Fly Times 63
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera) of North-Eastern North America
Biodiversity Data Journal 7: e36673 doi: 10.3897/BDJ.7.e36673 Taxonomic Paper New Syrphidae (Diptera) of North-eastern North America Jeffrey H. Skevington‡,§, Andrew D. Young|, Michelle M. Locke‡, Kevin M. Moran‡,§ ‡ AAFC, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Canada § Carleton University, Ottawa, Canada | California Department of Food and Agriculture, Sacramento, United States of America Corresponding author: Jeffrey H. Skevington ([email protected]) Academic editor: Torsten Dikow Received: 31 May 2019 | Accepted: 09 Aug 2019 | Published: 03 Sep 2019 Citation: Skevington JH, Young AD, Locke MM, Moran KM (2019) New Syrphidae (Diptera) of North-eastern North America. Biodiversity Data Journal 7: e36673. https://doi.org/10.3897/BDJ.7.e36673 ZooBank: urn:lsid:zoobank.org:pub:823430AD-B648-414F-A8B2-4F1E5F1A086A Abstract Background This paper describes 11 of 18 new species recognised in the recent book, "Field Guide to the Flower Flies of Northeastern North America". Four species are omitted as they need to be described in the context of a revision (three Cheilosia and a Palpada species) and three other species (one Neoascia and two Xylota) will be described by F. Christian Thompson in a planned publication. Six of the new species have been recognised for decades and were treated by J. Richard Vockeroth in unpublished notes or by Thompson in his unpublished but widely distributed "A conspectus of the flower flies (Diptera: Syrphidae) of the Nearctic Region". Five of the 11 species were discovered during the preparation of the Field Guide. Eight of the 11 have DNA barcodes available that support the morphology. New information New species treated in this paper include: Anasimyia diffusa Locke, Skevington and Vockeroth (Smooth-legged Swamp Fly), Anasimyia matutina Locke, Skevington and This is an open access article distributed under the terms of the CC0 Public Domain Dedication. -
Wing Polymorphism in European Species of Sphaeroceridae (Diptera)
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 17.xii.2012 Volume 52( 2), pp. 535–558 ISSN 0374-1036 Wing polymorphism in European species of Sphaeroceridae (Diptera) Jindřich ROHÁČEK Slezské zemské muzeum, Tyršova 1, CZ-746 46 Opava, Czech Republic; e-mail: [email protected] Abstract. The wing polymorphism is described in 8 European species of Sphae- roceridae (Diptera), viz. Crumomyia pedestris (Meigen, 1830), Phthitia spinosa (Collin, 1930), Pteremis fenestralis (Fallén, 1820), Pullimosina meijerei (Duda, 1918), Puncticorpus cribratum (Villeneuve, 1918), Spelobia manicata (Richards, 1927), Spelobia pseudonivalis (Dahl, 1909) and Terrilimosina corrivalis (Ville- neuve, 1918). These cases seem to belong to three types of alary polymorphism: i) species with separate macropterous and brachypterous forms – Crumomyia pedestris, Pteremis fenestralis, Pullimosina meijerei; ii) species with a continual series of wing forms ranging from brachypterous to macropterous – Puncticor- pus cribratum, Spelobia pseudonivalis, Terrilimosina corrivalis; iii) similar to the foregoing type but with only slightly reduced wing in the brachypterous form – Phthitia spinosa, Spelobia manicata. The variability of venation of wing polymorphic and brachypterous species of the West-Palaearctic species of Sphaeroceridae was examined and general trends in the reduction of veins during evolution are defi ned. These trends are found to be different in Copromyzinae (C. pedestris) and Limosininae (all other species) where 6 successive stages of reduction are recognized. The fi rst case of a specimen (of Pullimosina meije- rei) with unevenly developed wings (one normal, other reduced) is described in Sphaeroceridae. Causes of the origin of wing polymorphism, variability of wing polymorphic populations depending on geographical and climatic factors, importance of wing polymorphism in the evolution of brachypterous and apterous species and the probable genetic background of wing polymorphism in European species are discussed. -
Wq-Rule4-12Kk L.7
L.7. Calculation of Minnesota Macroinvertebrate IBIs- Draft January 26, 2017 Introduction The Index of Biotic Integrity (IBI) is one of the primary tools used by the Minnesota Pollution Control Agency (MPCA) to determine if streams are meeting their aquatic life use goals. Calculation of an IBI involves the synthesis of macroinvertebrate community information into a numerical expression of stream health. In order to apply the MPCA Macroinvertebrate IBI (MIBI) to a macroinvertebrate dataset, it is essential that all data is collected using MPCA field and laboratory protocols (MPCA 2004, MPCA 2015). This document details the process for calculating the Minnesota MIBIs from raw macroinvertebrate samples. Summary of MIBI development To account for natural differences in macroinvertebrates communities in Minnesota, streams are assigned to different stream types. These stream types use different MIBI models and biocriteria to determine the condition of the macroinvertebrate assemblage and their attainment or nonattainment of the aqutic life beneficial use. The MPCA stratified Minnesota streams into nine macroinvertebrate stream types based on the expected natural composition of stream macroinvertebrates (Table 1). Stream type is differentiated by drainage area, geographic region, thermal regime, and gradient. These stream types are used to determine thresholds (i.e., biocriteria) that interpret the calculated MIBI as meeting or exceeding the aquatic life use goal. MIBIs were developed from five individual invertebrate stream groups, with large rivers, wadable high gradient and wabable low gradient stream types each being combined for the purposes of metric testing and evaluation. A complete description of the development of MIBIs can be found in MPCA (2014). -
Identification Key for Mosquito Species
‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are. -
Insects Commonly Mistaken for Mosquitoes
Mosquito Proboscis (Figure 1) THE MOSQUITO LIFE CYCLE ABOUT CONTRA COSTA INSECTS Mosquitoes have four distinct developmental stages: MOSQUITO & VECTOR egg, larva, pupa and adult. The average time a mosquito takes to go from egg to adult is five to CONTROL DISTRICT COMMONLY Photo by Sean McCann by Photo seven days. Mosquitoes require water to complete Protecting Public Health Since 1927 their life cycle. Prevent mosquitoes from breeding by Early in the 1900s, Northern California suffered MISTAKEN FOR eliminating or managing standing water. through epidemics of encephalitis and malaria, and severe outbreaks of saltwater mosquitoes. At times, MOSQUITOES EGG RAFT parts of Contra Costa County were considered Most mosquitoes lay egg rafts uninhabitable resulting in the closure of waterfront that float on the water. Each areas and schools during peak mosquito seasons. raft contains up to 200 eggs. Recreational areas were abandoned and Realtors had trouble selling homes. The general economy Within a few days the eggs suffered. As a result, residents established the Contra hatch into larvae. Mosquito Costa Mosquito Abatement District which began egg rafts are the size of a grain service in 1927. of rice. Today, the Contra Costa Mosquito and Vector LARVA Control District continues to protect public health The larva or ÒwigglerÓ comes with environmentally sound techniques, reliable and to the surface to breathe efficient services, as well as programs to combat Contra Costa County is home to 23 species of through a tube called a emerging diseases, all while preserving and/or mosquitoes. There are also several types of insects siphon and feeds on bacteria enhancing the environment. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Burmese Amber Taxa
Burmese (Myanmar) amber taxa, on-line supplement v.2021.1 Andrew J. Ross 21/06/2021 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] Dr Andrew Ross | National Museums Scotland (nms.ac.uk) This taxonomic list is a supplement to Ross (2021) and follows the same format. It includes taxa described or recorded from the beginning of January 2021 up to the end of May 2021, plus 3 species that were named in 2020 which were missed. Please note that only higher taxa that include new taxa or changed/corrected records are listed below. The list is until the end of May, however some papers published in June are listed in the ‘in press’ section at the end, but taxa from these are not yet included in the checklist. As per the previous on-line checklists, in the bibliography page numbers have been added (in blue) to those papers that were published on-line previously without page numbers. New additions or changes to the previously published list and supplements are marked in blue, corrections are marked in red. In Ross (2021) new species of spider from Wunderlich & Müller (2020) were listed as being authored by both authors because there was no indication next to the new name to indicate otherwise, however in the introduction it was indicated that the author of the new taxa was Wunderlich only. Where there have been subsequent taxonomic changes to any of these species the authorship has been corrected below. -
Hoverfly Newsletter 67
Dipterists Forum Hoverfly Newsletter Number 67 Spring 2020 ISSN 1358-5029 . On 21 January 2020 I shall be attending a lecture at the University of Gloucester by Adam Hart entitled “The Insect Apocalypse” the subject of which will of course be one that matters to all of us. Spreading awareness of the jeopardy that insects are now facing can only be a good thing, as is the excellent number of articles that, despite this situation, readers have submitted for inclusion in this newsletter. The editorial of Hoverfly Newsletter No. 66 covered two subjects that are followed up in the current issue. One of these was the diminishing UK participation in the international Syrphidae symposia in recent years, but I am pleased to say that Jon Heal, who attended the most recent one, has addressed this matter below. Also the publication of two new illustrated hoverfly guides, from the Netherlands and Canada, were announced. Both are reviewed by Roger Morris in this newsletter. The Dutch book has already proved its value in my local area, by providing the confirmation that we now have Xanthogramma stackelbergi in Gloucestershire (taken at Pope’s Hill in June by John Phillips). Copy for Hoverfly Newsletter No. 68 (which is expected to be issued with the Autumn 2020 Dipterists Forum Bulletin) should be sent to me: David Iliff, Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email:[email protected], to reach me by 20 June 2020. The hoverfly illustrated at the top right of this page is a male Leucozona laternaria. -
1 U of Ill Urbana-Champaign PEET
U of Ill Urbana-Champaign PEET: A World Monograph of the Therevidae (Insecta: Diptera) Participant Individuals: CoPrincipal Investigator(s) : David K Yeates; Brian M Wiegmann Senior personnel(s) : Donald Webb; Gail E Kampmeier Post-doc(s) : Kevin C Holston Graduate student(s) : Martin Hauser Post-doc(s) : Mark A Metz Undergraduate student(s) : Amanda Buck; Melissa Calvillo Other -- specify(s) : Kristin Algmin Graduate student(s) : Hilary Hill Post-doc(s) : Shaun L Winterton Technician, programmer(s) : Brian Cassel Other -- specify(s) : Jeffrey Thorne Post-doc(s) : Christine Lambkin Other -- specify(s) : Ann C Rast Senior personnel(s) : Steve Gaimari Other -- specify(s) : Beryl Reid Technician, programmer(s) : Joanna Hamilton Undergraduate student(s) : Claire Montgomery; Heather Lanford High school student(s) : Kate Marlin Undergraduate student(s) : Dmitri Svistula Other -- specify(s) : Bradley Metz; Erica Leslie Technician, programmer(s) : Jacqueline Recsei; J. Marie Metz Other -- specify(s) : Malcolm Fyfe; David Ferguson; Jennifer Campbell; Scott Fernsler Undergraduate student(s) : Sarah Mathey; Rebekah Kunkel; Henry Patton; Emilia Schroer Technician, programmer(s) : Graham Teakle Undergraduate student(s) : David Carlisle; Klara Kim High school student(s) : Sara Sligar Undergraduate student(s) : Emmalyn Gennis Other -- specify(s) : Iris R Vargas; Nicholas P Henry Partner Organizations: Illinois Natural History Survey: Financial Support; Facilities; Collaborative Research Schlinger Foundation: Financial Support; In-kind Support; Collaborative Research 1 The Schlinger Foundation has been a strong and continuing partner of the therevid PEET project, providing funds for personnel (students, scientific illustrator, data loggers, curatorial assistant) and expeditions, including the purchase of supplies, to gather unknown and important taxa from targeted areas around the world. -
Chapter 2 Diopsoidea
Chapter 2 Diopsoidea DiopsoideaTeaching material only, not intended for wider circulation. [email protected] 2:37 Diptera: Acalyptrates DIOPSOI D EA 50: Tanypezidae 53 ------ Base of tarsomere 1 of hind tarsus very slightly projecting ventrally; male with small stout black setae on hind trochanter and posterior base of hind femur. Postocellar bristles strong, at least half as long as upper orbital seta; one dorsocentral and three orbital setae present Tanypeza ----------------------------------------- 55 2 spp.; Maine to Alberta and Georgia; Steyskal 1965 ---------- Base of tarsomere 1 of hind tarsus strongly projecting ventrally, about twice as deep as remainder of tarsomere 1 (Fig. 3); male without special setae on hind trochanter and hind femur. Postocellar bristles weak, less than half as long as upper orbital bristle; one to three dor socentral and zero to two orbital bristles present non-British ------------------------------------------ 54 54 ------ Only one orbital bristle present, situated at top of head; one dorsocentral bristle present --------------------- Scipopeza Enderlein Neotropical ---------- Two or three each of orbital and dorsocentral bristles present ---------------------Neotanypeza Hendel Neotropical Tanypeza Fallén, 1820 One species 55 ------ A black species with a silvery patch on the vertex and each side of front of frons. Tho- rax with notopleural depression silvery and pleurae with silvery patches. Palpi black, prominent and flat. Ocellar bristles small; two pairs of fronto orbital bristles; only one (outer) pair of vertical bristles. Frons slightly narrower in the male than in the female, but not with eyes almost touching). Four scutellar, no sternopleural, two postalar and one supra-alar bristles; (the anterior supra-alar bristle not present). Wings with upcurved discal cell (11) as in members of the Micropezidae. -
Checklist of the Family Chironomidae (Diptera) of Finland
A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986). -
Notable Invertebrates Associated with Fens
Notable invertebrates associated with fens Molluscs (Mollusca) Vertigo moulinsiana BAP Priority RDB3 Vertigo angustior BAP Priority RDB1 Oxyloma sarsi RDB2 Spiders and allies (Arachnida:Araeae/Pseudoscorpiones) Clubiona rosserae BAP Priority RDB1 Dolomedes plantarius BAP Priority RDB1 Baryphyma gowerense RDBK Carorita paludosa RDB2 Centromerus semiater RDB2 Clubiona juvensis RDB2 Enoplognatha tecta RDB1 Hypsosinga heri RDB1 Neon valentulus RDB2 Pardosa paludicola RDB3 Robertus insignis RDB1 Zora armillata RDB3 Agraecina striata Nb Crustulina sticta Nb Diplocephalus protuberans Nb Donacochara speciosa Na Entelecara omissa Na Erigone welchi Na Gongylidiellum murcidum Nb Hygrolycosa rubrofasciata Na Hypomma fulvum Na Maro sublestus Nb Marpissa radiata Na Maso gallicus Na Myrmarachne formicaria Nb Notioscopus sarcinatus Nb Porrhomma oblitum Nb Saloca diceros Nb Sitticus caricis Nb Synageles venator Na Theridiosoma gemmosum Nb Woodlice (Isopoda) Trichoniscoides albidus Nb Stoneflies (Plecoptera) Nemoura dubitans pNotable Dragonflies and damselflies (Odonata ) Aeshna isosceles RDB 1 Lestes dryas RDB2 Libellula fulva RDB 3 Ceriagrion tenellum N Grasshoppers, crickets, earwigs & cockroaches (Orthoptera/Dermaptera/Dictyoptera) Stethophyma grossum BAP Priority RDB2 Now extinct on Fenland but re-introduction to undrained Fenland habitats is envisaged as part of the Species Recovery Plan. Gryllotalpa gryllotalpa BAP Priority RDB1 (May be extinct on Fenland sites, but was once common enough on Fenland to earn the local vernacular name of ‘Fen-cricket’.)