The Man Who Only Loved Numbers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
January 1993 Council Minutes
AMERICAN MATHEMATICAL SOCIETY COUNCIL MINUTES San Antonio, Texas 12 January 1993 November 21, 1995 Abstract The Council met at 2:00 pm on Tuesday, 12 January 1993 in the Fiesta Room E of the San Antonio Convention Center. The following members were present for all or part of the meeting: Steve Armentrout, Michael Artin, Sheldon Axler, M. Salah Baouendi, James E. Baumgartner, Lenore Blum, Ruth M. Charney, Charles Herbert Clemens, W. W. Com- fort (Associate Secretary, voting), Carl C. Cowen, Jr., David A. Cox, Robert Daverman (Associate Secretary-designate, non-voting) , Chandler Davis, Robert M. Fossum, John M. Franks, Herbert Friedman (Canadian Mathematical Society observer, non-voting), Ronald L. Graham, Judy Green, Rebecca Herb, William H. Jaco (Executive Director, non-voting), Linda Keen, Irwin Kra, Elliott Lieb, Franklin Peterson, Carl Pomerance, Frank Quinn, Marc Rieffel, Hugo Rossi, Wilfried Schmid, Lance Small (Associate Secre- tary, non-voting), B. A. Taylor (Mathematical Reviews Editorial Committee and Associate Treasurer-designate), Lars B. Wahlbin (representing Mathematics of Computation Edito- rial Committee), Frank W. Warner, Steve H. Weintraub, Ruth Williams, and Shing-Tung Yau. President Artin presided. 1 2 CONTENTS Contents 0 CALL TO ORDER AND INTRODUCTIONS. 4 0.1 Call to Order. ............................................. 4 0.2 Retiring Members. .......................................... 4 0.3 Introduction of Newly Elected Council Members. ......................... 4 1 MINUTES 4 1.1 September 92 Council. ........................................ 4 1.2 11/92 Executive Committee and Board of Trustees (ECBT) Meeting. .............. 5 2 CONSENT AGENDA. 5 2.1 INNS .................................................. 5 2.2 Second International Conference on Ordinal Data Analysis. ................... 5 2.3 AMS Prizes. .............................................. 5 2.4 Special Committee on Nominating Procedures. -
An Analysis of Primality Testing and Its Use in Cryptographic Applications
An Analysis of Primality Testing and Its Use in Cryptographic Applications Jake Massimo Thesis submitted to the University of London for the degree of Doctor of Philosophy Information Security Group Department of Information Security Royal Holloway, University of London 2020 Declaration These doctoral studies were conducted under the supervision of Prof. Kenneth G. Paterson. The work presented in this thesis is the result of original research carried out by myself, in collaboration with others, whilst enrolled in the Department of Mathe- matics as a candidate for the degree of Doctor of Philosophy. This work has not been submitted for any other degree or award in any other university or educational establishment. Jake Massimo April, 2020 2 Abstract Due to their fundamental utility within cryptography, prime numbers must be easy to both recognise and generate. For this, we depend upon primality testing. Both used as a tool to validate prime parameters, or as part of the algorithm used to generate random prime numbers, primality tests are found near universally within a cryptographer's tool-kit. In this thesis, we study in depth primality tests and their use in cryptographic applications. We first provide a systematic analysis of the implementation landscape of primality testing within cryptographic libraries and mathematical software. We then demon- strate how these tests perform under adversarial conditions, where the numbers being tested are not generated randomly, but instead by a possibly malicious party. We show that many of the libraries studied provide primality tests that are not pre- pared for testing on adversarial input, and therefore can declare composite numbers as being prime with a high probability. -
Interviewed by T. Christine Stevens)
KENNETH A. ROSS JANUARY 8, 2011 AND JANUARY 5, 2012 (Interviewed by T. Christine Stevens) How did you get involved in the MAA? As a good citizen of the mathematical community, I was a member of MAA from the beginning of my career. But I worked in an “AMS culture,” so I wasn’t actively involved in the MAA. As of January, 1983, I had never served on an MAA committee. But I had been Associate Secretary of the AMS from 1971 to 1981, and thus Len Gillman (who was MAA Treasurer at the time) asked me to be MAA Secretary. There was a strong contrast between the cultures of the AMS and the MAA, and my first two years were very hard. Did you receive mentoring in the MAA at the early stages of your career? From whom? As a graduate student at the University of Washington, I hadn’t even been aware that the department chairman, Carl Allendoerfer, was serving at the time as MAA President. My first mentor in the MAA was Len Gillman, who got me involved with the MAA. Being Secretary and Treasurer, respectively, we consulted a lot, and he was the one who helped me learn the MAA culture. One confession: At that time, approvals for new unbudgeted expenses under $500 were handled by the Secretary, the Treasurer and the Executive Director, Al Wilcox. The requests usually came to me first. Since Len was consistently tough, and Al was a push-over, I would first ask the one whose answer would agree with mine, and then with a 2-0 vote, I didn’t have to even bother the other one. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
[The PROOF of FERMAT's LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] the World's Most Famous Math Problem the World's Most Famous Math Problem
0Eft- [The PROOF of FERMAT'S LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] The World's Most Famous Math Problem The World's Most Famous Math Problem [ THE PROOF OF FERMAT'S LAST THEOREM AND OTHER MATHEMATICAL MYSTERIES I Marilyn vos Savant ST. MARTIN'S PRESS NEW YORK For permission to reprint copyrighted material, grateful acknowledgement is made to the following sources: The American Association for the Advancement of Science: Excerpts from Science, Volume 261, July 2, 1993, C 1993 by the AAAS. Reprinted by permission. Birkhauser Boston: Excerpts from The Mathematical Experience by Philip J. Davis and Reuben Hersh © 1981 Birkhauser Boston. Reprinted by permission of Birkhau- ser Boston and the authors. The Chronicleof Higher Education: Excerpts from The Chronicle of Higher Education, July 7, 1993, C) 1993 Chronicle of HigherEducation. Reprinted by permission. The New York Times: Excerpts from The New York Times, June 24, 1993, X) 1993 The New York Times. Reprinted by permission. Excerpts from The New York Times, June 29, 1993, © 1993 The New York Times. Reprinted by permission. Cody Pfanstieh/ The poem on the subject of Fermat's last theorem is reprinted cour- tesy of Cody Pfanstiehl. Karl Rubin, Ph.D.: The sketch of Dr. Wiles's proof of Fermat's Last Theorem in- cluded in the Appendix is reprinted courtesy of Karl Rubin, Ph.D. Wesley Salmon, Ph.D.: Excerpts from Zeno's Paradoxes by Wesley Salmon, editor © 1970. Reprinted by permission of the editor. Scientific American: Excerpts from "Turing Machines," by John E. Hopcroft, Scientific American, May 1984, (D 1984 Scientific American, Inc. -
Connected Components of Complex Divisor Functions
CONNECTED COMPONENTS OF COMPLEX DIVISOR FUNCTIONS COLIN DEFANT Princeton University Fine Hall, 304 Washington Rd. Princeton, NJ 08544 X c Abstract. For any complex number c, define the divisor function σc : N ! C by σc(n) = d . djn Let σc(N) denote the topological closure of the range of σc. Extending previous work of the current author and Sanna, we prove that σc(N) has nonempty interior and has finitely many connected components if <(c) ≤ 0 and c 6= 0. We end with some open problems. 2010 Mathematics Subject Classification: Primary 11B05; Secondary 11N64. Keywords: Divisor function; connected component; spiral; nonempty interior; perfect number; friendly number. 1. Introduction One of the most famous and perpetually mysterious mathematical contributions of the ancient Greeks is the notion of a perfect number, a number that is equal to the sum of its proper divisors. Many early theorems in number theory spawned from attempts to understand perfect numbers. Although few modern mathematicians continue to attribute the same theological or mystical sig- nificance to perfect numbers that ancient people once did, these numbers remain a substantial inspiration for research in elementary number theory [2, 3, 5, 11, 14{16, 18]. arXiv:1711.04244v3 [math.NT] 4 May 2018 P A positive integer n is perfect if and only if σ1(n)=n = 2, where σ1(n) = djn d. More generally, for any complex number c, we define the divisor function σc by X c σc(n) = d : djn These functions have been studied frequently in the special cases in which c 2 {−1; 0; 1g. -
O.S.T./Brother Bear Michael Bublé R.E.M. the Darkness O.S.T./The
1/2004 O.S.T. Brother Bear CD: 5050-4666877-22 Cen. kód: CF O.S.T./Brother Bear Michael Bublé R.E.M. The Darkness O.S.T./The Last Samurai Sasha & Dick Brave 13. 2. 2004 Gerald Levert The Distillers John Frusciante TITUL MĚSÍCE CD O.S.T. Žánr: Cen. kód: CD: 5050-4666877-22 Brother Bear Pop CF V novém vzrušujícím animovaném filmu Medvědí bratři, Marketingové kampaně: který má u nás premiéru 19. 2. 2004, se vydáme do Očekávejte masivní reklamu na film a soundtrack, která nádherné krajiny v severozápadní Americe, kde se proběhne ve spolupráci s distributorem: TV reklama odehrává příběh chlapce Kenaie. Jeho život se na České televizi, TV Nova a TV Prima, video bude nečekaně změní v okamžiku, kdy jej Velký duch promění nasazeno do Esa a Medúzy, tisková reklama, recenze, v medvěda… V dobrodružném příběhu o statečnosti, články, rádiová reklama, výlohy, outdoor, indoor a další. cti a sebepoznání, ve kterém se objevuje spousta nových a nezapomenutelných postaviček, se mísí dech beroucí animace s city a humorem. K filmu také vychází soundtrack, na kterém najdete 6 zbrusu nových písní od Phila Collinse, ale také jednu skladbu od Tiny Turner. Druhý singl ze soundtracku No Way Out od Phila Collinse bude rozeslán do všech rádií. www.disney.com Již vyšlo 2 NOVINKY MICHAEL BUBLÉ Žánr: Cen. kód: CD: 9362-48376-2 Michael Bublé Pop (swing) CF Úspěchy 28letého Kanaďana Michaela Bublého nás nenechaly chladnými, a tak jsme se podívali tomuto nováčkovi a především jeho debutu na zoubek. Tento mladý nadějný zpěvák není pro nás úplným nováčkem, jelikož se mu podařilo s jeho debutovou deskou, která vyšla před dvěma měsíci, prorazit již v USA, Kanadě, Austrálii, Japonsku, Novém Zélandu, Filipínách, Singapuru, Anglii, Jižní Africe, Polsku a teď právě dobývá Německo. -
MATH 404: ARITHMETIC 1. Divisibility and Factorization After Learning To
MATH 404: ARITHMETIC S. PAUL SMITH 1. Divisibility and Factorization After learning to count, add, and subtract, children learn to multiply and divide. The notion of division makes sense in any ring and much of the initial impetus for the development of abstract algebra arose from problems of division√ and factoriza- tion, especially in rings closely related to the integers such as Z[ d]. In the next several chapters we will follow this historical development by studying arithmetic in these and similar rings. √ To see that there are some serious issues to be addressed notice that in Z[ −5] the number 6 factorizes as a product of irreducibles in two different ways, namely √ √ 6 = 2.3 = (1 + −5)(1 − −5). 1 It isn’t hard to show these factors are irreducible but we postpone√ that for now . The key point for the moment is to note that this implies that Z[ −5] is not a unique factorization domain. This is in stark contrast to the integers. Since our teenage years we have taken for granted the fact that every integer can be written as a product of primes, which in Z are the same things as irreducibles, in a unique way. To emphasize the fact that there are questions to be understood, let us mention that Z[i] is a UFD. Even so, there is the question which primes in Z remain prime in Z[i]? This is a question with a long history: Fermat proved in ??? that a prime p in Z remains prime in Z[i] if and only if it is ≡ 3(mod 4).√ It is then natural to ask for each integer d, which primes in Z remain prime in Z[ d]? These and closely related questions lie behind much of the material we cover in the next 30 or so pages. -
UNIVERSAL MUSIC • Aaron Pritchett – the Score • Thousand Foot
Aaron Pritchett – The Score Thousand Foot Krutch - Exhale Jon Bellion – The Human Condition Check out new releases in our Vinyl Section! New Releases From Classics And Jazz Inside!!! And more… UNI16-25 UNIVERSAL MUSIC 2450 Victoria Park Ave., Suite 1, Willowdale, Ontario M2J 5H3 Phone: (416) 718.4000 *Artwork shown may not be final May 16th, 2016 Dear Customer, Effective on the dates outlined below, the Canadian distribution of the attached list of R.E.M. titles will change from Warner Music Canada and be handled by Universal Music Canada on behalf of Concord Music Group. In order to make this transition as easy as possible for all customers, please note the following steps. ORDERS: Effective, June 30, 2016 Warner Music Canada will cancel all back orders for the products listed below. Effective July 01, 2016 Universal Music Canada will begin processing and shipping orders on the attached product listing with corresponding UMC pricing. Please refer to the attached product list for updated catalogue and UPC numbers. RETURNS: Universal Music Canada will accept return requests for this product effective July 01, 2016. Credit will be issued per the Universal Music Canada Terms and Conditions of Sale. ADVERTISING: Universal Music Canada will be responsible for ad claims issued after July 01, 2016. We trust that these procedures will make the transition as smooth as possible and we thank you for your continued support. Please contact your local Universal Music Canada representative should you have any questions. Regards, Adam Abbasakoor Vice President, Commercial Affairs Vice President, Sales Universal Music Canada Warner Music Canada R.E.M. -
MSRI Celebrates Its Twentieth Birthday, Volume 50, Number 3
MSRI Celebrates Its Twentieth Birthday The past twenty years have seen a great prolifera- renewed support. Since then, the NSF has launched tion in mathematics institutes worldwide. An in- four more institutes: the Institute for Pure and spiration for many of them has been the Applied Mathematics at the University of California, Mathematical Sciences Research Institute (MSRI), Los Angeles; the AIM Research Conference Center founded in Berkeley, California, in 1982. An es- at the American Institute of Mathematics (AIM) in tablished center for mathematical activity that Palo Alto, California; the Mathematical Biosciences draws researchers from all over the world, MSRI has Institute at the Ohio State University; and the distinguished itself for its programs in both pure Statistical and Applied Mathematical Sciences and applied areas and for its wide range of outreach Institute, which is a partnership of Duke University, activities. MSRI’s success has allowed it to attract North Carolina State University, the University of many donations toward financing the construc- North Carolina at Chapel Hill, and the National tion of a new extension to its building. In October Institute of Statistical Sciences. 2002 MSRI celebrated its twentieth year with a Shiing-Shen Chern, Calvin C. Moore, and I. M. series of special events that exemplified what MSRI Singer, all on the mathematics faculty at the Uni- has become—a focal point for mathematical culture versity of California, Berkeley, initiated the original in all its forms, with the discovery and delight of proposal for MSRI; Chern served as the founding new mathematical knowledge the top priority. director, and Moore was the deputy director. -
MAKING SENSE of MATHEMATICS THROUGH NUMBER TALKS: a CASE STUDY of THREE TEACHERS in the ELEMENTARY CLASSROOM Under the Direction of William O
MAKING SENSE OF MATHEMATICS THROUGH NUMBER TALKS: A CASE STUDY OF THREE TEACHERS IN THE ELEMENTARY CLASSROOM by MIRANDA GAYLE WESTBROOK A Dissertation Submitted to the Faculty in the Curriculum and Instruction Program of Tift College of Education at Mercer University in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Atlanta, GA 2019 MAKING SENSE OF MATHEMATICS THROUGH NUMBER TALKS: A CASE STUDY OF THREE TEACHERS IN THE ELEMENTARY CLASSROOM by MIRANDA GAYLE WESTBROOK Approved: ________________________________________________________________________ William O. Lacefield, III, Ed.D. Date Dissertation Committee Chair ________________________________________________________________________ Justus J. Randolph, Ph.D. Date Dissertation Committee Member ________________________________________________________________________ Jeffrey S. Hall, Ed.D. Date Dissertation Committee Member ________________________________________________________________________ Jane West, Ed.D. Date Director of Doctoral Studies, Tift College of Education ________________________________________________________________________ Thomas R. Koballa, Jr., Ph.D. Date Dean, Tift College of Education DEDICATION To my loving husband, Chad, I am forever indebted to the unconditional love, support, and patience you bestowed as I engaged in this endeavor. You always encouraged me to persevere, and together, we transformed this dream into a reality. I am truly blessed to have you in my life. To my mom and dad, you inspired me to follow my dreams and taught me the value of hard work. The morning phone calls were always uplifting, and I love you both with all my heart. To Brenda, thank you for understanding and supporting me on this journey. To Linda, you were always confident that I would achieve this goal. Your enthusiasm and interest in my work gave me the strength I needed to keep writing. -
Braids and Juggling Patterns Matthew Am Cauley Harvey Mudd College
Claremont Colleges Scholarship @ Claremont HMC Senior Theses HMC Student Scholarship 2003 Braids and Juggling Patterns Matthew aM cauley Harvey Mudd College Recommended Citation Macauley, Matthew, "Braids and Juggling Patterns" (2003). HMC Senior Theses. 151. https://scholarship.claremont.edu/hmc_theses/151 This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Braids and Juggling Patterns by Matthew Macauley Michael Orrison, Advisor Advisor: Second Reader: (Jim Hoste) May 2003 Department of Mathematics Abstract Braids and Juggling Patterns by Matthew Macauley May 2003 There are several ways to describe juggling patterns mathematically using com- binatorics and algebra. In my thesis I use these ideas to build a new system using braid groups. A new kind of graph arises that helps describe all braids that can be juggled. Table of Contents List of Figures iii Chapter 1: Introduction 1 Chapter 2: Siteswap Notation 4 Chapter 3: Symmetric Groups 8 3.1 Siteswap Permutations . 8 3.2 Interesting Questions . 9 Chapter 4: Stack Notation 10 Chapter 5: Profile Braids 13 5.1 Polya Theory . 14 5.2 Interesting Questions . 17 Chapter 6: Braids and Juggling 19 6.1 The Braid Group . 19 6.2 Braids of Juggling Patterns . 22 6.3 Counting Jugglable Braids . 24 6.4 Determining Unbraids . 27 6.4.1 Setting the crossing numbers to zero. 32 6.4.2 The complete system of equations .