Tesla's Polyphase System and Induction Motor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nikola Tesla
Nikola Tesla Nikola Tesla Tesla c. 1896 10 July 1856 Born Smiljan, Austrian Empire (modern-day Croatia) 7 January 1943 (aged 86) Died New York City, United States Nikola Tesla Museum, Belgrade, Resting place Serbia Austrian (1856–1891) Citizenship American (1891–1943) Graz University of Technology Education (dropped out) ‹ The template below (Infobox engineering career) is being considered for merging. See templates for discussion to help reach a consensus. › Engineering career Electrical engineering, Discipline Mechanical engineering Alternating current Projects high-voltage, high-frequency power experiments [show] Significant design o [show] Awards o Signature Nikola Tesla (/ˈtɛslə/;[2] Serbo-Croatian: [nǐkola têsla]; Cyrillic: Никола Тесла;[a] 10 July 1856 – 7 January 1943) was a Serbian-American[4][5][6] inventor, electrical engineer, mechanical engineer, and futurist who is best known for his contributions to the design of the modern alternating current (AC) electricity supply system.[7] Born and raised in the Austrian Empire, Tesla studied engineering and physics in the 1870s without receiving a degree, and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. He emigrated in 1884 to the United States, where he became a naturalized citizen. He worked for a short time at the Edison Machine Works in New York City before he struck out on his own. With the help of partners to finance and market his ideas, Tesla set up laboratories and companies in New York to develop a range of electrical and mechanical devices. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company eventually marketed. -
Rotating Magnetic Field in Induction Motor
Rotating Magnetic Field in AC Machines 1 Introduction In a DC machine, the stator winding is excited by DC current and hence the field produced by this wind- ing is time invariant in nature. In this machine the conversion of energy from electrical to mechanical form or vice versa is possible by one of the following ways: 1. rotating the rotor in the field produced by the stator 2. feeding external dc current through carbon brushes to the rotor 2 Pre-lab questions Let, XX = Last two digits of your roll number g1(t) = cos(!t) and g2(t; θ) = cos(!t) cos(θ) 1. Take ! = 2πf, where f = XX × 50. Vary !t from 0 to 2π. Plot g1(t) vs t using MATLAB (or any other suitable software) 2. Take ! = 2πf, where f = XX × 50. Vary !t from 0 to 2π. Take θ = 0 to 2π. Plot g2(t; θ) vs t; for θ = XX Plot g2(t; θ) vs θ; for !t = 0; π=4; π=2; 2π=3 3 Theory Now consider three coils A, B and C of N turns each, displaced in space by 120◦ and connected to a balanced 3 phase system as shown in Fig. 1. (Note that the stator winding of 3 phase induction machine is distributed in a large number of slots as shown in Fig. 2). The expressions for the current Figure 1: Coil arrangement to produce rotating magnetic field 1 drawn by these coils are given by: ia = I sin(!st) o ib = I sin(!st + 120 ) (1) o ic = I sin(!st + 240 ) where !s = 2πF1 is supply frequency in rad/s and F1 is supply frequency in Hertz. -
Technical White Paper
Technical White Paper North American Power Distribution Prepared By Brad Gaffney, P Eng. Newterra Ltd. 1291 California Avenue P.O. Box 1517 Brockville Ontario K6V 5Y6 www.newterra.com This document is intended for the identified parties and contains confidential and proprietary information. Unauthorized distribution, use, or taking action in reliance upon this information is prohibited. If you have received this document in error, please delete all copies and contact Newterra Ltd. Copyright 1992-2020 Newterra Ltd. Abstract The following is an overview of power generation, transmission, and distribution in North America. Electrical power is the lifeblood of our ever so gadget-filled, technological economy. For most, it’s just a flick of a switch or the push of a button; many end users don’t know or care about the complexities involved in the transportation of billions of kilowatts throughout the country. However, one man by the name of Nikola Tesla had a vision for the use of electrical power back in 1882 when he realized that alternating current was the key to efficient, reliable power distribution over long distances. One obstacle that had to be overcome was the invention of an alternating current AC motor. Tesla demonstrated his patented 1/5 horsepower two-phase motor at Colombia University on May 16, 1888. By 1895 in Niagara Falls, NY the world’s first commercial hydroelectric AC power plant was in full operation using Tesla’s motor. To this day almost every electric induction motor in use is based on Tesla’s original design. Introduction The purpose of this paper is to give the reader a basic understanding of the process involved in power generation, transmission/distribution, and common end-user configuration in North America. -
Tesla's Magnifying Transmitter Principles of Working
School of Electrical Engineering University of Belgrade Tesla's magnifying transmitter principles of working Dr Jovan Cvetić, full prof. School of Electrical Engineering Belgrade, Serbia [email protected] School of Electrical Engineering University of Belgrade Contens The development of the HF, HV generators with oscilatory (LC) circuits: I - Tesla transformer (two weakly coupled LC circuits, the energy of a single charge in the primary capacitor transforms in the energy stored in the capacitance of the secondary, used by Tesla before 1891). It generates the damped oscillations. Since the coils are treated as the lumped elements the condition that the length of the wire of the secondary coil = quarter the wave length has a small impact on the magnitude of the induced voltage on the secondary. Using this method the maximum secondary voltage reaches about 10 MV with the frequency smaller than 50 kHz. II – The transformer with an extra coil (Magnifying transformer, Colorado Springs, 1899/1900). The extra coil is treated as a wave guide. Therefore the condition that the length of the wire of the secondary coil = quarter the wave length (or a little less) is necessary for the correct functioning of the coil. The purpose of using the extra coil is the generation of continuous harmonic oscillations of the great magnitude (theoretically infinite if there are no losses). The energy of many single charges in the primary capacitor are synchronously transferred to the extra coil enlarging the magnitude of the oscillations of the stationary wave in the coil. The maximum voltage is limited only by the breakdown voltage of the insulation on the top of the extra coil and by its dimensions. -
Up-And-Coming Physical Concepts of Wireless Power Transfer
Up-And-Coming Physical Concepts of Wireless Power Transfer Mingzhao Song1,2 *, Prasad Jayathurathnage3, Esmaeel Zanganeh1, Mariia Krasikova1, Pavel Smirnov1, Pavel Belov1, Polina Kapitanova1, Constantin Simovski1,3, Sergei Tretyakov3, and Alex Krasnok4 * 1School of Physics and Engineering, ITMO University, 197101, Saint Petersburg, Russia 2College of Information and Communication Engineering, Harbin Engineering University, 150001 Harbin, China 3Department of Electronics and Nanoengineering, Aalto University, P.O. Box 15500, FI-00076 Aalto, Finland 4Photonics Initiative, Advanced Science Research Center, City University of New York, NY 10031, USA *e-mail: [email protected], [email protected] Abstract The rapid development of chargeable devices has caused a great deal of interest in efficient and stable wireless power transfer (WPT) solutions. Most conventional WPT technologies exploit outdated electromagnetic field control methods proposed in the 20th century, wherein some essential parameters are sacrificed in favour of the other ones (efficiency vs. stability), making available WPT systems far from the optimal ones. Over the last few years, the development of novel approaches to electromagnetic field manipulation has enabled many up-and-coming technologies holding great promises for advanced WPT. Examples include coherent perfect absorption, exceptional points in non-Hermitian systems, non-radiating states and anapoles, advanced artificial materials and metastructures. This work overviews the recent achievements in novel physical effects and materials for advanced WPT. We provide a consistent analysis of existing technologies, their pros and cons, and attempt to envision possible perspectives. 1 Wireless power transfer (WPT), i.e., the transmission of electromagnetic energy without physical connectors such as wires or waveguides, is a rapidly developing technology increasingly being introduced into modern life, motivated by the exponential growth in demand for fast and efficient wireless charging of battery-powered devices. -
Rotating Magnets Produce a Prompt Analgesia Effect in Rats
Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2012 Rotating Magnets Produce a Prompt Analgesia Effect in Rats Zhong Chen Southern Medical University (China) Hui Ye Loyola University Chicago, [email protected] Haiyun Xu Shantou University Shukang An Southern Medical University (China) Anmin Jin Southern Medical University (China) See next page for additional authors Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Z. Chen, H. Ye, H. Xu, S. An, A. Jin, C. Zhou, and S. Yang, "Rotating magnets produce a prompt analgesia effect in rats," Progress In Electromagnetics Research M, Vol. 27, 203-217, 2012. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © The Electromagnetics Academy, 2012. Authors Zhong Chen, Hui Ye, Haiyun Xu, Shukang An, Anmin Jin, Chusong Zhou, and Shaoan Yang This article is available at Loyola eCommons: https://ecommons.luc.edu/biology_facpubs/45 Progress In Electromagnetics Research M, Vol. 27, 203{217, 2012 ROTATING MAGNETS PRODUCE A PROMPT ANALGESIA EFFECT IN RATS Zhong Chen1, *, Hui Ye2, Haiyun Xu3, Shukang An1, Anmin Jin1, Chusong Zhou1, and Shaoan Yang1 1Department of Spinal Surgery, Southern Medical University, Zhujiang Hospital, GuangZhou 510282, China 2Department of Biology, Loyola University, Chicago, IL 60660, US 3Department of Anatomy, Medical College, Shantou University, Guangdong 515041, China Abstract|The bene¯cial e®ects of chronic/repeated magnetic stimulation on humans have been examined in previous studies. -
Wireless Power Transmission
International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 125 ISSN 2229-5518 Wireless Power Transmission Mystica Augustine Michael Duke Final year student, Mechanical Engineering, CEG, Anna university, Chennai, Tamilnadu, India [email protected] ABSTRACT- The technology for wireless power transfer (WPT) is a varied and a complex process. The demand for electricity is much higher than the amount being produced. Generally, the power generated is transmitted through wires. To reduce transmission and distribution losses, researchers have drifted towards wireless energy transmission. The present paper discusses about the history, evolution, types, research and advantages of wireless power transmission. There are separate methods proposed for shorter and longer distance power transmission; Inductive coupling, Resonant inductive coupling and air ionization for short distances; Microwave and Laser transmission for longer distances. The pioneer of the field, Tesla attempted to create a powerful, wireless electric transmitter more than a century ago which has now seen an exponential growth. This paper as a whole illuminates all the efficient methods proposed for transmitting power without wires. —————————— —————————— INTRODUCTION Wireless power transfer involves the transmission of power from a power source to an electrical load without connectors, across an air gap. The basis of a wireless power system involves essentially two coils – a transmitter and receiver coil. The transmitter coil is energized by alternating current to generate a magnetic field, which in turn induces a current in the receiver coil (Ref 1). The basics of wireless power transfer involves the inductive transmission of energy from a transmitter to a receiver via an oscillating magnetic field. -
A Novel Single-Wire Power Transfer Method for Wireless Sensor Networks
energies Article A Novel Single-Wire Power Transfer Method for Wireless Sensor Networks Yang Li, Rui Wang * , Yu-Jie Zhai , Yao Li, Xin Ni, Jingnan Ma and Jiaming Liu Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tiangong University, Tianjin 300387, China; [email protected] (Y.L.); [email protected] (Y.-J.Z.); [email protected] (Y.L.); [email protected] (X.N.); [email protected] (J.M.); [email protected] (J.L.) * Correspondence: [email protected]; Tel.: +86-152-0222-1822 Received: 8 September 2020; Accepted: 1 October 2020; Published: 5 October 2020 Abstract: Wireless sensor networks (WSNs) have broad application prospects due to having the characteristics of low power, low cost, wide distribution and self-organization. At present, most the WSNs are battery powered, but batteries must be changed frequently in this method. If the changes are not on time, the energy of sensors will be insufficient, leading to node faults or even networks interruptions. In order to solve the problem of poor power supply reliability in WSNs, a novel power supply method, the single-wire power transfer method, is utilized in this paper. This method uses only one wire to connect source and load. According to the characteristics of WSNs, a single-wire power transfer system for WSNs was designed. The characteristics of directivity and multi-loads were analyzed by simulations and experiments to verify the feasibility of this method. The results show that the total efficiency of the multi-load system can reach more than 70% and there is no directivity. Additionally, the efficiencies are higher than wireless power transfer (WPT) systems under the same conductions. -
The Prestige Cast Tesla
The prestige cast tesla click here to download Although Nolan had previously cast Bale as Batman in Batman Begins, David Bowie as Nikola Tesla, the real-life inventor who creates a. The Prestige Poster Christian Bale in The Prestige () David Bowie in The Prestige () Christian Bale and Hugh . Cast overview, first billed only. Hugh Jackman in The Prestige () Christian Bale and Hugh Jackman in The .. The film cast includes two Oscar winners, Christian Bale and Sir Michael The whole Tesla plotline might feel like a convenient plot device, but Tesla is a. The Prestige () cast and crew credits, including actors, actresses, directors, writers and Thomas D. Krausz set dressing gang boss: Tesla (uncredited). Is there a deeper twist at the end of The Prestige that we aren't seeing? In a nutshell, Angier believes that Tesla built a machine for Borden, and he demands . According to Christopher Nolan, casting the small, but vital role of Nikola Tesla in The Prestige was one of the most difficult actions in the film. Did you ever think about not having the Tesla machine work and that . As an aside, it was a nice opportunity to cast a favorable light on Tesla. The central lines of The Prestige are spoken by Tesla when Angier is perfectly cast and gives what may be his best all-round performance. Cast[edit] Perabo - Julia McCullough; Rebecca Hall - Sarah Borden; Scarlett Johansson - Olivia Wenscombe; David Bowie - Nikola Tesla. When we were casting The Prestige, we had gotten very stuck on the character of Nikola Tesla. Tesla was this other-worldly, ahead-of-his-time. -
Alternator for Forklift
Alternator for Forklift Forklift Alternators - An alternator is actually a device that transforms mechanical energy into electrical energy. It does this in the form of an electric current. In principal, an AC electric generator could be referred to as an alternator. The word typically refers to a small, rotating machine driven by automotive and other internal combustion engines. Alternators that are placed in power stations and are powered by steam turbines are actually called turbo-alternators. The majority of these machines utilize a rotating magnetic field but occasionally linear alternators are likewise utilized. A current is produced within the conductor whenever the magnetic field around the conductor changes. Usually the rotor, a rotating magnet, spins within a set of stationary conductors wound in coils. The coils are situated on an iron core called the stator. When the field cuts across the conductors, an induced electromagnetic field otherwise called EMF is generated as the mechanical input causes the rotor to turn. This rotating magnetic field produces an AC voltage in the stator windings. Normally, there are 3 sets of stator windings. These physically offset so that the rotating magnetic field induces 3 phase currents, displaced by one-third of a period with respect to each other. In a "brushless" alternator, the rotor magnetic field could be caused by induction of a permanent magnet or by a rotor winding energized with direct current through brushes and slip rings. Brushless AC generators are normally found in larger machines than those used in automotive applications. A rotor magnetic field can be induced by a stationary field winding with moving poles in the rotor. -
Induction Motor
Chapter 5 ©2010, The McGraw-Hill Companies, Inc. ROTATING MAGNETIC FIELD ©2010, The McGraw-Hill Companies, Inc. 1 A rotating magnetic field is the key to the operation of AC motors. The magnetic field of the stator is made to rotate electrically around and around in a circle. Stator Lamination S N Stator Rotating Magnetic Field Stator Windings ©2010, The McGraw-Hill Companies, Inc. A second magnetic field, that of the rotor, is made to follow the rotating field of the stator by being attracted and repelled by it. Rotor Laminations S N Rotor Magnetic Field Follows That Of The Stator Rotor Windings ©2010, The McGraw-Hill Companies, Inc. 2 Three sets of stator windings are placed 120 electrical degrees apart with each set connected to one phase of the 3-phase power supply When 3-phase current passes through the stator windings, a rotating magnetic field effect is produced that travels around the inside of the stator core. ©2010, The McGraw-Hill Companies, Inc. When 3-phase current passes through the stator windings, a rotating magnetic field effect that travels around the inside of the stator core is set up. 1 3 5 7 2 4 6 ©2010, The McGraw-Hill Companies, Inc. 3 Polarity of the rotating magnetic field is shown at six selected positions marked off at 60° intervals on the sine waves representing the current flowing in the three phases, A, B, and C. ©2010, The McGraw-Hill Companies, Inc. Simply interchanging any two of the three-phase power input leads to the stator windings reverses direction of rotation of the magnetic field. -
Towner Award Nominee Books 2015 Electrical Wizard: How Nikola Tesla
Towner Award Nominee Books 2015 Electrical Wizard: How Publisher: Candlewick Press, Curriculum Connections: Electricity, magnets, physical science, Nikola Tesla Lit Up the Somerville, MA. 2013 alternating current vs. direct current, Nikola Tesla vs. Thomas Edison, inventions, patents/copyright, science fairs, World Genre/type: Biography, revolutionary ideas, biographies by Elizabeth Rusch storybook format Features: Illustrations, storybook format, index with Illustrations by Oliver specifics of Tesla’s life work, index of scientific notes & Dominguez diagrams of AC & DC currents, bibliography & further reading. As a young boy, Nikola Tesla had ideas ahead of his time. Tesla developed electricity using an alternating current that was safer and cheaper than the direct current developed by his hero-turned-rival Thomas Edison. A beautifully illustrated book in a story-telling, read-aloud format. Following are suggested resources for text-sets targeting the possible curriculum connections above. Books: Author Title/Publisher Grade Comments ISBN/Publication Levels Date Helfand, The Wright Brothers 3-8 This memorable graphic novel, tells the story of 978-9380028460 Lewis the Wright Brothers, their trials and tribulations c2011 Kalyani Navyug Media Pvt. growing up, becoming inventors, and their life after Genre/type: Ltd. their airplane invention. They struggled to patent Graphic and gain credit for their invention, just like Nikola Novel Tesla. The drawn visuals throughout the book (biography) help students quickly learn about the Wright brothers (in about 30-60 min.) and help the facts stick with you. Kamkwamba, The Boy Who Harnessed 2-6 As a young boy, William Kamkwamba’s village in 978-0803735118 William the Wind Malawi, Africa experienced a drought.