MAGIC Set Theory Lecture 6

Total Page:16

File Type:pdf, Size:1020Kb

MAGIC Set Theory Lecture 6 MAGIC Set theory lecture 6 David Aspero´ University of East Anglia 15 November 2018 Recall: We defined (V : ↵ Ord) by recursion on Ord: ↵ 2 V = • 0 ; V = (V ) • ↵+1 P ↵ V = V : β<δ if δ is a limit ordinal. • δ { β } S (V : ↵ Ord) is called the cumulative hierarchy. ↵ 2 We saw: Proposition V↵ is transitive for every ordinal ↵. Proposition For all ↵<β, V V . ↵ ✓ β Definition For every x V , let rank(x) be the first ↵ such that 2 ↵ Ord ↵ x V . 2 2 ↵+1 S Definition For every set x, the transitive closure of x, denoted by TC(x), is X : n <! where { n } X = x S • 0 X = X • n+1 n So TC(x)=Sx x x x ... [ [ [ [ S SS SSS [Exercise: TC(x) is the –least transitive set y such that x y. ✓ ✓ In other words, TC(x)= y : y transitive, x y .] { ✓ } T Definition V denotes the class of all sets; that is, V = x : x = x . { } Definition WF = V : ↵ Ord : The class of all x such that x V for { ↵ 2 } 2 ↵ some ordinal ↵. S Note: WF is a transitive class: y x V implies y V since 2 2 ↵ 2 ↵ V↵ is transitive. Proposition If x WF, then there is some ↵ Ord such that x V . ✓ 2 ✓ ↵ Proof. Define the function F(y)=min γ y V . By the assumption { | 2 γ} on x, F is a well-defined function there. By Replacement γ y x : γ = F(y) is a set, and by Union it has a { |9 2 } supremum ↵. Therefore x V . ✓ ↵ Corollary If x WF, then x WF. ✓ 2 Definition V denotes the class of all sets; that is, V = x : x = x . { } Definition WF = V : ↵ Ord : The class of all x such that x V for { ↵ 2 } 2 ↵ some ordinal ↵. S Note: WF is a transitive class: y x V implies y V since 2 2 ↵ 2 ↵ V↵ is transitive. Proposition If x WF, then there is some ↵ Ord such that x V . ✓ 2 ✓ ↵ Proof. Define the function F(y)=min γ y V . By the assumption { | 2 γ} on x, F is a well-defined function there. By Replacement γ y x : γ = F(y) is a set, and by Union it has a { |9 2 } supremum ↵. Therefore x V . ✓ ↵ Corollary If x WF, then x WF. ✓ 2 Theorem (ZF) V = WF Proof: Let x be some set, and let y be TC(x). It is enough to show that y WF, since that implies x WF and therefore ✓ ✓ x WF. Let y = z y z / WF . If y is not empty, by 2 ⇤ { 2 | 2 } ⇤ Foundation it has some -minimal a. By transitivity of y, a y 2 ✓ and so if z a, z WF. But this means that a WF and 2 2 ✓ therefore a WF. 2 Therefore y ⇤ = ?, so y WF as wanted. ✓ The picture of the universe provided by V = WF is a very appealing and very natural one (once one has come across it, at least). This picture of the universe of all sets, and the fact that ZF implies V = WF, is the main source of intrinsic justifications of the ZF axioms. Inner models and relativization Let (M, M ) be a submodel, or inner model, defined by a 2 formula ⇥(x); in other words, M = a :⇥(a) and, for all a, { } b M, a M b if and only if a b (we usually leave out M and 2 2 2 2 write M instead of (M, M )). 2 (Examples: V , WF, L, HOD, ...). We define the relativization to M of a formula '(~x), to be denoted 'M (~x), in the following manner. (x y)M is x y. • 2 2 (x = y)M is x = y. • (' ' )M is 'M 'M . • 0 _ 1 0 _ 1 ( ')M is ('M ). • ¬ ¬ (( x)('(x¯))M is x(⇥(x) 'M (x¯)). We may also write • 8 8 ! ( x M)'M (x). 8 2 Note: Given a formula '(x ,...,x ) and a ,...,a M, 0 n 0 n 2 'M (a ,...,a ) holds if and only if M = '[a ,...,a ]. [Easy to 0 n | 0 n prove by induction on the complexity of '.] Notation: If (N, E) is a structure in the language of set theory, M is an inner model defined by a formula ⇥(x) possibly with parameters (i.e., M =(N, E (M M)), where ⇥ M = a N :(N, E) =⇥(a) ), and we want / need to { 2 | } emphasise that M is the inner model defined by ⇥(x) as defined within (N, E), then we often write MN instead of M. Example: WFM WF Note: For every ordinal ↵, V↵ = V↵ (here V↵ refers to the set, definable from the parameter ↵, with the definition that we have seen). (This note is pertinent under ZF Foundation , in which \{ } context V = WF might not be true.) Many facts about the universe V are inherited by reasonable submodels. For example: Lemma Suppose M is a transitive set or a transitive proper class. Then M = Axiom of Extensionality. | Proof: Let a, b M and suppose M =( x)(x a x b) 2 | 8 2 $ 2 (this of course is shorthand for M =( x)(x y x z)[~a] | 8 2 $ 2 where ~a is any assignment sending the variable y to a and the variable z to b). This means that a M = b M. \ \ Since M is transitive (in V ), every member of a or of b is a member of M. It follows that a M = a and b M = b and \ \ therefore a = b. Hence M = a = b. | In sum, M thinks that for all y, z, if y and z have the same elements, then they are equal. In other words, M = Axiom of Extensionality. | ⇤ Also: Lemma Suppose M is a transitive set or a transitive proper class which is closed under unordered pairs (meaning that for all a, b M, 2 a, b M). Then M = Axiom of Unordered pairs. { }2 | Proof. Let c = a, b M. Check, as in the previous proof, that { }2 M =( x)x c x = a x = b. | 8 2 $ _ Similarly: Lemma Suppose M is a transitive set or a transitive proper class. Suppose a M for every a M. Then M = Union set Axiom. 2 2 | Lemma S Suppose M is a transitive set or a transitive proper class. Suppose for every a M there is some b M such that 2 2 b = (a) M. Then M = Power set axiom. P \ | [Proofs: Exercises.] Note: There are situations in which there are transitive models M of fragments of ZFC, or even of all of ZFC, and some a M 2 such that (a)M is strictly included in (a) (i.e., there are P P subsets b of a such that b / M). 2 Lemma Suppose M is a transitive set or a transitive proper class. If ! M, then M = Infinity. 2 | Proof idea: As in the previous proofs. The point is that M recognises correctly, recognises correctly that something is ; an ordinal, and recognises correctly that something is the successor of an ordinal. We say that the notion of ordinal is absolute with respect to transitive models. It is possible to identify large families of properties that are absolute with respect to transitive models by virtue of their being definable by syntactically ‘simple’ formulas (from the point of view of their quantifiers): A formula ' is restricted if all its quantifiers are restricted. In other words, they appear in subformulas of the form ( x)(x y ) and ( x)(x y ). 8 2 −! 9 2 ^ We generally abbreviate the above by ( x y) and 8 2 ( x y) , respectively. 9 2 The following general fact is not difficult. Fact Suppose '(~x) is a restricted formula and M is transitive. The following are equivalent for every ~a M<!. 2 (1) '(~a) (2) M = '(~a) | Note: The notion of finiteness is also absolute with respect to transitive models but, on the other hand, the notion of countability is highly non–absolute with respect to transitive models: There are transitive models M and a M such that 2 M = a is uncountable | but there is a bijection f : ! a, so a is countable in V . The −! problem of course is that f is not in M. We will soon see that there are transitive models of (fragments of) ZFC such that all their sets are countable in V . And even the whole model can be countable in V . Note: The notion of finiteness is also absolute with respect to transitive models but, on the other hand, the notion of countability is highly non–absolute with respect to transitive models: There are transitive models M and a M such that 2 M = a is uncountable | but there is a bijection f : ! a, so a is countable in V . The −! problem of course is that f is not in M. We will soon see that there are transitive models of (fragments of) ZFC such that all their sets are countable in V . And even the whole model can be countable in V . The notion of choice function is also absolute with respect to transitive models: If M is transitive, a M consists of nonempty 2 sets and f M, then f is a choice function for a if and only if 2 M = “f is a choice function for a”. Hence: | Lemma Let M be a transitive set or a transitive proper class. Suppose for every a M consisting of nonempty sets there is a choice 2 function f for a, f M.
Recommended publications
  • Calibrating Determinacy Strength in Levels of the Borel Hierarchy
    CALIBRATING DETERMINACY STRENGTH IN LEVELS OF THE BOREL HIERARCHY SHERWOOD J. HACHTMAN Abstract. We analyze the set-theoretic strength of determinacy for levels of the Borel 0 hierarchy of the form Σ1+α+3, for α < !1. Well-known results of H. Friedman and D.A. Martin have shown this determinacy to require α+1 iterations of the Power Set Axiom, but we ask what additional ambient set theory is strictly necessary. To this end, we isolate a family of Π1-reflection principles, Π1-RAPα, whose consistency strength corresponds 0 CK exactly to that of Σ1+α+3-Determinacy, for α < !1 . This yields a characterization of the levels of L by or at which winning strategies in these games must be constructed. When α = 0, we have the following concise result: the least θ so that all winning strategies 0 in Σ4 games belong to Lθ+1 is the least so that Lθ j= \P(!) exists + all wellfounded trees are ranked". x1. Introduction. Given a set A ⊆ !! of sequences of natural numbers, consider a game, G(A), where two players, I and II, take turns picking elements of a sequence hx0; x1; x2;::: i of naturals. Player I wins the game if the sequence obtained belongs to A; otherwise, II wins. For a collection Γ of subsets of !!, Γ determinacy, which we abbreviate Γ-DET, is the statement that for every A 2 Γ, one of the players has a winning strategy in G(A). It is a much-studied phenomenon that Γ -DET has mathematical strength: the bigger the pointclass Γ, the stronger the theory required to prove Γ -DET.
    [Show full text]
  • Equivalents to the Axiom of Choice and Their Uses A
    EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper.
    [Show full text]
  • Omega-Models of Finite Set Theory
    ω-MODELS OF FINITE SET THEORY ALI ENAYAT, JAMES H. SCHMERL, AND ALBERT VISSER Abstract. Finite set theory, here denoted ZFfin, is the theory ob- tained by replacing the axiom of infinity by its negation in the usual axiomatization of ZF (Zermelo-Fraenkel set theory). An ω-model of ZFfin is a model in which every set has at most finitely many elements (as viewed externally). Mancini and Zambella (2001) em- ployed the Bernays-Rieger method of permutations to construct a recursive ω-model of ZFfin that is nonstandard (i.e., not isomor- phic to the hereditarily finite sets Vω). In this paper we initiate the metamathematical investigation of ω-models of ZFfin. In par- ticular, we present a new method for building ω-models of ZFfin that leads to a perspicuous construction of recursive nonstandard ω-models of ZFfin without the use of permutations. Furthermore, we show that every recursive model of ZFfin is an ω-model. The central theorem of the paper is the following: Theorem A. For every graph (A, F ), where F is a set of un- ordered pairs of A, there is an ω-model M of ZFfin whose universe contains A and which satisfies the following conditions: (1) (A, F ) is definable in M; (2) Every element of M is definable in (M, a)a∈A; (3) If (A, F ) is pointwise definable, then so is M; (4) Aut(M) =∼ Aut(A, F ). Theorem A enables us to build a variety of ω-models with special features, in particular: Corollary 1. Every group can be realized as the automorphism group of an ω-model of ZFfin.
    [Show full text]
  • The Foundation Axiom and Elementary Self-Embeddings of the Universe
    THE FOUNDATION AXIOM AND ELEMENTARY SELF-EMBEDDINGS OF THE UNIVERSE ALI SADEGH DAGHIGHI, MOHAMMAD GOLSHANI, JOEL DAVID HAMKINS, AND EMIL JERˇABEK´ Abstract. We consider the role of the foundation axiom and var- ious anti-foundation axioms in connection with the nature and ex- istence of elementary self-embeddings of the set-theoretic universe. We shall investigate the role of the foundation axiom and the vari- ous anti-foundation axioms in connection with the nature and exis- tence of elementary self-embeddings of the set-theoretic universe. All the standard proofs of the well-known Kunen inconsistency [Kun78], for example, the theorem asserting that there is no nontrivial elemen- tary embedding of the set-theoretic universe to itself, make use of the axiom of foundation (see [Kan04, HKP12]), and this use is essential, assuming that ZFC is consistent, because there are models of ZFC−f that admit nontrivial elementary self-embeddings and even nontrivial definable automorphisms. Meanwhile, a fragment of the Kunen incon- sistency survives without foundation as the claim in ZFC−f that there is no nontrivial elementary self-embedding of the class of well-founded sets. Nevertheless, some of the commonly considered anti-foundational theories, such as the Boffa theory BAFA, prove outright the existence of nontrivial automorphisms of the set-theoretic universe, thereby refuting the Kunen assertion in these theories. On the other hand, several other common anti-foundational theories, such as Aczel’s anti-foundational −f −f arXiv:1311.0814v2 [math.LO] 13 Feb 2014 theory ZFC + AFA and Scott’s theory ZFC + SAFA, reach the op- posite conclusion by proving that there are no nontrivial elementary The second author’s research has been supported by a grant from IPM (No.
    [Show full text]
  • A QUICK INTRODUCTION to BASIC SET THEORY This Note Is Intended
    A QUICK INTRODUCTION TO BASIC SET THEORY ANUSH TSERUNYAN This note is intended to quickly introduce basic notions in set theory to (undergraduate) students in mathematics not necessarily specializing in logic, thus requiring no background. It uses the sections on well-orderings, ordinals and cardinal arithmetic of [Kun83], as well as some parts from [Mos06]. Contents 1. Zermelo–Fraenkel set theory 2 2. Well-orderings 6 3. Ordinals 7 4. Transfinite induction 9 5. The set of natural numbers 10 6. Equinumerosity 11 7. Finite/infinite sets and Axiom of Choice 14 8. Cardinals and cardinality 16 9. Uncountable cardinals and the Continuum Hypothesis 16 10. Cofinality and Konig˝ ’s theorem 17 11. Classes 18 Exercises 19 References 21 1 1. Zermelo–Fraenkel set theory The language of ZFC. ZF stands for Zermelo–Fraenkel set theory and ZFC stands for Zermelo– Fraenkel set theory with Choice (the latter being an extra axiom added to ZF). To describe the axioms of ZFC we need to fix a language (formally speaking, a first order logic language). The language of ZF (same for ZFC) has only one special symbol, namely the binary relation symbol 2, in addition to the standard symbols that every other first order language has: the symbols =; :; ^; _; !; 8; 9; (; ) and variables x0; x1; x2; :::. To keep things informal and easy to read, we also use other letters such as x; y; z or even A, B, C, F for variables, as well as extra symbols like ,; <; $, etc. Using these symbols and variables we form statements about sets such as 8x(x = x), 9x(x , x), 9x(x 2 y ^ y < z).
    [Show full text]
  • Sharp Sets of Permutations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 111, 22C-247 (1987) Sharp Sets of Permutations P. J. CAMERON* Merton College, Oxford OX1 4JD, United Kingdom AND M. DEZA AND P. FRANKL CNRS, Paris, France Communicated by Peter hi. Neumann Received January 29, 1984 A set of permutations is sharp if its cardinality is the product of the distinct non-zero Hamming distances between pairs of permutations in the set. We give a number of new results and constructions for sharp sets and groups and for the more special geometric sets and groups, using a mixture of algebraic and combinatorial techniques. 0 1987 Academx Press, Inc. 1. IN~~DUCTI~N Sharp sets of permutations arise in the study of extremal problems for sets of permutations with prescribed Hamming distances. In this paper, we give some new constructions and results about sharp sets and groups and the closely related permutation geometries. A more precise description of the results will be given after the relevant concepts have been defined. Let S, be the group of permutations of { 1, .. n}; for g E S,, let tix( g) denote the number of fixed points of g. Given any non-empty subset L = { 10,.*.> l,- I} of (0, .. n-l}, (where we assume that I,< ... <IS--), a sub- set A of S, is called L-intersecting if, for all g, h EA with g # h, we have fix(g-‘h) E L. (Note that n-fix(g-‘h) is the Hamming distance between g and h.) Denote by m(n, L) the maximum cardinality of an L-intersecting subset of S,, and by mg(n, L) that of an L-intersecting subgroup.
    [Show full text]
  • Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions
    This is a repository copy of Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/75182/ Book Section: Rathjen, M (2012) Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions. In: Dybjer, P, Lindström, S, Palmgren, E and Sundholm, G, (eds.) Epistemology versus ontology: Essays on the philosophy and foundations of mathematics in honour of Per Martin-Löf. Logic, Epistemology, and the Unity of Science, 27 . Springer , Dordrecht, Netherlands , 313 - 349. ISBN 9789400744356 https://doi.org/10.1007/978-94-007-4435-6 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions Michael Rathjen∗ Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom [email protected] May 4, 2012 Abstract Full intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from constructive Zermelo- Fraenkel set theory, CZF, by adding the full separation axiom scheme and the power set axiom.
    [Show full text]
  • ON the NON–EXISTENCE of SHARPLY TRANSITIVE SETS of PERMUTATIONS in CERTAIN FINITE PERMUTATION GROUPS Peter Müller Gábor P. N
    Advances in Mathematics of Communications doi:10.3934/amc.2011.5.303 Volume 5, No. 2, 2011, 303{308 ON THE NON{EXISTENCE OF SHARPLY TRANSITIVE SETS OF PERMUTATIONS IN CERTAIN FINITE PERMUTATION GROUPS Peter Muller¨ Institut f¨urMathematik, Universit¨atW¨urzburg Campus Hubland Nord, 97074 W¨urzburg,Germany Gabor´ P. Nagy Bolyai Institute, University of Szeged Aradi v´ertan´uktere 1, H-6720 Szeged, Hungary (Communicated by Reinhard Laue) Abstract. In this short note we present a simple combinatorial trick which can be effectively applied to show the non{existence of sharply transitive sets of permutations in certain finite permutation groups. 1. Introduction A permutation code (or array) of length n and distance d is a set S of per- mutations of some fixed set Ω of n symbols such that the Hamming distance between each distinct x; y 2 S is at least d, see [4]. By elementary counting, one has jSj ≤ n(n − 1) ··· d and equality holds if and only if for any two tuples (x1; : : : ; xn−d+1), (y1; : : : ; yn−d+1) of distinct symbols, there is a unique element s s s 2 S with x1 = y1; : : : ; xn−d+1 = yn−d+1. Such sets of permutations are called sharply t{transitive, where t = n − d + 1. It is well known that sharply 1{ and 2{transitive sets of permutations correspond to Latin squares and affine planes, respectively [3]. In general, there are very few results on permutation codes and there is a large gap between the lower and upper estimates for jSj; see [10], [9].
    [Show full text]
  • An Introduction to Set Theory
    AN INTRODUCTION TO SET THEORY Professor William A. R. Weiss November 21, 2014 2 Contents 0 Introduction 7 1 LOST 11 2 FOUND 23 3 The Axioms of Set Theory 29 4 The Natural Numbers 37 5 The Ordinal Numbers 47 6 Relations and Orderings 59 7 Cardinality 69 8 What's So Real About The Real Numbers? 79 9 Ultrafilters Are Useful 87 3 4 CONTENTS 10 The Universe 97 11 Reflection 103 12 Elementary Submodels 123 13 Constructibility 139 14 Appendices 155 .1 The Axioms of ZFC . 155 .2 Tentative Axioms . 156 CONTENTS 5 Preface These notes for a graduate course in set theory are on their way to be- coming a book. They originated as handwritten notes in a course at the University of Toronto given by Prof. William Weiss. Cynthia Church pro- duced the first electronic copy in December 2002. James Talmage Adams produced a major revision in February 2005. The manuscript has seen many changes since then, often due to generous comments by students, each of whom I here thank. Chapters 1 to 11 are now close to final form. Chapters 12 and 13 are quite readable, but should not be considered as a final draft. One more chapter will be added. 6 CONTENTS Chapter 0 Introduction Set Theory is the true study of infinity. This alone assures the subject of a place prominent in human culture. But even more, Set Theory is the milieu in which mathematics takes place today. As such, it is expected to provide a firm foundation for all the rest of mathematics.
    [Show full text]
  • Sharply (N − 2)-Transitive Sets of Permutations
    Iranian Journal of Mathematical Sciences and Informatics Vol. 15, No. 2 (2020), pp 183-190 DOI: 10.29252/ijmsi.15.2.183 Sharply (n − 2)-transitive Sets of Permutations Moharram N. Iradmusa Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran. E-mail: [email protected] Abstract. Let Sn be the symmetric group on the set [n] = f1; 2; : : : ; ng. For g 2 Sn let fix(g) denote the number of fixed points of g. A subset S of Sn is called t-transitive if for any two t-tuples (x1; x2; : : : ; xt) and (y1; y2; : : : ; yt) of distinct elements of [n], there exists g 2 S such that g ≤ ≤ xi = yi for any 1 i t and additionally S is called sharply t-transitive if for any given pair of t-tuples, exactly one element of S carries the first to the second. In addition, a subset S of Sn is called t-intersecting if fix(h−1g) ≥ t for any two distinct permutations h and g of S. In this paper, we prove that there are only two sharply (n − 2)-transitive subsets of Sn and finally we establish some relations between sharply k-transitive subsets and t-intersecting subsets of Sn where k; t 2 Z and 0 ≤ t ≤ k ≤ n. Keywords: Symmetric group, Sharply transitive set of permutations, Cay- ley graph. 2010 Mathematics Subject Classification: 20B20, 20B30. 1. Introduction Let Sn be the symmetric group on the set [n] = f 1; 2; : : : ; ng . For each g 2 Sn, a point x is called a fixed point of g if g(x) = x and fix(g) denotes the number of fixed points of g.
    [Show full text]
  • Undergraduate Logic Sequence: the Notes
    Undergraduate logic sequence: the notes November 4, 2015 ii Contents 1 Zermelo{Fraenkel set theory 1 1.1 Historical context . 1 1.2 The language of the theory . 3 1.3 The most basic axioms . 4 1.4 Axiom schema of Comprehension . 6 1.5 Relations and functions . 7 1.6 Axiom of Infinity . 9 1.7 Axiom of Choice . 10 1.8 Axiom schema of Replacement . 11 1.9 Axiom of Regularity . 12 2 Numbers, Ordinals, and Cardinals 15 2.1 Von Neumann's natural numbers . 15 2.2 Finite and infinite sets . 18 2.3 Inductive and Recursive Definability . 21 2.4 Models of Set Theory . 24 2.5 The Hereditarily Finite Sets . 26 2.6 Cardinality . 28 2.7 Countable and uncountable sets . 31 3 The transfinite 35 3.1 Ordinals . 35 3.2 Transfinite induction and recursion . 38 3.3 Ordinal Arithmetic . 44 3.4 Ordinals and Well-Orderings . 49 3.5 Equivalent versions of the Axiom of Choice . 51 3.6 Applications of choice . 53 3.7 Cardinal numbers . 55 3.8 Models of Set Theory, Revisited . 57 4 Descriptive set theory 59 4.1 Rational and real numbers . 59 4.2 Topological spaces . 61 4.3 Polish spaces . 64 iii iv CONTENTS 4.4 Universality theorems . 67 4.5 Borel sets . 69 4.6 Analytic sets . 72 4.7 Lebesgue's mistake . 74 4.8 Suslin's fix . 76 5 First order logic 79 5.1 Propositional logic . 79 5.2 Syntax . 84 5.3 Semantics . 87 5.4 Completeness theorem . 88 Chapter 1 Zermelo{Fraenkel set theory 1.1 Historical context In 19th century, mathematicians produced a great number of sophisticated the- orems and proofs.
    [Show full text]
  • The Continuum Hypothesis, the Generic-Multiverse of Sets, and the Ω Conjecture
    The Continuum Hypothesis, the generic-multiverse of sets, and the Ω Conjecture W. Hugh Woodin July 16, 2009 1 A tale of two problems The formal independence of Cantor’s Continuum Hypothesis from the axioms of Set Theory (ZFC) is an immediate corollary of the following two theorems where the state- ment of the Cohen’s theorem is recast in the more modern formulation of the Boolean valued universe. Theorem 1 (Godel,¨ [3]). Assume V = L. Then the Continuum Hypothesis holds. ut Theorem 2 (Cohen, [1]). There exists a complete Boolean algebra, B, such that VB “The Continuum Hypothesis is false”: ut Is this really evidence (as is often cited) that the Continuum Hypothesis has no answer? Another prominent problem from the early 20th century concerns the projective sets, [8]; these are the subsets of Rn which are generated from the closed sets in finitely many steps taking images by continuous functions, f : Rn ! Rn, and complements. A function, f : R ! R, is projective if the graph of f is a projective subset of R × R. Let Projective Uniformization be the assertion: For each projective set A ⊂ R × R there exists a projective function, f : R ! R, such that for all x 2 R if there exists y 2 R such that (x; y) 2 A then (x; f (x)) 2 A. The two theorems above concerning the Continuum Hypothesis have versions for Projective Uniformization. Curiously the Boolean algebra for Cohen’s theorem is the same in both cases, but in case of the problem of Projective Uniformization an addi- tional hypothesis on V is necessary.
    [Show full text]