideas, and for encouraging and supporting me to shape and strengthen my research interest and direction. Without her encouragement, guidance and all I have learned from her, I would never come to today achievement. My gratitude also goes to my co-supervisor, Dr. Vikneswaran Murugaiyah for his advices and helps throughout my research. In addition, I would like to express my thankfulness to Ministry of Higher Education and USM's Research Creativity and Management Office (RCMO) for providing the scholarship (My Brains 15- My Master) and research grant for the completion of this research project. Besides, I would like to express my gratitude to Centre for Drug Research, USM for giving me the chance to pursue my master degree and utilize the Centre’s instruments such as HPLC-UV and IR. My deepest appreciation goes to Mr. Zahari for helping me to perform NMR analysis in School of Chemical Sciences, Universiti Sains Malaysia. I would like to thank Mr.
    [Show full text]