Contributions to Sutured Monopole and Sutured Instanton Floer

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to Sutured Monopole and Sutured Instanton Floer Contributions to sutured monopole and sutured instanton Floer homology theories by Zhenkun Li Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Mathematics March 31st, 2020 Certified by . Tomasz S. Mrowka Professor of Mathematics Thesis Supervisor Accepted by. Davesh Maulik Chairman, Department Committee on Graduate Theses 2 Contributions to sutured monopole and sutured instanton Floer homology theories by Zhenkun Li Submitted to the Department of Mathematics on March 31st, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Abstract In this thesis, we present the development of some aspects of sutured monopole and sutured instanton Floer homology theories. Sutured monopole and instanton Floer homologies were introduced by Kronheimer and Mrowka. They are the adaption of monopole and instanton Floer theories to the case of balanced sutured manifolds, which are compact oriented 3-manifolds together with some special data on the boundary called the suture. We construct the gluing and cobordism maps in these theories, construct gradings associated to properly embedded surfaces inside the balanced sutured manifolds, and use these tools to further construct minus versions of knot Floer homologies in monopole and instanton theories. These constructions contribute to laying down a solid basis in sutured monopole and sutured instanton Floer homology theories, upon which we could develop further applications. Thesis Supervisor: Tomasz S. Mrowka Title: Professor of Mathematics 3 4 Acknowledgments It was a wonderful journey to MIT. The lovely city, the amazing people, and the friendly and active atmosphere here all make it a paradise to study and research in math. Looking back, I cannot achieve thus far without supports and encouragement from my advisor, my friends, my family, and other people around. It is my pleasure to dedicate these acknowledgments to them. First, I wish to express my sincere appreciation to my advisor, Tomasz S. Mrowka, who leads me to the field of Gauge theory and offers enormous encouragement and guidance. It was always a great pleasure to talk with him when I can always hear about new math, inspiring ideas, and even the philosophy of life. Second, I would like to warmly thank the geometry and topology community at MIT and in Boston. People from across Boston communicate quite often, and it feels as if every day, there is some news happening around me. In particular, I am grateful to John Baldwin, Mariano Echeverria, Larry Guth, Jianfeng Lin, Yu Pan, Paul Seidel, Matthew Stoffregen, Yi Xie, Boyu Zhang, for countless helpful conversations and discussions. Third, I would like to thank my friends in and outside Boston, with whom I can share my excitement and happiness in highlight times and from whom I receive companions and relieves in hard times. Finally, I want to thank my parents for their endless love and encouragement. Nothing would be possible without their support. 5 6 This doctoral thesis has been examined by a Committee of the Department of Mathematics as follows: Professor Tomasz S. Mrowka . Chairman, Thesis Committee, Thesis Supervisor Professor of Mathematics Professor Paul Seidel . Member, Thesis Committee Levinson Professor of Mathematics Doctor Matthew Stoffregen. Member, Thesis Committee C L E Moore Instructor 8 Contents 1 Introduction 11 2 Preliminaries and backgrounds 19 2.1 Balanced sutured manifolds and sutured manifold hierarchy . 19 2.2 Closures and monopole Floer homology . 25 2.3 Instanton theory and balanced sutured manifolds . 30 2.4 Marked closures and naturality . 39 2.5 Floer’s Excisions . 46 2.6 Basic properties of SHM and SHI . 51 2.7 Contact structures and contact elements . 62 2.8 Applications and other discussions . 79 3 Gluing and cobordism maps 91 3.1 Contact elements and excisions . 91 3.2 Another interpretation of contact handle gluing maps . 102 3.3 Basic properties of handle attaching maps . 112 3.4 Contact cell decompositions . 133 3.5 The construction of the gluing maps . 136 3.6 The construction of cobordism maps . 141 9 3.7 Duality and turning cobordism around . 144 4 Gradings on Sutured monopole and instanton Floer homologies 153 4.1 The construction of the grading . 154 4.2 A reformulation of Canonical maps . 160 4.3 Pairing of the intersection points . 167 4.4 A naive version of grading shifting property . 176 4.5 Supporting spinc structures and eigenvalue functions . 179 4.6 The grading shifting property . 187 4.7 Floer homologies on a sutured solid torus . 190 4.8 The connected sum formula . 199 5 Applications to knot theory 207 5.1 The construction . 207 5.2 Basic properties of the minus version . 216 5.3 Knots representing torsion classes . 222 5.4 Concordance invariance of 휏G....................... 229 5.5 Computations for twisted knots . 245 10 Chapter 1 Introduction The celebrated papers [14, 15] by Donaldson around 1983 marked the birth of (math- ematical) gauge theory. In these papers, he studied the moduli spaces of a particular set of partial differential equations, called the anti-self-dual equation, which has its origin in physics, on some special bundle over a closed oriented 4-manifold. These moduli spaces lead to an invariant, which now people call the Donaldson invariant, and encode some information of the topology and the smooth structure of the un- derlying 4-manifold that could hardly be captured by classical tools prior to the introduction of gauge theory. Later, in 1988, Floer observed in [21] a wonderful re- lation between dimensions 3 and 4: For a closed oriented 3-manifold Y , the negative gradient flow equation of the Chern-Simons functional is exactly the anti-self-dual equation on the infinite cylinder R ˆ Y . This observation led to the construction of instanton Floer homology on 3-manifolds. Roughly speaking, the instanton Floer homology on a closed oriented 3-manifold Y is an infinite-dimensional Morse theory build upon the Chern Simons functional that is defined on the space of connections on a suitable bundle over Y , module the action of gauge transformations. This infinite- 11 dimensional Morse theory gives rise to a module over suitable coefficient rings, such as Z and C, and serves as a topological invariant of Y . For a cobordism between two closed oriented 3-manifolds, one can also study the anti-self-dual equation on the cobordism and obtains a homomorphism between the modules associated to the two boundary-3-manifolds. This nature of instanton Floer homology makes it be a p3 ` 1q-TQFT. In 2007 and 2004, monopole Floer homology and Heegaard Floer homology were introduced. Monopole Floer homology was introduced by Kronheimer and Mrowka in [52]. The construction followed the same line as Floer’s construction but used another set of differential equations, called the Seiberg-Witten equation introduced by Seiberg and Witten [83]. Heegaard Floer homology was introduced by Ozsváth and Szabó and is built on Heegaard splittings, a somewhat combinatorial descrip- tion of 3-manifolds. Later, many other variances and related constructions were made, including the singular instanton Floer homology introduced by Kronheimer and Mrowka [48], Pinp2q-monopole Floer homology introduced by Lin [60], the knot Floer homologies introduced by Ozsváth and Szabó in [74], and Embedded contact homology introduced by Hutchings [37], among others. Floer homology theory has become a very powerful tool in the study of 3-dimensional topology and has many remarkable applications, such as the approval of the Property P conjecture (see Kron- heimer and Mrowka [46]), the disapproval of triangulation conjecture (see Manolescu [62]), and the study of cosmetic surgeries (see Ni and Wu [70]) and knot concordance (see [79, 31, 88, 13]). Different versions of Floer homologies have their own advantages. Instanton Floer homology is most closely related to the representations of the fundamental groups of 3-manifolds; Monopole Floer homology has simpler analytical inputs and better compactness properties in dimension 4 than instanton theory, and is most closely 12 related to some geometric properties of the underlying manifolds; Heegaard Floer homology is the most computable one among all Floer homology theories. Besides, cobordism maps in monopole and instanton Floer homologies are more naturally defined and their naturality is easier to treat than the one in Heegaard Floertheory, while in Heegaard Floer homology, there are more algebraic structures associated to knots and links inside 3-manifolds, which leads to a more fruitful knot Floer homology theory than its correspondences in the monopole and instanton settings. So, it will be great to compare and combine the merits of different Floer theories when solving an actual problem. Sutured manifold theory is another powerful tool in the study of 3-dimensional topology, which was introduced in 1983 by Gabai in [23] and subsequent papers. A sutured manifold is a compact oriented 3-manifold, together with some special data, called the sutures, on the boundary of the 3-manifold. The core of the sutured man- ifold theory is the sutured manifold hierarchy. It enables us to decompose any taut sutured manifold, in finitely many steps, into product ones, which are the simplest possible sutured manifolds. Along the decomposition, some previously un-attackable problems break down into more approachable pieces. For instance, in [23, 24, 25], Gabai used these techniques to construct taut foliations for 3-manifolds that are not rational homology spheres and approved the famous property R conjecture. The first combination of Floer homology theory and sutured manifold theory was made by Juhász in [38], where he introduced the sutured (Heegaard) Floer homology, on a special class of sutured manifolds called the balanced sutured manifolds.
Recommended publications
  • CURRICULUM VITAE David Gabai EDUCATION Ph.D. Mathematics
    CURRICULUM VITAE David Gabai EDUCATION Ph.D. Mathematics, Princeton University, Princeton, NJ June 1980 M.A. Mathematics, Princeton University, Princeton, NJ June 1977 B.S. Mathematics, M.I.T., Cambridge, MA June 1976 Ph.D. Advisor William P. Thurston POSITIONS 1980-1981 NSF Postdoctoral Fellow, Harvard University 1981-1983 Benjamin Pierce Assistant Professor, Harvard University 1983-1986 Assistant Professor, University of Pennsylvania 1986-1988 Associate Professor, California Institute of Technology 1988-2001 Professor of Mathematics, California Institute of Technology 2001- Professor of Mathematics, Princeton University 2012-2019 Chair, Department of Mathematics, Princeton University 2009- Hughes-Rogers Professor of Mathematics, Princeton University VISITING POSITIONS 1982-1983 Member, Institute for Advanced Study, Princeton, NJ 1984-1985 Postdoctoral Fellow, Mathematical Sciences Research Institute, Berkeley, CA 1985-1986 Member, IHES, France Fall 1989 Member, Institute for Advanced Study, Princeton, NJ Spring 1993 Visiting Fellow, Mathematics Institute University of Warwick, Warwick England June 1994 Professor Invité, Université Paul Sabatier, Toulouse France 1996-1997 Research Professor, MSRI, Berkeley, CA August 1998 Member, Morningside Research Center, Beijing China Spring 2004 Visitor, Institute for Advanced Study, Princeton, NJ Spring 2007 Member, Institute for Advanced Study, Princeton, NJ 2015-2016 Member, Institute for Advanced Study, Princeton, NJ Fall 2019 Visitor, Mathematical Institute, University of Oxford Spring 2020
    [Show full text]
  • Spring 2014 Fine Letters
    Spring 2014 Issue 3 Department of Mathematics Department of Mathematics Princeton University Fine Hall, Washington Rd. Princeton, NJ 08544 Department Chair’s letter The department is continuing its period of Assistant to the Chair and to the Depart- transition and renewal. Although long- ment Manager, and Will Crow as Faculty The Wolf time faculty members John Conway and Assistant. The uniform opinion of the Ed Nelson became emeriti last July, we faculty and staff is that we made great Prize for look forward to many years of Ed being choices. Peter amongst us and for John continuing to hold Among major faculty honors Alice Chang Sarnak court in his “office” in the nook across from became a member of the Academia Sinica, Professor Peter Sarnak will be awarded this the common room. We are extremely Elliott Lieb became a Foreign Member of year’s Wolf Prize in Mathematics. delighted that Fernando Coda Marques and the Royal Society, John Mather won the The prize is awarded annually by the Wolf Assaf Naor (last Fall’s Minerva Lecturer) Brouwer Prize, Sophie Morel won the in- Foundation in the fields of agriculture, will be joining us as full professors in augural AWM-Microsoft Research prize in chemistry, mathematics, medicine, physics, Alumni , faculty, students, friends, connect with us, write to us at September. Algebra and Number Theory, Peter Sarnak and the arts. The award will be presented Our finishing graduate students did very won the Wolf Prize, and Yasha Sinai the by Israeli President Shimon Peres on June [email protected] well on the job market with four win- Abel Prize.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Man and Machine Thinking About the Smooth 4-Dimensional Poincaré
    Quantum Topology 1 (2010), xxx{xxx Quantum Topology c European Mathematical Society Man and machine thinking about the smooth 4-dimensional Poincar´econjecture. Michael Freedman, Robert Gompf, Scott Morrison and Kevin Walker Mathematics Subject Classification (2000).57R60 ; 57N13; 57M25 Keywords.Property R, Cappell-Shaneson spheres, Khovanov homology, s-invariant, Poincar´e conjecture Abstract. While topologists have had possession of possible counterexamples to the smooth 4-dimensional Poincar´econjecture (SPC4) for over 30 years, until recently no invariant has existed which could potentially distinguish these examples from the standard 4-sphere. Rasmussen's s- invariant, a slice obstruction within the general framework of Khovanov homology, changes this state of affairs. We studied a class of knots K for which nonzero s(K) would yield a counterexample to SPC4. Computations are extremely costly and we had only completed two tests for those K, with the computations showing that s was 0, when a landmark posting of Akbulut [3] altered the terrain. His posting, appearing only six days after our initial posting, proved that the family of \Cappell{Shaneson" homotopy spheres that we had geared up to study were in fact all standard. The method we describe remains viable but will have to be applied to other examples. Akbulut's work makes SPC4 seem more plausible, and in another section of this paper we explain that SPC4 is equivalent to an appropriate generalization of Property R (\in S3, only an unknot can yield S1 × S2 under surgery"). We hope that this observation, and the rich relations between Property R and ideas such as taut foliations, contact geometry, and Heegaard Floer homology, will encourage 3-manifold topologists to look at SPC4.
    [Show full text]
  • From Stein to Weinstein and Back. Symplectic Geometry of Affine
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 3, July 2015, Pages 521–530 S 0273-0979(2015)01487-4 Article electronically published on February 19, 2015 From Stein to Weinstein and back. Symplectic geometry of affine complex manifolds, by Kai Cieliebak and Yakov Eliashberg, AMS Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012, xii+364 pp., ISBN 978- 0-8218-8533-8, hardcover, US $78. The book under review [5] is a landmark piece of work that establishes a fun- damental bridge between complex geometry and symplectic geometry. It is both a research monograph of the deepest kind and a panoramic companion to the two fields. The main characters are, respectively, Stein manifolds on the complex side and Weinstein manifolds on the symplectic side. The connection between the two is established by studying the corresponding geometric structures up to homotopy, or deformation, a context in which the h-principle plays a fundamental role. Stein manifolds are fundamental objects in complex analysis of several variables and in complex geometry. There are several equivalent definitions, but the most intuitive one is the following: they are the complex manifolds that admit a proper holomorphic embedding in some Cn (they are in particular noncompact). Stein manifolds can be thought of as being a far-reaching generalization of domains of holomorphy in Cn. Other important classes of examples are noncompact Riemann surfaces and complements of hyperplane sections of smooth algebraic manifolds. The latter are actually examples of affine (algebraic) manifolds, meaning that they are described by polynomial equations in Cn.
    [Show full text]
  • Mom Technology and Volumes of Hyperbolic 3-Manifolds 3
    1 MOM TECHNOLOGY AND VOLUMES OF HYPERBOLIC 3-MANIFOLDS DAVID GABAI, ROBERT MEYERHOFF, AND PETER MILLEY 0. Introduction This paper is the first in a series whose goal is to understand the structure of low-volume complete orientable hyperbolic 3-manifolds. Here we introduce Mom technology and enumerate the hyperbolic Mom-n manifolds for n ≤ 4. Our long- term goal is to show that all low-volume closed and cusped hyperbolic 3-manifolds are obtained by filling a hyperbolic Mom-n manifold, n ≤ 4 and to enumerate the low-volume manifolds obtained by filling such a Mom-n. William Thurston has long promoted the idea that volume is a good measure of the complexity of a hyperbolic 3-manifold (see, for example, [Th1] page 6.48). Among known low-volume manifolds, Jeff Weeks ([We]) and independently Sergei Matveev and Anatoly Fomenko ([MF]) have observed that there is a close con- nection between the volume of closed hyperbolic 3-manifolds and combinatorial complexity. One goal of this project is to explain this phenomenon, which is sum- marized by the following: Hyperbolic Complexity Conjecture 0.1. (Thurston, Weeks, Matveev-Fomenko) The complete low-volume hyperbolic 3-manifolds can be obtained by filling cusped hyperbolic 3-manifolds of small topological complexity. Remark 0.2. Part of the challenge of this conjecture is to clarify the undefined adjectives low and small. In the late 1970’s, Troels Jorgensen proved that for any positive constant C there is a finite collection of cusped hyperbolic 3-manifolds from which all complete hyperbolic 3-manifolds of volume less than or equal to C can be obtained by Dehn filling.
    [Show full text]
  • Instanton Floer Homology and Contact Structures
    INSTANTON FLOER HOMOLOGY AND CONTACT STRUCTURES JOHN A. BALDWIN AND STEVEN SIVEK Abstract. We define an invariant of contact 3-manifolds with convex boundary using Kro- nheimer and Mrowka's sutured instanton Floer homology theory. This is the first invariant of contact manifolds|with or without boundary—defined in the instanton Floer setting. We prove that our invariant vanishes for overtwisted contact structures and is nonzero for contact manifolds with boundary which embed into Stein fillable contact manifolds. Moreover, we propose a strategy by which our contact invariant might be used to relate the fundamental group of a closed contact 3-manifold to properties of its Stein fillings. Our construction is inspired by a reformulation of a similar invariant in the monopole Floer setting defined by the authors in [1]. 1. Introduction Floer-theoretic invariants of contact manifolds have been responsible for many important results in low-dimensional topology. Notable examples of such invariants include the invariants of closed contact 3-manifolds defined by Kronheimer and Mrowka [13] and by Ozsv´athand Szab´o[25] in monopole and Heegaard Floer homology, respectively. Among other applications, these have been used to show that their respective homology theories detect the Thurston norm and that knot Floer homology detects the Seifert genus [20, 24], to prove Dehn surgery characterizations of the unknot [15] and the trefoil and figure eight [7, 26], and to prove many results about contact 3-manifolds, such as a complete solution to the existence problem for tight contact structures on Seifert fiber spaces [22]. Also important is the work in [11], where Honda, Kazez, and Mati´cextend Ozsv´athand Szab´o'sconstruction, using sutured Heegaard Floer homology to define an invariant of sutured contact manifolds, which are triples of the form (M; Γ; ξ) where (M; ξ) is a contact 3-manifold with convex boundary and Γ ⊂ @M is a multicurve dividing the characteristic foliation of ξ on @M.
    [Show full text]
  • On the Contact Mapping Class Group of the Contactization of the Am-Milnor
    On the contact mapping class group of the contactization of the Am-Milnor fiber Sergei Lanzat and Frol Zapolsky Abstract We construct an embedding of the full braid group on m+1 strands Bm+1, m ≥ 1, into the contact mapping class group of the contacti- 1 zation Q × S of the Am-Milnor fiber Q. The construction uses the embedding of Bm+1 into the symplectic mapping class group of Q due to Khovanov and Seidel, and a natural lifting homomorphism. In order to show that the composed homomorphism is still injective, we use a partially linearized variant of the Chekanov–Eliashberg dga for Leg- endrians which lie above one another in Q × R, reducing the proof to Floer homology. As corollaries we obtain a contribution to the contact isotopy problem for Q×S1, as well as the fact that in dimension 4, the lifting homomorphism embeds the symplectic mapping class group of Q into the contact mapping class group of Q × S1. 1 Introduction and main result Let (V,ξ) be a contact manifold with a cooriented contact structure, let Cont(V,ξ) be its group of coorientation-preserving compactly supported contactomorphisms, and let Cont0(V,ξ) ⊂ Cont(V,ξ) be the identity com- ponent. In this note we study the contact mapping class group arXiv:1511.00879v2 [math.SG] 24 Aug 2016 π0 Cont(V,ξ) = Cont(V,ξ)/ Cont0(V,ξ) when V is the contactization of the Am-Milnor fiber. For m,n ∈ N with n ≥ 2 the 2n-dimensional Milnor fiber is defined as the complex hypersurface 2 2 m+1 Cn+1 Q ≡ Qm = {w = (w0, .
    [Show full text]
  • Letter from the Chair Celebrating the Lives of John and Alicia Nash
    Spring 2016 Issue 5 Department of Mathematics Princeton University Letter From the Chair Celebrating the Lives of John and Alicia Nash We cannot look back on the past Returning from one of the crowning year without first commenting on achievements of a long and storied the tragic loss of John and Alicia career, John Forbes Nash, Jr. and Nash, who died in a car accident on his wife Alicia were killed in a car their way home from the airport last accident on May 23, 2015, shock- May. They were returning from ing the department, the University, Norway, where John Nash was and making headlines around the awarded the 2015 Abel Prize from world. the Norwegian Academy of Sci- ence and Letters. As a 1994 Nobel Nash came to Princeton as a gradu- Prize winner and a senior research ate student in 1948. His Ph.D. thesis, mathematician in our department “Non-cooperative games” (Annals for many years, Nash maintained a of Mathematics, Vol 54, No. 2, 286- steady presence in Fine Hall, and he 95) became a seminal work in the and Alicia are greatly missed. Their then-fledgling field of game theory, life and work was celebrated during and laid the path for his 1994 Nobel a special event in October. Memorial Prize in Economics. After finishing his Ph.D. in 1950, Nash This has been a very busy and pro- held positions at the Massachusetts ductive year for our department, and Institute of Technology and the In- we have happily hosted conferences stitute for Advanced Study, where 1950s Nash began to suffer from and workshops that have attracted the breadth of his work increased.
    [Show full text]
  • 2010 Veblen Prize
    2010 Veblen Prize Tobias H. Colding and William P. Minicozzi Biographical Sketch and Paul Seidel received the 2010 Oswald Veblen Tobias Holck Colding was born in Copenhagen, Prize in Geometry at the 116th Annual Meeting of Denmark, and got his Ph.D. in 1992 at the Univer- the AMS in San Francisco in January 2010. sity of Pennsylvania under Chris Croke. He was on Citation the faculty at the Courant Institute of New York University in various positions from 1992 to 2008 The 2010 Veblen Prize in Geometry is awarded and since 2005 has been a professor at MIT. He to Tobias H. Colding and William P. Minicozzi II was also a visiting professor at MIT from 2000 for their profound work on minimal surfaces. In to 2001 and at Princeton University from 2001 to a series of papers, they have developed a struc- 2002 and a postdoctoral fellow at MSRI (1993–94). ture theory for minimal surfaces with bounded He is the recipient of a Sloan fellowship and has genus in 3-manifolds, which yields a remarkable given a 45-minute invited address to the ICM in global picture for an arbitrary minimal surface 1998 in Berlin. He gave an AMS invited address in of bounded genus. This contribution led to the Philadelphia in 1998 and the 2000 John H. Barrett resolution of long-standing conjectures and initi- Memorial Lectures at University of Tennessee. ated a wave of new results. Specifi cally, they are He also gave an invited address at the first AMS- cited for the following joint papers, of which the Scandinavian International Meeting in Odense, fi rst four form a series establishing the structure Denmark, in 2000, and an invited address at the theory for embedded surfaces in 3-manifolds: Germany Mathematics Meeting in 2003 in Rostock.
    [Show full text]
  • January 2007 Prizes and Awards
    January 2007 Prizes and Awards 4:25 P.M., Saturday, January 6, 2007 MATHEMATICAL ASSOCIATION OF AMERICA DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS In 1991, the Mathematical Association of America instituted the Deborah and Franklin Tepper Haimo Awards for Distinguished College or University Teaching of Mathematics in order to honor college or university teachers who have been widely recognized as extraordinarily successful and whose teaching effectiveness has been shown to have had influence beyond their own institutions. Deborah Tepper Haimo was president of the Association, 1991–1992. Citation Jennifer Quinn Jennifer Quinn has a contagious enthusiasm that draws students to mathematics. The joy she takes in all things mathematical is reflected in her classes, her presentations, her publications, her videos and her on-line materials. Her class assignments often include nonstandard activities, such as creating time line entries for historic math events, or acting out scenes from the book Proofs and Refutations. One student created a children’s story about prime numbers and another produced a video documentary about students’ perceptions of math. A student who had her for six classes says, “I hope to become a teacher after finishing my master’s degree and I would be thrilled if I were able to come anywhere close to being as great a teacher as she is.” Jenny developed a variety of courses at Occidental College. Working with members of the physics department and funded by an NSF grant, she helped develop a combined yearlong course in calculus and mechanics. She also developed a course on “Mathematics as a Liberal Art” which included computer discussions, writing assignments, and other means to draw technophobes into the course.
    [Show full text]
  • Intellectual Generosity & the Reward Structure of Mathematics
    This is a preprint of an article forthcoming in Synthese. Intellectual Generosity & The Reward Structure Of Mathematics Rebecca Lea Morris April 9, 2020 Abstract Prominent mathematician William Thurston was praised by other mathematicians for his intellectual generosity. But what does it mean to say Thurston was intellectually generous? And is being intellectually generous beneficial? To answer these questions I turn to virtue epistemology and, in particular, Roberts and Wood's (2007) analysis of intellectual generosity. By appealing to Thurston's own writings and interviewing mathematicians who knew and worked with him, I argue that Roberts and Wood's analysis nicely captures the sense in which he was intellectually generous. I then argue that intellectual generosity is beneficial because it counteracts negative effects of the reward structure of mathematics that can stymie mathematical progress. Contents 1 Introduction 1 2 Virtue Epistemology 2 3 William Thurston 4 4 Reflections on Thurston & Intellectual Generosity 10 5 The Benefits of Intellectual Generosity: Overcoming Problems with the Reward Structure of Mathematics 13 6 Concluding Remarks 19 1 Introduction William Thurston (1946 { 2012) was described by his fellow mathematicians as an intel- lectually generous person. This raises two questions: (i) What does it mean to say that Thurston was intellectually generous?; (ii) Is being intellectually generous beneficial? To answer these questions I turn to virtue epistemology. I answer question (i) by showing that Roberts and Wood's (2007) analysis nicely captures Thurston's intellectual generosity. To answer question (ii) I first show that the reward structure of mathematics can hinder 1 This is a preprint of an article forthcoming in Synthese.
    [Show full text]