Wikipedia Zu Wmem Gelb

Total Page:16

File Type:pdf, Size:1020Kb

Wikipedia Zu Wmem Gelb Ludwig von Bertalanffy – Wikipedia https://de.wikipedia.org/wiki/Ludwig_von_Bertalanffy Ludwig von Bertalanffy Karl Ludwig von Bertalanffy (* 19. September 1901 in Atzgersdorf, Österreich; † 12. Juni 1972 in Buffalo, New York, USA) war einer der bedeutendsten theoretischen Biologen und Systemtheoretiker des 20. Jahrhunderts. Er war Mitglied der Deutschen Akademie der Naturforscher Leopoldina[1] (seit 1968) und der New York Academy of Sciences. Inhaltsverzeichnis Leben Familie Werk Veröffentlichungen Sekundärliteratur Einzelnachweise Weblinks 1 Leben Ludwig von Bertalanffy wurde 1901 in Atzgersdorf bei Wien geboren. Er wuchs als Einzelkind auf und wurde von Privatlehrern unterrichtet, bis er zehn war, und besuchte im Anschluss das Gymnasium Wien XII. Rosasgasse. In dieser Zeit pflegte er auch Kontakt mit Paul Kammerer, einem Nachbarn, der ein berühmter Biologe und zugleich ein Vorbild für ihn war. 1918 begann er an der Universität Innsbruck Kunstgeschichte und Philosophie zu studieren, wechselte aber 1924 nach Wien. Er war mit der Zeit immer mehr hin- und hergerissen, sein Studium zu wechseln. So fasste er den Entschluss, schließlich auch Biologie zu studieren, da er der Meinung war, dass er auch noch zu einem späteren Zeitpunkt Philosoph werden könne. An der Universität Wien galt sein Interesse daher sowohl der Philosophie als auch den Naturwissenschaften (insbesondere der Biologie). 1926 verfasste er unter seinem Doktorvater Moritz Schlick, dem Physiker und Naturphilosophen, seine Doktorarbeit über den Physiker und Naturphilosophen Gustav Fechner mit dem Titel: „Fechner und das Problem der Integration höherer Ordnung“. Damit promovierte er zum Doktor der Philosophie. 1934 wurde er habilitiert. Ludwig von Bertalanffy trat 1939 der NSDAP bei und wurde ein Jahr später außerplanmäßiger Professor an der Universität Wien. Nach Ende des Zweiten Weltkrieges wurde ihm aufgrund der NSDAP-Mitgliedschaft der Professorentitel aberkannt und die Lehrbefugnis entzogen[2]. Später war er Professor an der Universität London (1948–49), an der Universität Montreal (1949), an der Universität Ottawa (1950–54), an der University of Southern California (1955–58), an der Menninger Foundation (1958–60), an der University of Alberta in Edmonton (1961–68) sowie von 1969 bis 1972 an der State University of New York in 1 von 3 11.11.2018, 17:03 Ludwig von Bertalanffy – Wikipedia https://de.wikipedia.org/wiki/Ludwig_von_Bertalanffy Buffalo (SUNY). 2 Familie 1924 lernte Bertalanffy seine zukünftige Frau kennen, welche er für die nächsten 40 Jahre beinahe ohne Unterbrechung neben sich haben sollte. Sie studierte ebenfalls, beendete ihr Studium aber nie, sondern unterstützte ihren Mann, soweit sie konnte. Zusammen hatten sie einen Sohn, der später in die Krebsforschung gehen sollte und somit die Arbeit seines Vaters weiterführte. Bertalanffy starb 1972 an einem Herzinfarkt. 3 Werk Der Wissenschaftler beschäftigte sich im Laufe seines Lebens mit den Themenkomplexen Physiologie und Krebsforschung, Biophysik offener Systeme (er führte hierbei den Begriff des Fließgleichgewichtes ein) und Thermodynamik lebender Systeme, die er von den geschlossenen Systemen der Physik unterschied. Er verfasste eine Allgemeine Systemtheorie, die versucht, auf der Grundlage des methodischen Holismus gemeinsame Gesetzmäßigkeiten in physikalischen, biologischen und sozialen Systemen zu finden und zu formalisieren. Prinzipien, die in einer Klasse von Systemen gefunden werden, sollen auch in anderen Systemen zu beobachten sein. Dazu zählen zum Beispiel: Komplexität, Gleichgewicht, Rückkopplung und Selbstorganisation. Bertalanffy unterscheidet verschiedene Typen von Gleichgewichten bei Systemen: Dynamisches Gleichgewicht ist der Überbegriff für echtes Gleichgewicht und Fließgleichgewicht: Echtes Gleichgewicht stellt sich in geschlossenen Systemen ein, die weder Materie noch Energie mit ihrer Umgebung austauschen. Es stellt den Zustand maximaler Entropie dar, das System kann also keine Arbeit mehr verrichten. Alle makroskopischen Zustandsgrößen sind konstant, auch wenn mikroskopische Prozesse weiterlaufen. (Beispiel: Chemisches Gleichgewicht) Fließgleichgewicht stellt sich in offenen Systemen ein, die mit ihrer Umgebung Materie oder Energie austauschen. Es ist durch die Konstanz einer Größe charakterisiert, die durch primäre Regulation (Rückwirkungen, die auf einfachen Prinzipien der Kinetik und Thermodynamik beruhen) bewirkt wird. Homöostatisches Gleichgewicht, ebenfalls ein Fließgleichgewicht, stellt sich in offenen Systemen durch sekundäre Regulation ein. Diese Systeme sind mit einem speziellen Informationssystem ausgestattet, das eine negative Rückkopplung bewirkt. Als theoretischer Biologe war Ludwig von Bertalanffy ein Kritiker des reduktionistischen Evolutionsmodells des Neodarwinismus', das er als vage, mangelhaft verifizierbar und dogmatisch charakterisierte. Die Systemtheorie Ludwig von Bertalanffys spielte eine entscheidende Rolle in der Pflegetheorie der US- Pflegetheoretikerin Imogene King (1923–2007).[3] In der psychiatrischen Krankenpflege publizierte die US- amerikanische Krankenschwester Shirley Smoyak im Jahr 1975 eine Arbeit zur "psychiatrischen Pflegekraft als Familientherapeut", in der sie sich grundlegend auf Ludwig von Bertalanffy bezog.[4][5] 4 Veröffentlichungen Nikolaus von Kues (1928). Theoretische Biologie (1932). Das biologische Weltbild (1949). General System Theory. In: Biologia Generalis. 1/1949, S. 114–129. 2 von 3 11.11.2018, 17:03 Ludwig von Bertalanffy – Wikipedia https://de.wikipedia.org/wiki/Ludwig_von_Bertalanffy The Theory of Open Systems in Physics and Biology. In: Science. Band 111, 1950, S. 23–29. Biophysik des Fließgleichgewichtes (1953). Robots, men and minds (1967). 5 Sekundärliteratur Luitfried Salvini-Plawen, Maria Mizzaro: 150 Jahre Zoologie an der Universität Wien. In: Zoologisch-Botanische Gesellschaft in Österreich (Hrsg.): Verhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich. Band 136. Wien 1999, S. 1–76 (landesmuseum.at (http://www.landesmuseum.at/datenbanken/digilit/?serienr=146) – Verzeichnis). 6 Einzelnachweise 1. Mitgliedseintrag von Ludwig von Bertalanffy (https://www.leopoldina.org/de/mitglieder/mitgliederverzeichnis /member/1977/) (mit Bild und CV) bei der Deutschen Akademie der Naturforscher Leopoldina, abgerufen am 9. März 2017. 2. Bertalanffy, (Karl) Ludwig von (1901–1972), Biologe (http://www.biographien.ac.at/oebl/oebl_B /Bertalanffy_Ludwig_1901_1972.xml), Österreichisches Biographisches Lexikon 1815–1950. 3. Hubert Kolling (Hrsg.): Biographisches Lexikon zur Pflegegeschichte „Who was who in nursing history“. Band 7 hps media nidda 2015, S. 148–150. 4. Shirley Smoyak: The Psychiatric Nurse as a Family Therapist. In: Nursing Research. 25, 1972, 3, S. 200–200. 5. Maria Mischo-Kelling, Karin Wittneben: Pflegebildung und Pflegetheorien. 1. Auflage. Urban & Schwarzenberg, München / Wien / Baltimore 1995, S. 140, S. 198. 7 Weblinks Literatur von und über Ludwig von Bertalanffy (https://portal.dnb.de/opac.htm?method=simpleSearch& query=11865666X) im Katalog der Deutschen Nationalbibliothek Shelia Guberman: (2002) Reflections on Ludwig von Bertalanfy’s “General System Theory: Foundations, Development, Applications”. In: Res-Systemica. Band 2, Special Issue: Proceedings of the fifth European Systems Science Congress (afscet.asso.fr (http://www.afscet.asso.fr/resSystemica/Crete02/Guberman.pdf) PDF; 187 kB, analysiert die Grundkonzepte der allgemeinen Systemtheorie von Ludwig von Bertalanffy; in Englischer Sprache, Namensschreibfehler im Original) Bertalanffy Center for the Study of Systems Science BCSSS (http://www.bcsss.org/) Abgerufen von „https://de.wikipedia.org/w/index.php?title=Ludwig_von_Bertalanffy&oldid=173959206“ Diese Seite wurde zuletzt am 13. Februar 2018 um 11:29 Uhr bearbeitet. Der Text ist unter der Lizenz „Creative Commons Attribution/Share Alike“ verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den Nutzungsbedingungen und der Datenschutzrichtlinie einverstanden. Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc. 3 von 3 11.11.2018, 17:03 System – Wikipedia https://de.wikipedia.org/wiki/System System Als System (altgr. σύστημα sýstēma, ‚aus mehreren Einzelteilen zusammengesetztes Ganzes‘) wird allgemein eine Gesamtheit von Elementen bezeichnet, die miteinander verbunden sind und dadurch als eine aufgaben-, sinn- oder zweckgebundene Einheit angesehen werden können, als strukturierte systematische Ganzheit. In unterschiedlichen Fachgebieten werden darüber hinaus spezifischere Begriffsverwendungen vorgeschlagen, diskutiert und angewendet.[1] Siehe auch: Systemtheorie Begriffsgeschichtlich tritt neben die Verwendung der Bezeichnung „System“ für funktionale Gebilde wie Sonnensysteme oder Tonsysteme die Verwendung für „eine einheitliche, nach einem bestimmten Prinzip, einer Grundidee, einer methodischen Einsicht durchgeführte Anordnung einer Vielfalt von Erkenntnissen zu einer logisch begründeten Gesamtanschauung, einem Lehrgebäude, in welchem jeder Teil seinen vernunftmäßig bestimmten Platz einnimmt“ (Grimm’sches Wörterbuch).[2] Ein hierzu ähnlicher Begriff ist Konstrukt (vgl. auch die Theorie des Sozialkonstruktivismus). Inhaltsverzeichnis Begriffs- und Ideengeschichte Antike Neuzeit Systembegriff der Systemtheorie Systembegriff
Recommended publications
  • FRACTAL STRUCTURE of the UNIVERSE. Valery Timkov, Serg Timkov, Vladimir Zhukov
    FRACTAL STRUCTURE OF THE UNIVERSE. Valery Timkov, Serg Timkov, Vladimir Zhukov To cite this version: Valery Timkov, Serg Timkov, Vladimir Zhukov. FRACTAL STRUCTURE OF THE UNIVERSE.. In- ternational scientific-technical magazine: Measuring and computing devices in technological processes, Khmelnitsky national university, Khmelnitsky, Ukraine, 2016, 2 (55), pp.190 - 197. hal-01330337 HAL Id: hal-01330337 https://hal.archives-ouvertes.fr/hal-01330337 Submitted on 10 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. УДК 001.5:53.02:53.05 Timkov V. F., The Office of National Security and Defense Council of Ukraine Timkov S. V., Zhukov V. A., Research and Production Enterprise «TZHK» FRACTAL STRUCTURE OF THE UNIVERSE1 Annotation It is a hypothesis about the hierarchical fractal structure of the Universe . According to the hypothesis the Universe consists of an infinite number of spatial and hierarchic fractal- spherical levels of matter that are nested within each other. In ascending order of spatial hierarchy, the following main fractals Universe that conventionally associated with the types of interactions of matter : nuclear , atomic, electromagnetic, gravitational. It can also be assumed that there exist fractals which are older than the gravitational ones.
    [Show full text]
  • Programm 2012 Swiss Biennial
    9. SCHWEIZER BIENNALE ZU WISSENSCHAFT, TECHNIK + ÄSTHETIK THE 9TH SWISS BIENNIAL ON SCIENCE, TECHNICS + AESTHETICS TOPIC 2012: DAS GROSSE, DAS KLEINE UND DER MENSCHLICHE GEIST – TEIL 2 TOPIC 2012: THE LARGE, THE SMALL AND THE HUMAN MIND – PART 2 Verkehrshaus der Schweiz, Luzern, Schweiz, 31. März – 1. April 2012 Swiss Museum of Transport, Lucerne, Switzerland, March 31 – April 1, 2012 Veranstalter – Organizer: Neue Galerie Luzern / New Gallery Lucerne www.neugalu.ch Programm – Program Samstag, 31. März 2012 – Saturday, March 31, 2012 12.00 - 12.15 Begrüssung – Welcome Address, Programmüberblick – Presentation of Program René Stettler, Gründer Schweizer Biennale zu Wissenschaft, Technik + Ästhetik – Founder, Swiss Biennial on Science, Technics + Aesthetics Keynote 12.15 - 13.00 ROGER PENROSE Mathematische Physik und Kosmologie Oxford – UK Autor von “Cycles of Time: An Extraordinary New View of the Universe” (2010), “The Road to Reality – Der Weg zur Wirklichkeit” (2004), “Shadows of the Mind – Schatten des Geistes” (1994) ON THE MYSTERIOUS BRIDGE FROM QUANTUM TO CLASSICAL, AND ITS ROLE IN CONSCIOUS MENTALITY – ZUR MYSTERIÖSEN BRÜCKE ZWISCHEN DER QUANTEN- UND DER KLASSISCHEN WELT UND IHRE ROLLE IN DER BEWUSSTEN MENTALITÄT 13.00 - 13.10 Diskussion – Discussion Leitung – Chair STUART HAMEROFF Anästhesiologie Tucson – USA Keynote 13.10 - 13.40 STUART HAMEROFF Anästhesiologie Tucson – USA Autor von “Consciousness in the universe? – Neuroscience, quantum space-time geometry and Orch OR theory (2011, Paper) mit/with Roger Penrose, “The Brain is both neurocomputer and quantum computer” (2007, Paper), “Quantum computation in brain microtubules? – The Penrose-Hameroff ‘Orch OR’ model of consciousness” (1998, Paper) PENROSE–HAMEROFF ORCH OR THEORY. CURRENT STATUS, CRITICISMS AND FUTURE DIRECTIONS – DIE PENROSE/HAMEROFF ORCH OR THEORIE.
    [Show full text]
  • Science & ROGER PENROSE
    Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez.
    [Show full text]
  • A Brief Historical Perspective on the Consistent Histories Interpretation
    A Brief Historical Perspective on the Consistent Histories Interpretation of Quantum Mechanics Gustavo Rodrigues Rocha1,4, Dean Rickles2,4, and Florian J. Boge3,4 1 Department of Physics, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Brazil 2History and Philosophy of Science, University of Sydney, Sydney, Australia 3Interdisciplinary Centre for Science and Technology Studies (IZWT), Wuppertal University, Wuppertal, Germany 4Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa Contents 1Introduction...................................... 2 2 The Formalism of the Consistent Histories Approach . ............ 3 2.1HistorySpaces................................... 3 2.2 Consistency, Compatibility, and Grain . ......... 5 2.3Decoherence ..................................... 6 3 Interpreting and Understanding the Formalism in Historical Context . 8 3.1 Single-Framework Rule and Realm-Dependent Reality: From Method to Reality andBack....................................... 8 arXiv:2103.05280v1 [physics.hist-ph] 9 Mar 2021 3.2 Information, Formalization, and the Emergence of Structural Objectivity . 10 3.3 Cybernetics and Measurement: From von Neumann and the Cybernetics Group to theSantaFeInstitute................................ 11 1 4 Robert Griffiths and Roland Omn`es: Context and Logic . 17 5 Decoherent Histories: Consistent Histories A` La Gell-Mann and Hartle . 19 6Conclusion ........................................ 25 1 Introduction Developed,
    [Show full text]
  • Physics Today
    Physics Today Observant Readers Take the Measure of Novel Approaches to Quantum Theory; Some Get Bohmed Murray Gell‐Mann, James Hahtle, Robert B. Griffiths, Anton Zeilinger, Robert T. Nachtrieb, James L. Anderson, Allen C. Dotson, William G. Hoover, Henry M. Bradford, and Sheldon Goldstein Citation: Physics Today 52(2), 11 (1999); doi: 10.1063/1.882512 View online: http://dx.doi.org/10.1063/1.882512 View Table of Contents: http://scitation.aip.org/content/aip/magazine/physicstoday/52/2?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 131.215.225.131 On: Mon, 24 Aug 2015 23:19:45 LETTERS Observant Readers Take the Measure of Novel Approaches to Quantum Theory; Some Get Bohmed n "Quantum Theory without Ob- beit discrete, intervals of time. How- DH, if two such quantities at the I servers—Part One" (PHYSICS TODAY, ever, he seems to think that we start same time do not commute, measure- March 1998, page 42), Sheldon Gold- with the union of many different fam- ments of them have to take place in stein discusses our work on the deco- ilies (with the possibility of inconsis- different alternative histories of the herent histories (DH) approach to tencies in statements connecting the universe.2 Our work is not com- quantum mechanics and the related probabilities of occurrence of various pletely finished, but the research work of Robert Griffiths and Roland histories) and are trying to find con- is not plagued by inconsistencies.
    [Show full text]
  • Concerning Relativity Books. Published in June 2013 INTERVIEW WITH
    Interview for Hungarian “Physical Review” concerning relativity books. Published in June 2013 INTERVIEW WITH EDWIN F. TAYLOR, SENIOR RESEARCH SCIENTIST, EMERITUS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY (FSZ: Fizikai Szemle, EFT: Edwin F. Taylor) FSZ: Spacetime Physics, the book you co-authored with John Archibald Wheeler, has many fans among physicists throughout the world, and Hungary is no exception. (The Hungarian edition was first published in 1974; the second printing of this edition came out in 2006 [1].) In 1972 you published an account of your collaboration with John Wheeler on the 1963 edition of Spacetime Physics and your personal impressions about John Wheeler (including his emotional reaction to the news of his mentor Niels Bohr’s death in November 1962) [2]. Your collaboration and friendship with Wheeler started during your sabbatical at Princeton University in 1962. One of your assignments was to prepare lecture notes for a freshman physics course that Wheeler taught to a class of 35 students. He started the course with 6 weeks of relativity! What had been your main areas of interest in physics before you met John Wheeler? Had you been particularly interested in relativity, or was it Wheeler’s presentation of it during that introductory physics course in 1962 which made it a lifelong passion for you? EFT: My father, Lloyd W. Taylor, was a physics textbook writer, so it came naturally to me. My first book, Introductory Mechanics, arrived from the publisher when I was on a junior faculty sabbatical at Princeton University; that book included some chapters on special relativity. Wheeler arranged for me to assist him in this honors introductory class [3].
    [Show full text]
  • Armenian Numismatic Journal, Volume 34
    Series II Volume 4 (34), No. 2 June 2008 1118 ARMENIAN 1 8 81. NUMISMATIC JOURNAL TABLE OF CONTENTS Vol. 4 (2008) No. 2 Announcement 27 Letters 27 SARYAN, L. A. International Conference on the Culture of Cilician Armenia 28 Bibliography of R. Y. Vardanyan 29 NERCESSIAN, Y. T. Counterfeit Gold Double Tahekans of Levon I 26 SARYAN, L. A. Counterfeit Coins of Tigranes the Great from Baalbek 37 Armenian Numismatic Literature 39 ISHKANIAN, H. / [Hot Cake] 41 SARYAN, L. A. Catalog of Armenian Fantasies 42 SARYAN, L. A. Armenian Paper Currency Chronicled 43 VRTANESYAN, L. A Parcel of Armenian Coins from Aintab 45 ' - ARMENIAN NUMISMATIC JOURNAL June 2008 Series II Vol. 4 (34 No. 2 ANNOUNCEMENT in slock. During 2008 The following lilies are running low, each less lhan 50 copies left we expecl some of Ihem lo be OUT OF PRINT. SP08. Nercessiaii, Y. T. Armenian Coins and Their Values, 1995, 256 pp., 48 pis. SP12. Nercessian, Y. T. Armenian Coin Auctions, 2006, vi, 118 pp. SP13. Nercessian, Y. T. Metrology of Cilician Armenian Coinage, 2007, xiv, 161 pp. B3. Bedoukian, P. Z. Armenian Coins and Medals, 1971, [24 pp.] B4. Bedoukian, P. Z., Armenian Books, 1975, [24 pp.] B8. Bedoukian, P. Z., Eighteenth Centuiy Armenian Medals Struck in Holland, 24 pp. Then on limited copies of author’s SP8 will be for sale by the author- net price each $50.00. LETTERS AND E^MIAILS TO THE EDITOR, /, /18 .- / .- - : ,, / - . - , Boy! I’m really impressed with the quality of the printing and binding, dedicated people who care what they’re doing.
    [Show full text]
  • Orthodoxies on the Interpretation of Quantum Theory: the Case of the Consistent History Approach
    Orthodoxies on the Interpretation of Quantum Theory: The Case of the Consistent History Approach Olival Freire Jr. Universidade Federal da Bahia, Brazil Talk’s outline: Introduction – on different meanings of quantum orthodoxy Consistent history approach – a brief presentation Has there been the birth of a new orthodoxy? The reception of the consistent history approach A short conclusion Jeffrey Bub – Interpreting the quantum world, Cambridge University Press, 1997. For most physicists, the measurement problem of quantum mechanics would hardly rate as even a ‘small cloud’ on the horizon. The standard view is that Bohr had it more or less right, and that anyone willing to waste a little time on the subject could easily straighten out the sort of muddle philosophers might get themselves into. There seems to be a growing consensus that a modern, definitive version of the Copenhagen interpretation has emerged, in terms of which the Bohr-Einstein debate can be seen as a rather old-fashioned way of dealing with issues that are now much more clearly understood. Jeffrey Bub (1997, 212) Indeed, Bub introduced the concept of orthodoxy in four different ways: “For most physicists, the measurement problem of quantum mechanics would hardly rate as even a ‘small cloud’ on the horizon.” #1 “the orthodox (Dirac-von Neumann) interpretation principle (the ‘eigenvalue-eigenstate link).” #2 Bohr’s ‘Copenhagen Interpretation.’ #3 New orthodoxy as the mix of several strands: environment-induced decoherence, elements of Everett’s ‘relative state’ formulation, and the notion of ‘consistent histories.” Omnès as its spokesman. #4 Thus, the issue of historical and practical interest seems to be: Is the “new orthodoxy”, meaning #4 (the consistent history approach), resuscitating orthodoxy meaning #1? If this be the case, such a symbiosis may have been harmful to the development of the research on the foundations of quantum mechanics.
    [Show full text]
  • Stephen Hawking (1942-2018)
    1 Stephen Hawking (1942-2018) Towards a Complete Understanding of the Universe [1] James Hartle University of California, Santa Barbara and Santa Fe Institute Stephen Hawking overcame the limitations of a debilitating disease to make major contributions to science. He did this through remarkable persistence, determination, conviction, courage, and will. He was supported in this by his family, his students, and his colleagues. Stephen said “My goal is simple. It is a complete understanding of the universe.” Stephen’s many contributions to science moved us significantly toward that goal. Much of his work was in two major areas — cosmology and the physics of black holes. I will only mention one contribution in each that stands out — his work on the beginning of the universe and his work on the end of black holes [2]. The Beginning of the Universe: Stephen’s Ph.D. advisor Dennis Sciama started him working on cosmology. An important question in the ’60s was: “Did the universe have a beginning?” Observations and the Einstein equation suggested that the early universe was very hot. But did the universe have a beginning or was it first big and then arXiv:1805.03746v1 [physics.hist-ph] 9 May 2018 contracted, heated, and then re-expanded? The singularity theorems worked out by Stephen and Roger Penrose settled the matter at the level of classical gravitational physics. The universe did have a beginning in a big bang of infinite temperature and density before which we can not not see, and at which the classical Einstein equation breaks down. Much of our confidence that there was a big bang rests on these theorems.
    [Show full text]
  • An Exchange of Letters in PHYSICS TODAY on Quantum Theory Without Observers
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/238958172 Observant Readers Take the Measure of Novel Approaches to Quantum Theory; Some Get Bohmed Article in Physics Today · February 1999 DOI: 10.1063/1.882512 CITATIONS READS 6 56 9 authors, including: Sheldon Goldstein Robert B. Griffiths Rutgers, The State University of New Jersey Carnegie Mellon University 187 PUBLICATIONS 7,521 CITATIONS 193 PUBLICATIONS 15,690 CITATIONS SEE PROFILE SEE PROFILE James L. Anderson Stevens Institute of Technology 81 PUBLICATIONS 2,728 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Gravitational Radiation and Radiation Reaction Research View project Noisy quantum channel capacity View project All content following this page was uploaded by Sheldon Goldstein on 12 July 2015. The user has requested enhancement of the downloaded file. An Exchange of Letters in PHYSICS TODAY on Quantum Theory Without Observers February 1999 In “Quantum Theory without Observers—Part One” (PHYSICS TODAY, March 1998, page 42), Sheldon Goldstein discusses our work on the decoherent histories (DH) approach to quantum mechanics and the related work of Robert Griffiths and Roland Omn`es. He describes correctly many aspects of the research and makes a number of favor- able remarks, such as “it seems likely that the program of DH can be brought successfully to completion.” However, he seems to have misunderstood one important point, and as aresulthemistakenlyattributescertain“inconsistencies”totheprogramatitspresent stage. We always consider a “realm”—a set of mutually exclusive decoherent histories with probabilities adding to one—and we typically impose some further conditions on a given realm.
    [Show full text]
  • How Nature Is Conformable to Herself: a View from Quantum
    How Nature is Conformable to Herself: A View from Quantum Cosmology∗ James B. Hartle† Santa Fe Institute, Santa Fe, NM 87501 and Department of Physics, University of California,Santa Barbara, CA 93106-9530 (Dated: September 20, 2019) Abstract In his essay Nature Conformable to Herself the late Murray Gell-Mann expands on an observation of Newton that theories of seemingly disparate phenomena in the universe often make use of similar ideas and similar mathematical structure. Newton summarized that by saying that nature was very consonant and conformable to herself. This essay uses a model of quantum cosmology to illustrate how, why, and when nature is conformable to herself. In memory of Murray Gell-Mann, 1929-2019.1 arXiv:1909.08724v1 [gr-qc] 18 Sep 2019 ∗ A pedagogical essay. 1 Murray Gell-Mann was the author’s teacher and long time collaborator. We worked together for approxi- mately thirty years to develop a formulation of quantum mechanics that was general enough for cosmology — decoherent histories quantum mechanics. This essay is dedicated to his memory, even knowing how much it would have been corrected, improved, argued with, clarified, its English improved, its spelling corrected, and seen in a wider context were he available to read it. For a short appreciation of Murray Gell-Mann by the author see [1]. †Electronic address: [email protected] 1 Nature will be very conformable to herself and very simple. (I. Newton, Opticks, Book III, part1, Query 31.) [2] I. INTRODUCTION In his beautiful and deep essay Nature Conformable to Herself: Arguments for a Unified Theory of the Universe (abbreviated here by NCH) [3, 4] the late Murray Gell-Mann de- scribed progress in fundamental physics as a progression of understanding through ‘layers’ of phenomena characterized by higher and higher energy scales and less and less experimental accessibility.
    [Show full text]
  • John A. Wheeler 1911–2008
    John A. Wheeler 1911–2008 A Biographical Memoir by Kip S. Thorne ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOHN ARCHIBALD WHEELER July 9, 1911–April 13, 2008 Elected to the NAS, 1952 John Archibald Wheeler was a theoretical physicist who worked on both down- to-earth projects and highly speculative ideas, and always emphasized the importance of experiment and observation, even when speculating wildly. His research and insights had large impacts on nuclear and particle physics, the design of nuclear weapons, general relativity and relativistic astrophysics, and quantum gravity and quantum information. But his greatest impacts were through the students, postdocs, and mature physicists whom he educated and inspired. Photography by AIP Emilio Segrè Visual Archives Photography by AIP Emilio Segrè He was guided by what he called the “principle of radical conservatism, ”inspired by Niels Bohr: Base your research on well-established physical laws (be conservative), but By Kip S. Thorne push them into the most extreme conceivable domains (be radical). He often pushed far beyond the boundaries of well understood physics, speculating in prescient ways that inspired future generations of physicists. After completing his PhD. with Karl Herzfeld at Johns Hopkins University (1933), Wheeler embarked on a postdoctoral year with Gregory Breit at New York University (NYU) and another with Niels Bohr in Copenhagen. He then moved to a three-year assistant professorship at the University of North Carolina (1935–1937), followed by a 40-year professorial career at Princeton University (1937–1976) and then ten years as a professor at the University of Texas, Austin (1976–1987).
    [Show full text]