Review of Tsunami Hazard in New Zealand (2013 Update) Compiled by William Power

Total Page:16

File Type:pdf, Size:1020Kb

Review of Tsunami Hazard in New Zealand (2013 Update) Compiled by William Power Review of Tsunami Hazard in New Zealand (2013 Update) Compiled by William Power GNS Science Consultancy Report 2013/131 August 2013 DISCLAIMER This report has been prepared by the Institute of Geological and Nuclear Sciences Limited (GNS Science) exclusively for and under contract to the Ministry of Civil Defence and Emergency Management. Unless otherwise agreed in writing by GNS Science, GNS Science accepts no responsibility for any use of, or reliance on any contents of this Report by any person other than the Ministry of Civil Defence and Emergency Management and shall not be liable to any person other than the Ministry of Civil Defence and Emergency Management, on any ground, for any loss, damage or expense arising from such use or reliance. The data presented in this Report are available to GNS Science for other use from 13 September 2013. BIBLIOGRAPHIC REFERENCE Power, W. L. (compiler). 2013. Review of Tsunami Hazard in New Zealand (2013 Update), GNS Science Consultancy Report 2013/131. 222 p. Project Number 410W1378 Confidential 2013 CONTENTS EXECUTIVE SUMMARY ...................................................................................................... IX 1.0 INTRODUCTION ........................................................................................................ 1 1.1 SCOPE OF THIS REPORT ................................................................................... 1 1.2 CONTRIBUTORS ............................................................................................... 1 1.3 STRUCTURE OF THE REPORT ............................................................................ 2 1.4 WHAT IS A TSUNAMI? ........................................................................................ 3 1.5 WHAT DAMAGE DOES A TSUNAMI DO? ................................................................ 5 2.0 TSUNAMI IMPACTS................................................................................................... 7 2.1 INTRODUCTION ................................................................................................ 7 2.2 TSUNAMI RISK ................................................................................................. 7 2.3 TSUNAMI IMPACT TYPES ................................................................................... 8 2.4 ASSESSING THE COSTS OF TSUNAMI IMPACTS ...................................................12 2.4.1 Qualitative damage assessments ................................................................... 13 2.4.2 Semi-quantitative damage assessments ........................................................ 14 2.4.3 Quantitative damage assessments ................................................................. 14 2.4.4 Tsunami damage assessments – ex ante ....................................................... 14 2.4.5 Tsunami damage assessment – ex post ......................................................... 25 2.5 REFERENCES..................................................................................................28 3.0 PALEOTSUNAMI AND HISTORICAL TSUNAMI DATABASES .............................. 35 3.1 HISTORICAL TSUNAMI RECORDS .......................................................................35 3.2 LARGE HISTORICAL TSUNAMI ............................................................................39 3.3 RECENT TSUNAMI EVENTS 2005–2011 .............................................................43 3.4 APPLICATION OF THE NEW ZEALAND HISTORICAL TSUNAMI RECORD ...................47 3.5 PALEOTSUNAMI RECORDS ...............................................................................47 3.5.1 Description of paleotsunami ............................................................................ 47 3.5.2 The New Zealand paleotsunami database ...................................................... 49 3.5.3 Recent paleotsunami research 2005–2011 .................................................... 55 3.5.4 Summary of paleotsunami in New Zealand .................................................... 59 3.6 REFERENCES..................................................................................................60 4.0 TSUNAMI MODELLING ........................................................................................... 63 4.1 NUMERICAL MODELS .......................................................................................63 4.2 TSUNAMI GENERATION ....................................................................................65 4.2.1 Submarine earthquakes .................................................................................. 65 4.2.2 Landslides and volcanoes ............................................................................... 67 4.3 PROPAGATION MODELLING ..............................................................................68 4.3.1 Modelling tsunami propagation numerically .................................................... 69 4.3.2 Insights from propagation modelling ............................................................... 73 4.4 INUNDATION MODELLING ..................................................................................77 4.4.1 Numerical modelling of tsunami inundation .................................................... 77 4.5 EMPIRICAL TSUNAMI MODELLING ......................................................................79 GNS Science Consultancy Report 2013/131 i Confidential 2013 4.5.1 Empirical modelling of tsunami heights ........................................................... 79 4.5.2 Empirical modelling of tsunami inundation ...................................................... 80 4.5.3 Deriving rules for defining tsunami evacuation zones ..................................... 80 4.6 REAL-TIME TSUNAMI MODELLING AND FORECASTS .............................................82 4.7 PROBLEMS AND LIMITATIONS OF TSUNAMI MODELLING .......................................85 4.8 TSUNAMI MODELLING STUDIES RELEVANT TO NEW ZEALAND ..............................85 4.8.1 Tsunami modelling studies in New Zealand .................................................... 85 4.9 REFERENCES..................................................................................................86 5.0 DEFINING TSUNAMI SOURCES ............................................................................. 91 5.1 DISTANT SOURCES ..........................................................................................91 5.1.1 Earthquakes .................................................................................................... 91 5.1.2 Landslides ....................................................................................................... 98 5.1.3 Volcanoes ........................................................................................................ 99 5.1.4 Bolide impact ................................................................................................... 99 5.2 REGIONAL SOURCES .....................................................................................100 5.2.1 Earthquakes .................................................................................................. 100 5.2.2 Volcanoes ...................................................................................................... 104 5.2.3 Landslides ..................................................................................................... 105 5.3 LOCAL SOURCES ...........................................................................................108 5.3.1 Earthquakes .................................................................................................. 108 5.3.2 Landslides ..................................................................................................... 113 5.3.3 Volcanoes ...................................................................................................... 117 5.4 REFERENCES................................................................................................118 6.0 PROBABILISTIC MODELLING .............................................................................. 125 6.1 INTRODUCTION AND MOTIVATION ....................................................................125 6.2 METHODOLOGY OUTLINE ...............................................................................125 6.3 TYPES OF UNCERTAINTY AND VARIABILITY .......................................................127 6.4 SOURCE DEFINITION ......................................................................................127 6.5 TREATMENT OF VARIABLE SLIP AND MODELLING UNCERTAINTY ......................... 128 6.6 ESTIMATION OF TSUNAMI HEIGHTS ................................................................. 130 6.7 CALCULATION ...............................................................................................131 6.8 DEAGGREGATION OF TSUNAMI SOURCES ........................................................131 6.9 RESULTS ......................................................................................................132 6.10 COMMENTS AND DISCUSSION OF RESULTS ......................................................169 6.11 FUTURE WORK ..............................................................................................170 6.12 REFERENCES................................................................................................171 7.0 DISCUSSION AND CONCLUSIONS ...................................................................... 173 7.1 SUMMARY .....................................................................................................173
Recommended publications
  • Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP CP-37 U.S. GEOLOGICAL SURVEY Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant 1:10,000,000 ICIRCUM-PACIFIC i • \ COUNCIL AND MINERAL RESOURCES 1991 CIRCUM-PACIFIC COUNCIL FOR ENERGY AND MINERAL RESOURCES Michel T. Halbouty, Chairman CIRCUM-PACIFIC MAP PROJECT John A. Reinemund, Director George Gryc, General Chairman Erwin Scheibner, Advisor, Tectonic Map Series EXPLANATORY NOTES FOR THE TECTONIC MAP OF THE CIRCUM-PACIFIC REGION SOUTHWEST QUADRANT 1:10,000,000 By Erwin Scheibner, Geological Survey of New South Wales, Sydney, 2001 N.S.W., Australia Tadashi Sato, Institute of Geoscience, University of Tsukuba, Ibaraki 305, Japan H. Frederick Doutch, Bureau of Mineral Resources, Canberra, A.C.T. 2601, Australia Warren O. Addicott, U.S. Geological Survey, Menlo Park, California 94025, U.S.A. M. J. Terman, U.S. Geological Survey, Reston, Virginia 22092, U.S.A. George W. Moore, Department of Geosciences, Oregon State University, Corvallis, Oregon 97331, U.S.A. 1991 Explanatory Notes to Supplement the TECTONIC MAP OF THE CIRCUM-PACIFTC REGION SOUTHWEST QUADRANT W. D. Palfreyman, Chairman Southwest Quadrant Panel CHIEF COMPILERS AND TECTONIC INTERPRETATIONS E. Scheibner, Geological Survey of New South Wales, Sydney, N.S.W. 2001 Australia T. Sato, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan C. Craddock, Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. TECTONIC ELEMENTS AND STRUCTURAL DATA AND INTERPRETATIONS J.-M. Auzende et al, Institut Francais de Recherche pour 1'Exploitacion de la Mer (IFREMER), Centre de Brest, B.
    [Show full text]
  • Developing a National Framework for Monitoring the Grey-Faced Petrel (Pterodroma Gouldi) As an Indicator Species
    Developing a national framework for monitoring the grey-faced petrel (Pterodroma gouldi) as an indicator species J.C. Russell, J.R. Welch, S. Dromzée, K. Bourgeois, J. Thoresen, R. Earl, B. Greene, I. Westbrooke and K. McNutt DOC RESEARCH AND DEVELOPMENT SERIES 350 Contributors: JR, KM, BG and JW wrote the manuscript JR, KM, BG and IW designed the study JW and IW analysed the data JW, KB, SD and JT undertook fieldwork RE drew the maps DOC Research & Development Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Series. © Copyright December 2017, New Zealand Department of Conservation ISSN 1177–9306 (web PDF) ISBN 978–1–98–478–851445–1 (web PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and Lynette Clelland; layout by Lynette Clelland. Publication was approved by the Director, Planning and Support Unit, Biodiversity Group, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. CONTENTS Abstract 1 1. Introduction 2 1.1 Grey-faced petrel as an indicator species 2 1.1.1 Natural history 2 1.1.2 Population regulation 3 1.1.3 Measures of population size 4 1.1.4 Survey methods 4 1.2 Objectives 5 2.
    [Show full text]
  • Bibliography of Geology and Geophysics of the Southwestern Pacific
    UNITED NATIONS ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC COMMITTEE FOR CO-ORDINATION OF JOINT PROSPECTING FOR MINERAL RESOURCES IN SOUTH PACIFIC OFFSHORE AREAS (CCOP/SOPAC) TECIThlJCAL BULLETIN No. 5 BIBLIOGRAPHY OF GEOLOGY AND GEOPHYSICS OF THE SOUTHWESTERN PACIFIC Edited by CHRISTIAN JOUANNIC UNDP Marine Geologist, Technical Secretariat ofCCOPjSOPAC, Suva, Fiji and ROSE-MARIE THOMPSON NiZ. Oceanographic Institute. Wellington Ali communications relating to this and other publications of CCOP/SOPAC should he addressed to: Technical Secretariat of CCOP/SOPAC, cio Mineral Resources Department, Private Bag, Suva, Fiji. This publication should he referred to as u.N. ESCAP, CCOP/SOPAC Tech. Bull. 5 The designations employed and presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status ofany country or territory or of its authorities, or concerning the delimitation of the frontiers of any country or territory. Cataloguing in Publication BIBLIOGRAPHY of geology and geophysics of the southwestern Pacifie / edited by Christian Jouannic and Rose-Marie Thompson. - [2nd ed/]. - Suva: CCOP/SOPAC. 1983. (Technical bulletin / United Nations Economie and Social Commission for Asia and the Pacifie, Committee for Co-ordination of Joint Prospecting for Mineral Resources in South Pacifie Offshore Areas, ISSN 0378-6447 : 5) ISBN 0-477-06729-8 1. Jouannic, Christian II. Thompson, Rose­ Marie III. Series UDC 016:55 (93/96) The publication of this 2nd Edition of the Bibliography of the Geology and Geophysics of the Southwestern Pacifie has been funded by the Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM, 24 Rue Bayard, 75008 Paris, France) as a contri- bution by ORSTOM to the activities of CCOP/SOPAC.
    [Show full text]
  • The Late Castlecliffian and Early Haweran Stratigraphy of the Manawatu and Rangitikei Districts
    GSNZ Conference 2006 Manawatu-Rangitikei FieldTrip Guide THE LATE CASTLECLIFFIAN AND EARLY HAWERAN STRATIGRAPHY OF THE MANAWATU AND RANGITIKEI DISTRICTS Griffins Road Quarry. The Upper Griffins Road Tephra is above Brad Pillan’s head. The Middle Griffins Road Tephra is at his waist level, and Brent Alloway is sampling the Lower Griffins Road Tephra just above the Aldworth river gravels (OI 10). 1 2 2 ALAN PALMER , JOHN BEGG , DOUGAL TOWNSEND & KATE 2 WILSON 1 Soil and Earth Sciences, INR, Massey University, PB 11-222, Palmerston North. ([email protected]) 2 Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt. GSNZ Miscellaneous Publication 122B Supplement 1 ISBN 0-908678-06-1 Page 1 GSNZ Conference 2006 Manawatu-Rangitikei FieldTrip Guide THE LATE CASTLECLIFFIAN AND EARLY HAWERAN STRATIGRAPHY OF THE MANAWATU AND RANGITIKEI DISTRICTS 1 2 2 2 ALAN PALMER , JOHN BEGG , DOUGAL TOWNSEND & KATE WILSON 1 Soil and Earth Sciences, INR, Massey University, PB 11-222, Palmerston North. ([email protected]) 2 Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt. INTRODUCTION The age of many mid-late Quaternary surfaces in the area between Wanganui and Palmerston North has been poorly known because: 1. The marine terraces are not as well defined as they are west of Wanganui (Pillans, 1990). 2. The wave cut surfaces are difficult to locate, and the underlying sediments are sand dominated and softer. 3. The loess cover on marine and river terraces is of the Pallic Soil facies, i.e. pale grey and mottled, making paleosols difficult to see in the poorly drained loess.
    [Show full text]
  • A Coherent Middle Pliocene Magnetostratigraphy, Wanganui Basin, New Zealand
    Journal of the Royal Society of New Zealand ISSN: 0303-6758 (Print) 1175-8899 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzr20 A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand Gillian M. Turner , Peter J. J. Kamp , Avon P. McIntyre , Shaun Hayton , Donald M. McGuire & Gary S. Wilson To cite this article: Gillian M. Turner , Peter J. J. Kamp , Avon P. McIntyre , Shaun Hayton , Donald M. McGuire & Gary S. Wilson (2005) A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand, Journal of the Royal Society of New Zealand, 35:1-2, 197-227, DOI: 10.1080/03014223.2005.9517781 To link to this article: http://dx.doi.org/10.1080/03014223.2005.9517781 Published online: 30 Mar 2010. Submit your article to this journal Article views: 89 View related articles Citing articles: 13 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzr20 Download by: [203.118.162.158] Date: 01 February 2017, At: 18:47 197 Journal of the Royal Society of New Zealand Volume 35, Numbers 1 & 2, March/June, 2005, pp 197-227 A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand Gillian M. Turner1, Peter J. J. Kamp2*, Avon P. McIntyre2,3, Shaun Hayton2,4, Donald M. McGuire5, and Gary S. Wilson6 Abstract We document magnetostratigraphies for three river sections (Turakina, Ran- gitikei, Wanganui) in Wanganui Basin and interpret them as corresponding to the Upper Gilbert, the Gauss and lower Matuyama Chrons of the Geomagnetic Polarity Timescale, in agreement with foraminiferal biostratigraphic datums.
    [Show full text]
  • GNS Staff Publications 2008 A
    GNS Staff Publications 2008 A Adams, C.J. 2008 Provenance of gold in Mesozoic mesothermal mineral deposits in New Zealand. p. 39 In: Australian Earth Sciences Convention, Perth, 20 July-24 July, 2008 : program & abstract booklet. Abstracts / Geological Society of Australia 89 Adams, C.J. 2008 Provenance of gold in Mesozoic mesothermal mineral deposits in New Zealand. p. 204 In: Wysoczanski, R. (comp.) Geological Society of New Zealand, New Zealand Geophysical Society, New Zealand Geochemical & Mineralogical Society joint annual conference : Geosciences '08 : programme and abstracts. Geological Society of New Zealand miscellaneous publication 125A Adams, C.J.; Campbell, H.J.; Griffin, W.J. 2008 Age and provenance of basement rocks of the Chatham Islands : an outpost of Zealandia. New Zealand journal of geology and geophysics, 51(3): 245-259 Adams, C.J.; Ireland, T.R. 2008 Provenance connections between Late Neoproterozoic and Early Paleozoic sedimentary basins of the Ross Sea region, Antarctica, southeast Australia and southern Zealandia. Extended abstract 064 In: Cooper, A.K.; Barrett, P.; Stagg, H.; Storey, B.; Stump, E.; Wise, W.; 10th ISAES editorial team; Davey, F.J.; Naish, T.R. (eds) Antarctica : a keystone in a changing world : proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 to September 1, 2007. Open-file report / US Geological Survey 2007-1047 Adams, C.J.; Miller, H.; Toselli, A.J.; Griffin, W.L. 2008 The Puncoviscana Formation of northwest Argentina : U-Pb geochronology of detrital zircons and Rb-Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch fuer Geologie und Palaeontologie.
    [Show full text]
  • Island Restoration: Seabirds, Predators, and the Importance of History
    AvailableBellingham on-line et al.: at: Island http://www.newzealandecology.org/nzje/ restoration 115 special issue: Feathers to Fur The ecological transformation of Aotearoa/New Zealand New Zealand island restoration: seabirds, predators, and the importance of history Peter J. Bellingham1*, David R. Towns2, Ewen K. Cameron3, Joe J. Davis4, David A. Wardle1, 5, Janet M. Wilmshurst1 and Christa P.H. Mulder6 1Landcare Research, PO Box 40, Lincoln 7640, New Zealand 2Department of Conservation, Private Bag 68-908, Auckland, New Zealand 3Auckland Museum, Private Bag 92018, Auckland, New Zealand 4Ngāti Hei Trust, PO Box 250, Whitianga, New Zealand 5Department of Forest Vegetation Ecology, Swedish University of Agricultural Sciences, S 901 83 Umeå, Sweden 6Department of Biology and Wildlife & Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, USA *Author for correspondence (Email: [email protected]) Published online: 6 October 2009 Abstract: New Zealand’s offshore and outlying islands have long been a focus of conservation biology as sites of local endemism and as last refuges for many species. During the c. 730 years since New Zealand has been settled by people, mammalian predators have invaded many islands and caused local and global extinctions. New Zealand has led international efforts in island restoration. By the late 1980s, translocations of threatened birds to predator-free islands were well under way to safeguard against extinction. Non-native herbivores and predators, such as goats and cats, had been eradicated from some islands. A significant development in island restoration in the mid-1980s was the eradication of rats from small forested islands. This eradication technology has been refined and currently at least 65 islands, including large and remote Campbell (11 216 ha) and Raoul (2938 ha) Islands, have been successfully cleared of rats.
    [Show full text]
  • The Last Interglacial Sea-Level Record of Aotearoa New Zealand (Aotearoa)
    The last interglacial sea-level record of Aotearoa New Zealand (Aotearoa) Deirdre D. Ryan1*, Alastair J.H. Clement2, Nathan R. Jankowski3,4, Paolo Stocchi5 1MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany 5 2School of Agriculture and Environment, Massey University, Palmerston North, New Zealand 3 Centre for Archeological Science, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia 4Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, Australia 10 5NIOZ, Royal Netherlands Institute for Sea Research, Coastal Systems Department, and Utrecht University, PO Box 59 1790 AB Den Burg (Texel), The Netherlands Correspondence to: Deirdre D. Ryan ([email protected]) Abstract: This paper presents the current state-of-knowledge of the Aotearoa New Zealand (Aotearoa) last interglacial (MIS 5 sensu lato) sea-level record compiled within the framework of the World Atlas of Last Interglacial Shorelines (WALIS) 15 database. Seventy-seven total relative sea-level (RSL) indicators (direct, marine-, and terrestrial-limiting points), commonly in association with marine terraces, were identified from over 120 studies reviewed. Extensive coastal deformation around New Zealand has prompted research focused on active tectonics, which requires less precision than sea-level reconstruction. The range of last interglacial paleo-shoreline elevations are resulted in a significant range of elevation measurements on both the North Island (276.8 ± 10.0 to -94.2 ± 10.6 m amsl) and South Island (173.1165.8 ± 2.0 to -70.0 ± 10.3 m amsl) and 20 prompted the use of RSL indicators tohave been used to estimate rates of vertical land movement; however, indicators in many instances lackk adequate description and age constraint for high-quality RSL indicators.
    [Show full text]
  • Moutohorā (Whale Island) Wildlife Management Reserve Ecological Restoration Plan 2014–2024 Cover: Moutohorā (Whale Island) Wildlife Management Reserve
    Moutohorā (Whale Island) Wildlife Management Reserve ecological restoration plan 2014–2024 Cover: Moutohorā (Whale Island) Wildlife Management Reserve. Photo: David Finn. © Copyright October 2016, New Zealand Department of Conservation Published by Opotiki Office, Department of Conservation, PO Box 326, Opotiki 3162, New Zealand. CONTENTS 1. Introduction 1 2. Moutohorā (Whale Island) Wildlife Management Reserve 3 2.1 Geography 3 2.2 Climate 3 2.3 Geology and landscape 4 2.4 Soils 4 2.5 Mammalian pest eradication 4 3. Flora 6 3.1 Forest structure and revegetation 6 3.2 Threatened plant reintroductions 8 4. Invertebrates 10 5. Reptiles 12 5.1 Tuatara 12 5.2 Lizards 14 6. Avifauna 17 6.1 Seabirds 17 6.2 Kiwi 20 6.3 Tīeke 21 6.4 Kākāriki 23 7. Marine mammals 24 7.1 New Zealand fur seal 24 8. Control of pest plants 26 9. Control of avian pests 28 9.1 Southern black-backed gulls 28 9.2 Rock pigeons 29 10. Contingencies 31 10.1 Fire 31 10.2 Biosecurity 32 11. Summary of tasks 33 12. Acknowledgements 36 13. References 36 Appendix 1 Vascular flora of Moutohorā (Whale Island) Wildlife Management Reserve 40 Appendix 2 Vegetation and cover class map of Moutohorā (Whale Island) Wildlife Management Reserve 48 Appendix 3 Map and table of vegetation monitoring plot sites in Moutohorā (Whale Island) Wildlife Management Reserve 49 Appendix 4 Reptile species list for Moutohorā (Whale Island) Wildlife Management Reserve 51 Appendix 5 Avifauna species list for Moutohorā (Whale Island) Wildlife Management Reserve 52 Appendix 6 Tīeke (Philesturnus carunculatus) transect lines 54 Moutohorā (Whale Island) Wildlife Management Reserve ecological restoration plan 2014–2024 Prepared by: Mithuna Sothieson, Anastacia Kirk, Don McLean and Pete Livingstone Opotiki Office, Department of Conservation, PO Box 326, Opotiki 3162.
    [Show full text]
  • Taxon Plan for Eastern Brown Kiwi (Apteryx Australis Mantelli, Eastern)
    Taxon Plan for Eastern brown kiwi (Apteryx australis mantelli, Eastern) Strategic plan for the recovery of Eastern brown kiwi for the period 2014 – 2019 and beyond, including key actions required for their recovery. Lead author: Rhys Burns East Coast Bay of Plenty Conservancy Rotorua Version Date: April 2014 DOCDM-1256468 - Eastern NIBK Taxon Plan DRAFT 1 Low res figures 1 Last printed 27/11/2014 4:49:00 p.m. Preface The 2008-2018 Kiwi Recovery Plan (Holzapfel et al. 2008) provides strategic direction, at a national level, to ensure the long term viability of all kiwi taxa1. The Kiwi Recovery Group is responsible for the implementation and review of this national plan. Because the Kiwi Recovery Plan provides general national strategic level advice for many taxa over many regions, it can not practicably spell out management for each individual taxon to the level of detail required to guide work-plans and thus implement successful recovery. This is the role of taxon plans. Taxon plans translate the relevant goals, objectives and actions of the Kiwi Recovery Plan into a local context for individual taxa at a level of detail sufficient to guide operational plans. They are ‘best advice’ for all stakeholders regarding goals, objectives and actions, priorities and opportunities, for the management of individual taxa. As such, taxon plans are key documents for the implementation of the Kiwi Recovery Plan. Although taxon plans are more operationally-focused than the Kiwi Recovery Plan, they do not provide the level of detail of a workplan. Nor do taxon plans provide details of best practice information which is instead provided at a national level by the Kiwi Best Practice Manual (Robertson, et al.
    [Show full text]
  • New Zealand Touring Map
    Manawatawhi / Three Kings Islands NEW ZEALAND TOURING MAP Cape Reinga Spirits North Cape (Otoa) (Te Rerengawairua) Bay Waitiki North Island Landing Great Exhibition Kilometres (km) Kilometres (km) N in e Bay Whangarei 819 624 626 285 376 450 404 698 539 593 155 297 675 170 265 360 658 294 105 413 849 921 630 211 324 600 863 561 t Westport y 1 M Wellington 195 452 584 548 380 462 145 355 334 983 533 550 660 790 363 276 277 456 148 242 352 212 649 762 71 231 Wanaka i l Karikari Peninsula e 95 Wanganui 370 434 391 222 305 74 160 252 779 327 468 454 North Island971 650 286 508 714 359 159 121 499 986 1000 186 Te Anau B e a Wairoa 380 308 252 222 296 529 118 781 329 98 456 800 479 299 348 567 187 189 299 271 917 829 Queenstown c Mangonui h Cavalli Is Themed Highways29 350 711 574 360 717 905 1121 672 113 71 10 Thames 115 205 158 454 349 347 440 107 413 115 Picton Kaitaia Kaeo 167 86 417 398 311 531 107 298 206 117 438 799 485 296 604 996 1107 737 42 Tauranga For more information visit Nelson Ahipara 1 Bay of Tauroa Point Kerikeri Islands Cape Brett Taupo 82 249 296 143 605 153 350 280 newzealand.com/int/themed-highways643 322 329 670 525 360 445 578 Mt Cook (Reef Point) 87 Russell Paihia Rotorua 331 312 225 561 107 287 234 1058 748 387 637 835 494 280 Milford Sound 11 17 Twin Coast Discovery Highway: This route begins Kaikohe Palmerston North 234 178 853 401 394 528 876 555 195 607 745 376 Invercargill Rawene 10 Whangaruru Harbour Aotearoa, 13 Kawakawa in Auckland and travels north, tracing both coasts to 12 Poor Knights New Plymouth 412 694 242 599 369 721 527 424 181 308 Haast Opononi 53 1 56 Cape Reinga and back.
    [Show full text]
  • Seal Quality and Distribution in the Southern Taranaki Basin Late Cretaceous to Eocene Section and Implications for Hydrocarbon Trapping
    SEAL QUALITY AND DISTRIBUTION IN THE SOUTHERN TARANAKI BASIN LATE CRETACEOUS TO EOCENE SECTION AND IMPLICATIONS FOR HYDROCARBON TRAPPING ________________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geology in the University of Canterbury by J. Coyle University of Canterbury 2018 ________________________________________________________________ Contents Abstract ................................................................................................................................................... V Acknowledgments .................................................................................................................................. VI 1. Introduction .................................................................................................................................... 1 1.1 Project Aims and Outline ........................................................................................................ 1 1.2 Geological Overview ............................................................................................................... 4 1.3 Seals ........................................................................................................................................ 5 1.4 Previous and Current Exploration ........................................................................................... 6 2. Overview of the Taranaki Basin .....................................................................................................
    [Show full text]