(Beta)-Hairpin Folding Simulations in Atomistic Detail Using an Implicit Solvent Model

Total Page:16

File Type:pdf, Size:1020Kb

(Beta)-Hairpin Folding Simulations in Atomistic Detail Using an Implicit Solvent Model doi:10.1006/jmbi.2001.5033 available online at http://www.idealibrary.com on J. Mol. Biol. (2001) 313, 151±169 b-Hairpin Folding Simulations in Atomistic Detail Using an Implicit Solvent Model Bojan Zagrovic1, Eric J. Sorin2 and Vijay Pande1,2* 1Biophysics Program We have used distributed computing techniques and a supercluster of thousands of computer processors to study folding of the C-terminal 2Department of Chemistry b-hairpin from protein G in atomistic detail using the GB/SA implicit Stanford University, Stanford solvent model at 300 K. We have simulated a total of nearly 38 msof CA 94305-5080, USA folding time and obtained eight complete and independent folding trajec- tories. Starting from an extended state, we observe relaxation to an unfolded state characterized by non-speci®c, temporary hydrogen bonding. This is followed by the appearance of interactions between hydrophobic residues that stabilize a bent intermediate. Final formation of the complete hydrophobic core occurs cooperatively at the same time that the ®nal hydrogen bonding pattern appears. The folded hairpin structures we observe all contain a closely packed hydrophobic core and proper b-sheet backbone dihedral angles, but they differ in backbone hydrogen bonding pattern. We show that this is consistent with the exist- ing experimental data on the hairpin alone in solution. Our analysis also reveals short-lived semi-helical intermediates which de®ne a thermodyn- amic trap. Our results are consistent with a three-state mechanism with a single rate-limiting step in which a varying ®nal hydrogen bond pattern is apparent, and semi-helical off-pathway intermediates may appear early in the folding process. We include details of the ensemble dynamics methodology and a discussion of our achievements using this new com- putational device for studying dynamics at the atomic level. # 2001 Academic Press Keywords: protein folding; simulation; ensemble dynamics; b-hairpin; *Corresponding author folding mechanism Introduction medicine to nanotechnology. After decades of lar- gely independent experimental and theoretical work, the ®eld of protein folding is slowly but Understanding protein folding is one of the undeniably entering a mature age in which the much desired goals of modern day molecular 1±3 two are converging. Experimental techniques have biology. The ability to predict the folding mech- become sophisticated enough to probe the folding anism and the ®nal structure of a protein based on of small, fast-folding proteins and protein its sequence would dramatically affect different elements, while computational power and algor- ®elds ranging from biochemistry to molecular ithms have reached a level at which simulating these events is tractable. B. Z. and E. J. S. contributed equally to this work. Recently, folding of the C-terminal b-hairpin Abbreviations used: dmin, minimum distance between from protein G (Figure 1) has received much atten- hydrophobic core residues; F, relative statistical energy; tion from both experimental and theoretical PC, principal component; MC, Monte Carlo; NOE, fronts.4±19 Parallel and antiparallel b structures nuclear Overhauser enhancement; MD, molecular are, together with a helices, the key secondary dynamics; Ace, acetyl; ASA, solvent-accessible surface structural elements in proteins, and it is believed area; E, fully extended conformation; H, that understanding the folding of these elements hydrophobically collapsed intermediate; F, folded conformation; U, more collapsed unfolded will be a foundation for investigating larger and conformation; GB, generalized Born model; SA, surface more complex structures. The study of isolated area; PB, Poisson-Boltzmann. b-sheets has for a long time been limited by the E-mail address of the corresponding author: lack of an amenable experimental system. The [email protected] breakthrough experiments by the Serrano5,6 and 0022-2836/01/010151±19 $35.00/0 # 2001 Academic Press 152 -Hairpin Folding Simulations in Atomistic Detail Figure 1. b-Hairpin structure from the 1GB1 NMR structure of protein G.4 In (a) the ``top'' view of the hairpin structure shows the relative strand positions and the hydrophobic side-chains which comprise the core: Trp43 (blue), Tyr45 (yellow), Phe52 (red), Val54 (green). Note that the numbering system agrees with the original nomenclature of the protein G NMR structure.4 The excised hairpin is expected to exhibit slightly different properties, as tertiary inter- actions with the rest of the protein G molecule are absent when the hairpin is alone in solution. (b) The same rep- resentation rotated 90 about the long axis of the hairpin. Numerous characteristics of the structure are clearly represented: hydrophobic packing occurs on only one side of the hairpin and is located near the central region of the strands; b-sheet angles are present along most of the chain, with the loop and terminal residues breaking this trend; a slight twist about the channel axis is evident. Eaton7 groups have recently established the b-hair- expected from an excised hairpin in solution. One pin from the C terminus of protein G as the system should keep in mind, however, that the measure- of choice to study b-structures in isolation. The kin- ments by the Serrano group do indicate that, etic studies by the Eaton group7 have revealed sev- despite the overall similarity, the structure of the eral surprising facts, the most important being the hairpin alone in solution may differ from the high- observation that the hairpin folds in a manner that resolution structures of the hairpin embedded in is very similar to the folding of small proteins: in protein G.5 In Figure 1(a) the hairpin backbone is their thermal unfolding experiments, the peptide displayed in cyan, with the four hydrophobic side- behaved as a two-state system, both kinetically chains colored to show their close packing (Trp43 and thermodynamically. Together with the fact in blue, Tyr45 in yellow, Phe52 in red and Val54 in that the hairpin possesses a hydrophobic core green). This same structure has been rotated 90 which is well packed in the folded state, these about the hairpin axis in (b) to allow easy visual- results have added an additional impetus for ization of the Ca trace. b-Sheet angles and a slight studying the folding of this molecule computation- twist about the channel axis are evident. This side ally. view also demonstrates the hydrophobic packing Based on the high-resolution structures of pro- that occurs only on one side of the hairpin, near tein G4,20 ± 22 and the NMR analysis of the hairpin the center of the folded structure. alone in solution,5 the structural features of the Being the smallest known naturally occurring hairpin include two b-pleated strands joined by a system which exhibits many features of a full six residue turn, a closely packed hydrophobic core size protein, the hairpin has recently motivated a (residues 43, 45, 52 and 54), and a number of inter- number of theoretical studies involving an strand hydrogen bonds connecting the two oppos- impressive array of different computational ing strands of the hairpin. It is important to note techniques.8 ± 12,15± 18 Nevertheless, simulating the that as of now there is no high-resolution exper- folding of the molecule in atomistic detail at a imental structure of the hairpin alone in solution: physiological temperature has not been previously the number of nuclear Overhauser enhancements achieved. The hairpin folds with a time constant of (NOEs) from the NMR analysis by the Serrano several microseconds,7 almost three orders of mag- group was not suf®cient to fully constrain the nitude longer than the typical time-scales attain- structure.5 Figure 1 shows the fold of the hairpin in able by molecular dynamics simulations. Due to protein G (PDB ID code 1GB1, ®rst model), as this signi®cant time-scale gap, there are a number determined by NMR.4 In the absence of a high- of important questions regarding the folding of the resolution structure of the hairpin alone, this best hairpin which are still controversial.19 The foremost serves as an approximate model for the inter- among these concern (a) the nature of the on-path- actions and structural characteristics that would be way intermediate observed in some, but not all, -Hairpin Folding Simulations in Atomistic Detail 153 studies of this peptide; (b) the existence of off-path- important to mention that the trajectories which way intermediates that may act to hinder hairpin are included in this set are fully independent from formation; (c) the relative importance of interstrand one another. Regarding the thermodynamic results hydrogen bonds in comparison to hydrophobic we present, consideration must be given to the core formation; (d) the order of structure formation extent of our sampling. While we have sampled a in the course of folding; and (e) the heterogeneity sizeable fraction of the con®gurational space, we of the folded state. have by no means fully covered it: after all, our Recently, we have introduced a new technique, ensemble of generated structures is not nearly in ensemble dynamics (see Methods), aimed at brid- equilibrium. For this reason, we employ the term ging the gap between computationally achievable statistical energy herein to describe the calculated time-scales and the much longer time-scales energy surfaces which, in the limit of suf®cient involved in protein folding.23 ± 25 Using a superclus- sampling, should approach the true free energy ter of processors around the world and distributed landscape of this system. The statistical energy is computing techniques25 we have folded a-helices, calculated as the logarithm of the probability of the 36 residue villin headpiece and a 20 residue ®nding a conformation with speci®c values of the zinc ®nger molecule (I. Baker et al., unpublished observed folding parameters. results). Here, we have used the ensemble dynamics method to analyze the folding process of Overview of structural trends and sampling of the C-terminal b-hairpin from protein G.
Recommended publications
  • Simulations of Я-Hairpin Folding Confined to Spherical Pores Using
    Simulations of ␤-hairpin folding confined to spherical pores using distributed computing D. K. Klimov*†, D. Newfield‡, and D. Thirumalai*† *Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742; and ‡Parabon Computation, 3930 Walnut Street, Suite 100, Fairfax, VA 22030-4738 Communicated by George H. Lorimer, University of Maryland, College Park, MD, April 12, 2002 (received for review December 18, 2001) 3 ϱ We report the thermodynamics and kinetics of an off-lattice Go radius of gyration of a chain Rg at D (the size of a chain in ␤ Ӎ ␯ model -hairpin from Ig-binding protein confined to an inert bulk solution) to N according to Rg aN . If the chain is ideal, ␯ ϭ ⌬ ϭ ͞ 2 spherical pore. Confinement enhances the stability of the hairpin then 0.5 and FU RTN(a D) . Because of the reduction due to the decrease in the entropy of the unfolded state. Compared in the translational entropy, confinement also increases the free ⌬ Ͼ ⌬ ͞⌬ ϽϽ with their values in the bulk, the rates of hairpin formation increase energy of the native state, i.e., FN 0. If FN FU 1, then in the spherical pore. Surprisingly, the dependence of the rates on localization of a protein in a confined space stabilizes the native the pore radius, Rs, is nonmonotonic. The rates reach a maximum state compared with the bulk. It also follows that there is a range ͞ b Ӎ b at Rs Rg,N 1.5, where Rg,N is the radius of gyration of the folded of D values over which stability is maximized.
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Packing of Secondary Structures II
    7.88 Lecture Notes - 5 7.24/7.88J/5.48J The Protein Folding and Human Disease Packing of Secondary Structures • Packing of Helices against sheets • Packing of sheets against sheets • Parallel • Orthogonal Table: “Amino Acid Composition of the Ten Proteins and of the Residues at the Helix to Helix Interfaces” Name Total % Total At contacts % at contacts Gly 182 9 15 4 Ala 191 9 49 12 Val 151 7 46 12 Leu 148 7 48 12 Ile 114 6 36 9 Pro 67 3 41 1 Phe 68 3 25 6 Tyr 87 6 14 4 Trp 35 2 7 2 His 45 2 18 5 ½Cys 21 1 3 1 Met 29 1 10 3 Ser 165 8 19 5 Thr 132 7 21 5 Asp 112 6 14 4 Asn 113 6 13 3 Glu 94 5 13 3 Gln 70 3 12 3 Lys 125 6 19 5 Arg 76 4 13 3 A. Factors Contributing to Stability of Correctly Folded Native State 1. Major source of stability = removal of hydrophobic side chains atoms from the solvent and burying in environment which excludes the solvent (Entropic contribution from water structure). 1 2. Formation of hydrogen bonds between buried amide and carbonyl groups is maximized 3. Retention of backbone conformations close to the minimal energies. 4. Close packing means optimal Van der Waals interactions. You have read about alpha/beta proteins in Brandon and Tooze. B. Helix to Sheet Packing Lets examine buried contacts between the helices and the sheets. First a quick review of beta sheet structure: Colored transparency: Theoretical model, not actual sheet.
    [Show full text]
  • Amino Acid Preference Against Beta Sheet Through Allowing Backbone Hydration Enabled by the Presence of Cation
    Amino acid preference against beta sheet through allowing backbone hydration enabled by the presence of cation John N. Sharley, University of Adelaide. arXiv 2016-10-03 [email protected] Table of Contents 1 Abstract 1 2 Introduction 2 2.1 Alpha helix preferring amino acid residues in a beta sheet 2 2.2 Cation interactions with protein backbone oxygen 3 2.3 Quantum molecular dynamics with quantum mechanical treatment of every water molecule 3 3 Methods 4 4 Results 5 4.1 Preparation 5 4.2 Experiment 1302 5 4.3 Experiment 1303 7 5 Discussion 9 5.1 HB networks of water 9 5.2 Subsequent to rupture of a transient beta sheet 9 5.3 Hofmeister effects 10 6 Conclusion 11 7 Future work 12 8 Acknowledgements 13 9 References 14 10 Appendix 1. Backbone hydration in experiment 1302 16 11 Appendix 2. Backbone hydration in experiment 1303 17 1 Abstract It is known that steric blocking by peptide sidechains of hydrogen bonding, HB, between water and peptide groups, PGs, in beta sheets accords with an amino acid intrinsic beta sheet preference [1]. The present observations with Quantum Molecular Dynamics, QMD, simulation with Quantum Mechanical, QM, treatment of every water molecule solvating a beta sheet that would be transient in nature suggest that this steric blocking is not applicable in a hydrophobic region unless a cation is present, so that the amino acid beta sheet preference due to this steric blocking is only effective in the presence of a cation. We observed backbone hydration in a polyalanine and to a lesser extent polyvaline alpha helix without a cation being present, but a cation could increase the strength of these HBs.
    [Show full text]
  • Density Functional Theory for Protein Transfer Free Energy
    Density Functional Theory for Protein Transfer Free Energy Eric A Mills, and Steven S Plotkin∗ Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T1Z4 Canada E-mail: [email protected] Phone: 1 604-822-8813. Fax: 1 604-822-5324 arXiv:1310.1126v1 [q-bio.BM] 3 Oct 2013 ∗To whom correspondence should be addressed 1 Abstract We cast the problem of protein transfer free energy within the formalism of density func- tional theory (DFT), treating the protein as a source of external potential that acts upon the sol- vent. Solvent excluded volume, solvent-accessible surface area, and temperature-dependence of the transfer free energy all emerge naturally within this formalism, and may be compared with simplified “back of the envelope” models, which are also developed here. Depletion contributions to osmolyte induced stability range from 5-10kBT for typical protein lengths. The general DFT transfer theory developed here may be simplified to reproduce a Langmuir isotherm condensation mechanism on the protein surface in the limits of short-ranged inter- actions, and dilute solute. Extending the equation of state to higher solute densities results in non-monotonic behavior of the free energy driving protein or polymer collapse. Effective inter- action potentials between protein backbone or sidechains and TMAO are obtained, assuming a simple backbone/sidechain 2-bead model for the protein with an effective 6-12 potential with the osmolyte. The transfer free energy dg shows significant entropy: d(dg)=dT ≈ 20kB for a 100 residue protein. The application of DFT to effective solvent forces for use in implicit- solvent molecular dynamics is also developed.
    [Show full text]
  • Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces
    Minerals 2014, 4, 345-387; doi:10.3390/min4020345 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Review Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces Krishnamoorthy Arumugam and Udo Becker * Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, 2534 C.C. Little, Ann Arbor, MI 48109-1005, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-734-615-6894; Fax: +1-734-763-4690. Received: 11 February 2014; in revised form: 3 April 2014 / Accepted: 13 April 2014 / Published: 24 April 2014 Abstract: Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT) functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments.
    [Show full text]
  • Comparative Study of Implicit and Explicit Solvation Models for Probing Tryptophan Side Chain Packing in Proteins†
    828 Bull. Korean Chem. Soc. 2012, Vol. 33, No. 3 Changwon Yang and Youngshang Pak http://dx.doi.org/10.5012/bkcs.2012.33.3.828 Comparative Study of Implicit and Explicit Solvation Models for Probing Tryptophan Side Chain Packing in Proteins† Changwon Yang and Youngshang Pak* Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, Korea *E-mail: [email protected] Received November 10, 2011, Accepted December 29, 2011 We performed replica exchange molecular dynamics (REMD) simulations of the tripzip2 peptide (beta- hairpin) using the GB implicit and TI3P explicit solvation models. By comparing the resulting free energy surfaces of these two solvation model, we found that the GB solvation model produced a distorted free energy map, but the explicit solvation model yielded a reasonable free energy landscape with a precise location of the native structure in its global free energy minimum state. Our result showed that in particular, the GB solvation model failed to describe the tryptophan packing of trpzip2, leading to a distorted free energy landscape. When the GB solvation model is replaced with the explicit solvation model, the distortion of free energy shape disappears with the native-like structure in the lowest free energy minimum state and the experimentally observed tryptophan packing is precisely recovered. This finding indicates that the main source of this problem is due to artifact of the GB solvation model. Therefore, further efforts to refine this model are needed for better predictions of various aromatic side chain packing forms in proteins. Key Words : Replica exchange molecular dynamics simulation, Implicit solvation model, Tryptophan side chain packing, Protein folding Introduction develop a transferable all-atom protein force field with the GBSA model, so that free energy based native structure Developments of efficient simulation strategies in con- predictions of diverse structural motifs become feasible at junction with all-atom force fields have provided an the all-atom resolution.
    [Show full text]
  • And Beta-Helical Protein Motifs
    Soft Matter Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs Journal: Soft Matter Manuscript ID SM-ART-10-2018-002046.R1 Article Type: Paper Date Submitted by the 28-Nov-2018 Author: Complete List of Authors: DeBenedictis, Elizabeth; Northwestern University Keten, Sinan; Northwestern University, Mechanical Engineering Page 1 of 10 Please doSoft not Matter adjust margins Soft Matter ARTICLE Mechanical Unfolding of Alpha- and Beta-helical Protein Motifs E. P. DeBenedictis and S. Keten* Received 24th September 2018, Alpha helices and beta sheets are the two most common secondary structure motifs in proteins. Beta-helical structures Accepted 00th January 20xx merge features of the two motifs, containing two or three beta-sheet faces connected by loops or turns in a single protein. Beta-helical structures form the basis of proteins with diverse mechanical functions such as bacterial adhesins, phage cell- DOI: 10.1039/x0xx00000x puncture devices, antifreeze proteins, and extracellular matrices. Alpha helices are commonly found in cellular and extracellular matrix components, whereas beta-helices such as curli fibrils are more common as bacterial and biofilm matrix www.rsc.org/ components. It is currently not known whether it may be advantageous to use one helical motif over the other for different structural and mechanical functions. To better understand the mechanical implications of using different helix motifs in networks, here we use Steered Molecular Dynamics (SMD) simulations to mechanically unfold multiple alpha- and beta- helical proteins at constant velocity at the single molecule scale. We focus on the energy dissipated during unfolding as a means of comparison between proteins and work normalized by protein characteristics (initial and final length, # H-bonds, # residues, etc.).
    [Show full text]
  • The Structure of Small Beta Barrels
    bioRxiv preprint doi: https://doi.org/10.1101/140376; this version posted May 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Structure of Small Beta Barrels Philippe Youkharibache*, Stella Veretnik1, Qingliang Li, Philip E. Bourne*1 National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda Maryland 20894 USA. *To whom correspondence should be addressed at [email protected] and [email protected] 1 Current address: Department of Biomedical Engineering, The University of Virginia, Charlottesville VA 22908 USA. 1 bioRxiv preprint doi: https://doi.org/10.1101/140376; this version posted May 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract The small beta barrel is a protein structural domain, highly conserved throughout evolution and hence exhibits a broad diversity of functions. Here we undertake a comprehensive review of the structural features of this domain. We begin with what characterizes the structure and the variable nomenclature that has been used to describe it. We then go on to explore the anatomy of the structure and how functional diversity is achieved, including through establishing a variety of multimeric states, which, if misformed, contribute to disease states.
    [Show full text]
  • Protein Folding CMSC 423 Proteins
    Protein Folding CMSC 423 Proteins mRNA AGG GUC UGU CGA ∑ = {A,C,G,U} protein R V C R |∑| = 20 amino acids Amino acids with flexible side chains strung R V together on a backbone C residue R Function depends on 3D shape Examples of Proteins Alcohol dehydrogenase Antibodies TATA DNA binding protein Collagen: forms Trypsin: breaks down tendons, bones, etc. other proteins Examples of “Molecules of the Month” from the Protein Data Bank http://www.rcsb.org/pdb/ Protein Structure Backbone Protein Structure Backbone Side-chains http://www.jalview.org/help/html/misc/properties.gif Alpha helix Beta sheet 1tim Alpha Helix C’=O of residue n bonds to NH of residue n + 4 Suggested from theoretical consideration by Linus Pauling in 1951. Beta Sheets antiparallel parallel Structure Prediction Given: KETAAAKFERQHMDSSTSAASSSN… Determine: Folding Ubiquitin with Rosetta@Home http://boinc.bakerlab.org/rah_about.php CASP8 Best Target Prediction Ben-David et al, 2009 Critical Assessment of protein Structure Prediction Structural Genomics Determined structure Space of all protein structures Structure Prediction & Design Successes FoldIt players determination the structure of the retroviral protease of Mason-Pfizer monkey virus (causes AIDS-like disease in monkeys). [Khatib et al, 2011] Top7: start with unnatural, novel fold at left, designed a sequence of amino acids that will fold into it. (Khulman et al, Science, 2003) Determining the Energy + - 0 electrostatics van der Waals • Energy of a protein conformation is the sum of several energy terms. bond lengths
    [Show full text]
  • Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy
    toxins Article Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins Javier Ruiz-de-la-Herrán 1, Jaime Tomé-Amat 1,2 , Rodrigo Lázaro-Gorines 1, José G. Gavilanes 1 and Javier Lacadena 1,* 1 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; [email protected] (J.R.-d.-l.-H.); [email protected] (J.T.-A.); [email protected] (R.L.-G.); [email protected] (J.G.G.) 2 Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain * Correspondence: [email protected]; Tel.: +34-91-394-4266 Received: 3 September 2019; Accepted: 10 October 2019; Published: 12 October 2019 Abstract: Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates.
    [Show full text]
  • Download (7Mb)
    University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/74165 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. MENS T A T A G I MOLEM U N IS IV S E EN RS IC ITAS WARW Coarse-Grained Simulations of Intrinsically Disordered Peptides by Gil Rutter Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Department of Physics October 2015 Contents List of Tables iv List of Figures vi Acknowledgments xvii Declarations xviii Abstract xix Chapter 1 Introduction 1 1.1 Proteinstructure ............................. 1 1.1.1 Dependence on ambient conditions . 3 1.2 Proteindisorder.............................. 6 1.2.1 Determinants of protein disorder . 6 1.2.2 Functions of IDPs . 7 1.3 Experimentaltechniques. 8 1.3.1 Intrinsicdisorder ......................... 8 1.3.2 Biomineralisation systems . 10 1.4 Molecular dynamics for proteins . 12 1.4.1 Approaches to molecular simulation . 12 1.4.2 Statistical ensembles . 13 1.5 Biomineralisation . 15 1.6 n16N.................................... 16 1.7 Summary ................................. 20 Chapter 2 Accelerated simulation techniques 21 2.1 Coarse-graining . 21 2.1.1 DefiningtheCGmapping . 22 2.1.2 Explicit and implicit solvation . 24 i 2.1.3 Validating a CG model . 26 2.1.4 Choices of coarse-grained models .
    [Show full text]