Adaptation and Evolution in Marine Environments, Volume 1

Total Page:16

File Type:pdf, Size:1020Kb

Adaptation and Evolution in Marine Environments, Volume 1 From Pole to Pole Adaptation and Evolution in Marine Environments, Volume 1 Volume 1: The Impacts of Global Change on Biodiversity Bearbeitet von Cinzia Verde, Guido di Prisco 1. Auflage 2012. Buch. xxiv, 224 S. Hardcover ISBN 978 3 642 27351 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 537 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Umweltwissenschaften > Biodiversität Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Southern Ocean Deep-Sea Isopod Biodiversity Research: From Census to Ecosystem Functioning Angelika Brandt 2.1 Introduction The isolation of Antarctica makes this continent a perfect evolutionary laboratory for studies of marine biodiversity and biogeography. Attempts to describe and explain patterns of species diversity have become a major goal in biological research since the pioneering deep-sea investigations in the early 60s of the last century (Sanders et al. 1965; Sanders and Hessler 1969). Analyses of large-scale (global) patterns of deep-sea biodiversity include latitudinal gradients, apparent decreases in species richness among a number of taxa from the equator towards the poles (Poore and Wilson 1993; Rex et al. 1993, 1997). The Atlantic sector of the Southern Ocean (SO) does not seem to follow this pattern (Brandt et al. 2007b) although the deep seafloor of the SO remains the least studied even though it is the largest single benthic habitat (Clarke and Johnston 2003). The Southern Ocean benthic marine shelf flora and fauna has been impacted over millions of years by plate tectonics and the resulting changes in the global climate. Tertiary palaeogeologic and -oceanographic changes (e.g. Brown et al. 2006; Zachos et al. 2008) successively generated the psychrosphere and the cold Antarctic Deep Water which is linked to the surface water in polar areas. These key events of cooling and glaciation followed by warmer periods shaped the evolution of many SO marine species. Following evolutionary extinctions some benthic marine invertebrate taxa radiated, others are remnants from the progressive retraction of cosmopolitan taxa established during the Jurassic and Cretaceous when Antarctica was still under greenhouse conditions, some disjunct distribution patterns resulted from vicariance events following the disintegration of A. Brandt (&) Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany e-mail: [email protected] G. di Prisco and C. Verde (eds.), Adaptation and Evolution in Marine Environments, 21 Volume 1, From Pole to Pole, DOI: 10.1007/978-3-642-27352-0_2, Ó Springer-Verlag Berlin Heidelberg 2012 22 A. Brandt Fig. 2.1 Bathymetry of the southern ocean, showing shelf, slope, abyssal and hadal regions (Kaiser and Barnes 2008) the supercontinent Gondwana. Thus, the present Southern Ocean fauna has changed in biodiversity and composition over geological time scales and species have actively migrated in and out of the SO (depending on dispersal capabilities) during glacial and interglacial periods. Today the Southern Ocean is characterized by unique environmental features, including a very deep and partly narrow continental shelf, a weakly stratified almost isothermal water column and formation of abyssal waters flowing to other basins. Most of the SO seafloor (27.9 million km2, Clarke and Johnston 2003)is deep sea (Fig. 2.1). Characteristic for Antarctica is that the shelves are much deeper than the average, 450–500 m, and can exceed 1,000 m in places; the Antarctic shelf comprises 17% of the world’s total shelf area. The SO deep-sea faunas are related both to adjacent shelf communities and to those in other deep oceans, and both submergence and emergence processes can occur. Nowadays, natural and anthropogenically driven climate change processes shape the Southern Ocean marine fauna and despite our knowledge of the evolutionary historic developments, it is difficult to anticipate how these processes will drive speciation, extinction or the SO food web in future. 2.2 Programmes and Expeditions to the SO Deep Sea Since the early exploratory phase of Antarctic research, and in the course of modern programs such as EPOS, EASIZ, ANDEEP, CAML, EBA, LGP (e.g. Dayton 1990; Arntz et al. 1997; Brandt 1991; Arntz and Clarke 2002; De Broyer et al. 2003; 2 Southern Ocean Deep-Sea Isopod Biodiversity Research 23 Clarke and Johnston 2003; Clarke et al. 2006; Brandt et al. 2007a, b, c), benthic life of the SO has been a subject of great interest. However, none of the deep-sea biology studies in the Southern Ocean was devoted exclusively to the deep sea. Between 1950 and 1960, during Russian and U.S. expeditions of the RVs Eltanin, Glacier, Akademik Kurchatov, and Akademik D. Mendeleiev, deep-sea samples had been taken occasionally. The first deep-sea expedition with HMS Challenger sampled the Beagle Channel and several deep-sea stations. Later, in 1994, the Magellan area was sampled again during the IBMANT programme (Interactions between the Magellan Region and the Antarctic, RV Polarstern) (Arntz and Rios 1999). During EPOS (European Polarstern Studies) and EASIZ (Ecology of the Antarctic Sea Ice Zone), some deep-sea data were obtained from the slope but rarely from abyssal sites. However, both programmes have been biologically outstanding and have provided a wealth of benthic data on species of all taxonomic groups and functional guilds of the high Antarctic Weddell Sea and the Antarctic Peninsula (Arntz and Gutt 1997; Arntz and Clarke 2002; Arntz and Brey 2003). Most information on the ecology of benthic deep-sea fauna in the Weddell Sea comes from a few stations sampled during EASIZ II in 1998 (Arntz and Clarke 2002). The ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonisation history and recent community patterns) expeditions took place in 2002–2005 in order to investigate this little known realm of the SO and provide first insights into the biodiversity and biogeography of the SO deep sea. ANDEEP con- tributed to the CoML (Census of Marine Life) projects CeDAMar (CEnsus of the Diversity of Abyssal Marine Life) and CAML (Census of the Antarctic Marine Life) and aimed to conduct the first comprehensive survey of megafaunal, macrofaunal and meiofaunal deep-water communities in the Scotia and Weddell Seas. 2.3 Patterns of Biodiversity in the Deep Sea 2.3.1 High Levels of Novel Biodiversity in the Southern Ocean SO benthic shelf communities display high levels of endemism, gigantism, slow growth, longevity and late maturity. In the deep sea it still remains virtually impossible to obtain animals alive and undamaged from abyssal depths and thus knowledge of the deep-sea faunal composition, particularly in the SO, is still scarce in comparison with that from shelf and upper slope environments and we know almost nothing about the physiology, autecology or life histories of the SO deep-sea organisms. During the ANDEEP project the Scotia and Weddell seas were sampled (Brandt et al. 2004, 2007) and the geological and sedimentological backgrounds of this region were reviewed by Thomson (2004) and Howe et al. (2004). A novel approach of this project was sampling across a broad range of taxonomic groups. This was crucial because large-scale biodiversity and bioge- ography patterns largely depend on size, biology (feeding mode and reproductive patterns) and mobility of the taxa, their gene flow (compare also Rex et al. 2005), 24 A. Brandt as well as geological history, productivity, predation and the relationship between regional and local species diversity (Witman et al. 2004). The SO deep-sea communities are unique and highly diverse. The high per- centage (often [90%) of new species in most taxa (Brandt et al. 2007a, b, c) and the high degree of endemism of many groups may reflect undersampling of the area. The high benthic diversity can probably be attributed to the constant, cold environment since about the last 34 m.y. The true deep-sea benthic fauna occurred at depths between 1,500 and 2,500 m depending on the taxon (Brandt et al. 2007c). There is a deep-sea affinity with the Antarctic shelf (Lipps and Hickman 1982; Brandt 1991; Brandt et al. 2007b), but some of the species can also be found in adjacent abyssal deep-sea basins (Brandt et al. 2004; Brandt et al. 2007a, b, c). This can be explained by repeated submergence and emergence processes during the evolution of invertebrate taxa and also by the eurybathy of the slope and deep- sea inhabitants (Brey et al. 1996). For example, Foraminifera, revealed close biogeographic links at the species level between deep Weddell Sea localities and those from similar depths in the North Atlantic and Arctic. The interesting bio- geography of Arctic and Southern Ocean foraminiferan species might be due to their occurrence in the Weddell Sea, a major source of the world’s deep water production, which could enhance the deposition of organic matter to the SO deep- ocean floor (Thomas and Gooday 1996; Brandt et al. 2007b). Isopod and poly- chaete slope assemblages included species that have invaded from the shelf. In sponges and molluscs the shelf and slope assemblages were more distinct. Abyssal faunas showed stronger links to other oceans, particularly the Atlantic, but mainly within good dispersers such as foraminiferans and polychaetes (Brandt et al. 2007b, c). Poor dispersers, like isopods, ostracods and nematodes are SO species rich and include many ‘‘apparently endemic’’ species. In summary, the ANDEEP data provide a valuable basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment (Brandt and Hilbig 2004; Brandt et al.
Recommended publications
  • Zootaxa, Haplomesus (Crustacea: Isopoda: Ischnomesidae)
    Zootaxa 1120: 1–33 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1120 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Heterochrony in Haplomesus (Crustacea: Isopoda: Ischnomesidae): revision of two species and description of two new species FIONA A. KAVANAGH1, GEORGE D. F. WILSON2 & ANNE MARIE POWER1 1 Department of Zoology, National University of Ireland, Galway, Ireland. [email protected] 2 Australian Museum, 6 College Street, Sydney, NSW 2010, Australia. [email protected] Abstract Two new species of Ischnomesidae, Haplomesus celticensis sp. nov. and Haplomesus hanseni sp. nov. are described from the southwest of Ireland and the Argentine Basin respectively. Both species lack the expression of pereopod VII, a characteristic that we argue is produced by progenesis, not neoteny as suggested by Brökeland & Brandt (2004). Haplomesus angustus Hansen, 1916 and Haplomesus tropicalis Menzies, 1962, also lack pereopod VII and are revised from the type material. The original description of Haplomesus angustus Hansen, 1916 describes the adult type specimen as a juvenile; the original description of Haplomesus tropicalis Menzies, 1962 fails to mention the lack of pereopod VII. Progenesis is discussed for the above species and within the family Ischnomesidae as a whole. Key words: Isopoda, Asellota, Ischnomesidae, Haplomesus, heterochrony, progenesis Introduction The Ischnomesidae is a family of marine benthic asellote isopods found mostly at bathyal and abyssal depths, with records from about 250–7000 m (Wolff 1962; Kussakin 1988). To date, 99 species have been described in five genera. The known diversity of this family, however, is increasing owing to recent reports of several new species (e.g.
    [Show full text]
  • Morphological Disparity As a Biodiversity Metric in Lower Bathyal and Abyssal Gastropod Assemblages
    Evolution, 58(2), 2004, pp. 338±348 MORPHOLOGICAL DISPARITY AS A BIODIVERSITY METRIC IN LOWER BATHYAL AND ABYSSAL GASTROPOD ASSEMBLAGES CRAIG R. MCCLAIN,1,2 NICHOLAS A. JOHNSON,1,3 AND MICHAEL A. REX1 1Department of Biology, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125 Abstract. Studies of deep-sea biodiversity focus almost exclusively on geographic patterns of a-diversity. Few include the morphological or ecological properties of species that indicate their actual roles in community assembly. Here, we explore morphological disparity of shell architecture in gastropods from lower bathyal and abyssal environments of the western North Atlantic as a new dimension of deep-sea biodiversity. The lower bathyal-abyssal transition parallels a gradient of decreasing species diversity with depth and distance from land. Morphological disparity measures how the variety of body plans in a taxon ®lls a morphospace. We examine disparity in shell form by constructing both empirical (eigenshape analysis) and theoretical (Schindel's modi®cation of Raup's model) morphospaces. The two approaches provide very consistent results. The centroids of lower bathyal and abyssal morphospaces are statis- tically indistinguishable. The absolute volumes of lower bathyal morphospaces exceed those of the abyss; however, when the volumes are standardized to a common number of species they are not signi®cantly different. The abyssal morphospaces are simply more sparsely occupied. In terms of the variety of basic shell types, abyssal species show the same disparity values as random subsets of the lower bathyal fauna. Abyssal species possess no evident evolutionary innovation. There are, however, conspicuous changes in the relative abundance of shell forms between the two assemblages.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • Faunal Change and Bathymetric Diversity Gradient in Deep-Sea Prosobranchs from Northeastern Atlantic
    Biodiversity and Conservation (2006) Ó Springer 2006 DOI 10.1007/s10531-005-1344-9 -1 Faunal change and bathymetric diversity gradient in deep-sea prosobranchs from Northeastern Atlantic CELIA OLABARRIA1,2 1Southampton Oceanography Centre, DEEPSEAS Benthic Biology Group, Empress Dock, South- ampton SO14 3ZH, United Kingdom; 2Present address: Departamento de Ecoloxı´a e Bioloxı´a Animal, Area Ecoloxı´a, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo (Pontevedra), Spain (e-mail: [email protected]; phone: +34-986-812587; fax: +34-986-812556) Received 6 January 2005; accepted in revised form 11 July 2005 Key words: Deep sea, Diversity, Faunal turnover, Northeastern Atlantic, Porcupine Abyssal Plain, Porcupine Seabight, Prosobranchs Abstract. Despite the plethora of studies, geographic patterns of diversity in deep sea remain subject of speculation. This study considers a large dataset to examine the faunal change and depth-diversity gradient of prosobranch molluscs in the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). Rates of species succession (addition and loss) increased rapidly with increasing depth and indicated four possible areas of faunal turnover at about 700, 1600, 2800 and 4100 m. Depth was a significant predictor of diversity, explaining nearly a quarter the variance. There was a pattern of decreasing diversity downslope from 250 m to 1500–1600 m, followed by an increase to high values at about 4000 m and then again, a fall to 4915 m. Processes causing diversity patterns of prosobranchs in the Porcupine Seabight and adjacent Abyssal Plain are likely to differ in magnitude or type, from those operating in other Atlantic areas. Introduction An increasing focus for biodiversity research in the deep sea has been to test for the existence of large-scale gradients in the diversity of marine soft- sediment fauna in deep sea (e.g.
    [Show full text]
  • Systematics, Zoogeography, Evolution and Biodiversity of Antarctic Deep-Sea Isopoda (Crustacea: Malacostraca)
    Systematics, zoogeography, evolution and biodiversity of Antarctic deep-sea Isopoda (Crustacea: Malacostraca) Dissertation zur Erlangung des Doktorgrades des Fachbereichs Biologie der Universität Hamburg vorgelegt von Wiebke Brökeland aus Essen Hamburg 2005 Our knowledge can only be finite, while our ignorance must necessarily be infinite. Karl Raimund Popper According to ICZN article 8.3 all names and nomenclatural acts in this thesis are disclaimed for nomenclatural purposes. Table of contents Summary..................................................................................................................................... i 1 Introduction............................................................................................................................ 1 1.1 The deep sea................................................................................................................................. 1 1.2 The Southern Ocean ................................................................................................................... 2 1.3 Deep-sea Isopoda......................................................................................................................... 3 1.4 Aims and questions ..................................................................................................................... 5 2 Material and Methods ............................................................................................................ 6 2.1 Sampling .....................................................................................................................................
    [Show full text]
  • Patterns of Mollusc Distribution in Mangroves from the São Marcos Bay, Coast of Maranhão State, Brazil
    ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392201600493 Patterns of mollusc distribution in mangroves from the São Marcos Bay, coast of Maranhão State, Brazil Carlos A. L. RODRIGUES1, Rannyele P. RIBEIRO1,2,*, Nayara B. SANTOS1; Zafira S. ALMEIDA1 1Universidade Estadual do Maranhão, Departamento de Química e Biologia, Avenida Lourenço Vieira da Silva, S/N, Tirirical, São Luís, Maranhão, Brazil. 2 Universidade Federal do Rio de Janeiro, Núcleo em Ecologia e Desenvolvimento Sócio-ambiental de Macaé. Avenida São José do Barreto 764, São José do Barreto, Macaé, Rio de Janeiro, Brazil. * Correspondig author: [email protected] ABSTRACT The diversity and distribution of molluscs from the Amazon Coast of Maranhão State, Brazil, are poorly understood. The aim of this study was to investigate how molluscs in two mangrove creeks (Buenos Aires and Tronco) at the São Marcos Bay, coast of the Maranhão State, respond to spatial and temporal variations in the environment. Sampling was performed in the intertidal area along three zones established using a straight line transect of 100 m. Abiotic variables of water and sediment were measured at each creek. We found 5,912 specimens belonging to 23 species and 15 families of epifaunal and infaunal molluscs. The patterns of their distribution in the two creeks were different. Salinity, dissolved oxygen, and rainfall were the main variables that affected the temporal distribution of molluscs. We found low species richness in the overall mollusc composition. Diversity in the Buenos Aires Creek was lower than that observed in the Tronco Creek, possibly because of activities of a port located in proximity to the former.
    [Show full text]
  • Isopoda, Asellota, Janiridae) from Korean Waters
    Anim. Syst. Evol. Divers. Vol. 37, No. 2: 146-153, April 2021 https://doi.org/10.5635/ASED.2021.37.2.006 Short communication Description of Janiralata sagamiensis (Isopoda, Asellota, Janiridae) from Korean Waters Sung Hoon Kim1, Seong Myeong Yoon2,3,* 1Division of Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Korea 2Department of Biology, College of Natural Sciences, Chosun University, Gwangju 61452, Korea 3Educational Research Group for Age-associated Disorder Control Technology, Graduate School, Chosun University, Gwangju 61452, Korea ABSTRACT Janirid isopod, Janiralata sagamiensis Shimomura, 2006 is newly reported from Korean waters. This species can be distinguishable from its congeners by the following characteristics: the cephalon has a distinct anterolateral projection on the anterolateral margin; the frontal margin of the cephalon is lacking rostrum; the coxal plates are visible in dorsal view; the pleotelson is rounded distally without a posterolateral point; the first pleopod of the male has a pair of protrusions distally; the third pleopodal exopod is lacking plumose setae. In this paper, the detailed description and illustrations of the species are provided with a key to known Janiralata species in the surrounding waters of Korea, including China and Japan. Keywords: Janiralata, Janiridae, isopods, morphology, Korea INTRODUCTION ralata species have been known, including single record from Korea: J. chuni (Thielemann, 1910) from Japan; J. koreaensis The Janiralata Menzies, 1951, comprising 32 species, is the Jang, 1991 from Korea; J. sagamiensis Shimomura, 2006 third largest genus after the Jaera Leach, 1814 and Janira from Japan; J. shiinoi Kussakin, 1962 from the East China Leach, 1814 among 30 genera of the family Janiridae G.
    [Show full text]
  • Patterns of Diversity of the Rissoidae (Mollusca: Gastropoda) in the Atlantic and the Mediterranean Region
    The Scientific World Journal Volume 2012, Article ID 164890, 30 pages The cientificWorldJOURNAL doi:10.1100/2012/164890 Review Article Patterns of Diversity of the Rissoidae (Mollusca: Gastropoda) in the Atlantic and the Mediterranean Region Sergio´ P. Avila,´ 1, 2, 3 Jeroen Goud,4 and Antonio´ M. de Frias Martins1, 2 1 Departamento de Biologia, Universidade dos Ac¸ores, 9501-801 Ponta Delgada, Ac¸ores, Portugal 2 CIBIO-Ac¸ores, Universidade dos Ac¸ores, 9501-801 Ponta Delgada, Ac¸ores, Portugal 3 MPB-Marine PalaeoBiogeography Working Group of the University of the Azores, Rua da Mae˜ de Deus, 9501-801 Ponta Delgada, Ac¸ores, Portugal 4 National Museum of Natural History, Invertebrates, Naturalis Darwinweg, Leiden, P.O. Box 9517, 2300 RA Leiden, The Netherlands Correspondence should be addressed to Sergio´ P. Avila,´ [email protected] Received 31 October 2011; Accepted 22 December 2011 Academic Editor: Cang Hui Copyright © 2012 Sergio´ P. Avila´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The geographical distribution of the Rissoidae in the Atlantic Ocean and Mediterranean Sea was compiled and is up-to-date until July 2011. All species were classified according to their mode of larval development (planktotrophic and nonplanktotrophic), and bathymetrical zonation (shallow species—those living between the intertidal and 50 m depth, and deep species—those usually living below 50 m depth). 542 species of Rissoidae are presently reported to the Atlantic Ocean and the Mediterranean Sea, belonging to 33 genera.
    [Show full text]
  • From International Minho River, Iberian Peninsula
    Research Article Oceanogr Fish Open Access J Volume 13 Issue 4 - April 2021 Copyright © All rights are reserved by Nuno Miguel Araújo Gomes DOI: 10.19080/OFOAJ.2021.13.555866 Isopods (Crustacea, Malacostraca) from International Minho River, Iberian Peninsula Nuno Miguel Araújo Gomes1,2*, Dimítri De Araújo Costa1,2, Harold Casalís Cantallo1, Tiago José Andrade Ribeiro1 and Carlos Antunes1,2 1Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal 2Aquamuseu do Rio Minho, Parque do Castelinho, Portugal Submission: March 30, 2021; Published: May 07, 2021 Corresponding author: Nuno Miguel Araújo Gomes, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal. Email: [email protected] Abstract Isopods are a common, diverse, and abundant group of the littoral and estuarine invertebrate fauna. This study presents a survey on the species of isopods found on the Minho River estuary, Iberian Peninsula, using plankton net, glass eel fishing bycatch, grab sampler, and sein net thissampling area. methods. A total of 248 specimens were analysed belonging to five families with 13 species in 10 genera. Brief diagnosis, ecological notes, species distributions, figures and a key to species identifications are provided aiming to provide taxonomic support on future projects on Keywords: Atlantic Ocean; Distribution; Estuary; Isopoda; Taxonomy Introduction Portuguese archipelagos of Azores, e.g. [11-13]. Macroinvertebrate Order Isopoda (Crustacea) is a diverse group with more than surveys on the Minho River started on 1982 [14], but have 10.000 valid species according to the World Register of Marine been scarce with only a few works on macrobenthic ecology or Species database [1], occupying all habitats from marine deep waters to freshwater aquifers or from deserts to mountains [2].
    [Show full text]
  • Study of Biological Processes on the U.S. Mid-Atlantic Slope and Rise
    Vt.J J V V I MMS 87-0050 CONTRACT NO.14-12-0001-3006 STUDY OF BIOLOGICAL PROCESSES ON THE U.S. MID-ATLANTIC SLOPE AND RISE VOLUME 2 FINAL REPORT PREPARED FOR U .S. DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT SERVICE OCS Study M MS 87-0050 Contract No. 14-12-0001-30064 STUDY OF BIOLOGICAL PROCESSES ON THE US. MID-ATLANTIC SLOPE AND RISE by N. Maciolek 1, J.F. Grassle2, B. Hecker3, P .D. Boehm 1, B. Brown 1, B . Dade2, W .G. Steinhauerl, E . Baptistel, R .E. Ruffl, and R. Petrecca2 December 15, 1987 1Battelle Ocean Sciences 397 Washington Street, Duxbury, Massachusetts 02332 and 2Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 and 3Lamont-Doherty Geological Observatory of Columbia University Palisades, New York 10964 Final Report Prepared for the US. Department of the Interior Minerals Management Service Washington, D.C. 20240 DISCLAIMER This report has been reviewed by the Minerals Management Service (MMS) and has been approved for publication . Approval does not signify that the contents necessarily reflect the views and policies of the MMS, nor does mention of trade names or commercial ,products constitute endorsement or recommendation for use . i DISCLAIMER This report is a work prepared for the United States by Battelle . In no event shall either the United States or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance upon the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof .
    [Show full text]
  • Supplement to the 2002 Catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004
    Museum Victoria Science Reports 7: 1–15 (2005) ISSN 0 7311-7253 1 (Print) 0 7311-7260 4 (On-line) http://www.museum.vic.gov.au/sciencereports/ Supplement to the 2002 catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004 GARY C. B. POORE Museum Victoria, GPO Box 666E, Melbourne, Victoria 3001, Australia ([email protected]) Abstract Poore, G.C.B. 2005. Supplement to the 2002 catalogue of Australian Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004. Museum Victoria Science Reports 7: 1–15. Publications in the period 2002 to 2004 dealing with Australian Syncarida and Peracarida have been reviewed and new taxa, new combinations and significant papers listed. Eighty species in 28 genera and seven families of Isopoda, seven new species in four genera and two families of Tanaidacea, and one new species of Spelaeogriphacea have been newly reported for Australia in the 3-year period. No publications dealing with Syncarida, Mictacea or Thermosbaenacea were found. This report does not deal with Amphipoda, Mysidacea or Cumacea. These updates have been made to the Zoological Catalogue of Australia Volume 19.2A on the Australian Biological Resources Study website. Introduction New taxa are listed in bold. Parentheses enclose the names of taxa no longer recognised in the Australian fauna. Other taxa are listed only when they have been referred to in the Volume 19.2A of the Zoological Catalogue of Australia recent literature. Subheadings following each taxon are more (Poore, 2002) dealt with all taxa of malacostracan Crustacea or less are in the style used in the original catalogue.
    [Show full text]