Unit OS2: Operating System Principles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Win32 API 1.Pdf
Win32 Programming for Microsoft Windows NT Windows NT is designed to address the changing requirements of the computing world. It is written mainly in C and is crafted in such a way as to make its functionality extensible, and to ease the porting of the code from one hardware platform to another. This enables the ability to take advantage of multiprocessor and RISC computers, and to distribute tasks to other computers on the network, transparently. Whilst providing applications and users with the ability to use the power of local and remote machines, Windows NT must offer compatibility to applications and users. Users must feel comfortable with the interface, and be able to run existing high-volume applications. Existing applications have to port simply to the new environment to take advantage of its power. So, the user interface is compatible with existing Microsoft systems and existing programming APIs are supported and have been extended. To be considered a major player in the server arena, Windows NT has to offer reliable, robust support for ‘mission critical’ software. This means the system should be fault tolerant, protecting itself from malfunction and from external tampering. It should behave predictably and applications should not be able to adversely affect the system or each other. It should also have a security policy to protect the use of system resources, and implement resource quotas and auditing. Networking is built in, with high level programming and user interfaces available. Remote access to other machines on various networks is almost transparent. Because applications have to perform to an expected level, the system should be fast and responsive on each hardware platform. -
Installation and Configuration Guide
NetApp SANtricity® SMI-S Provider 11.53 Installation and Configuration Guide December 2019 | 215-13407_C0 [email protected] Table of Contents About This Guide ............................................................................................................................. 1 Overview of the NetApp SANtricity SMI-S Provider ...................................................................... 1 What’s New ................................................................................................................................1 Abbreviations, Acronyms, Terms, and Definitions ........................................................................ 1 Supported Profiles and Subprofiles ............................................................................................. 1 Supported Operating Systems for SMI-S .................................................................................... 2 Supported Firmware Versions ........................................................................................................ 3 System Requirements ..................................................................................................................... 3 Installing and Uninstalling SMI-S Provider ..................................................................................... 4 Windows operating system install and uninstall process ............................................................... 4 Installing SMI-S Provider (Windows operating system) ..................................................... -
Process Explorer V16.05 (1.07 MB)
United States (English) Sign in Windows Sysinternals Search TechNet with Bing Home Learn Downloads Community Windows Sysinternals > Downloads > Process Utilities > Process Explorer Utilities Process Explorer Download Sysinternals Suite Utilities Index Download Process Explorer v16.05 (1.07 MB) File and Disk Utilities By Mark Russinovich Run Process Explorer now from Networking Utilities Published: March 10, 2015 Live.Sysinternals.com Process Utilities Download Process Explorer Runs on: Security Utilities (1.07 MB) System Information Utilities Rate: Client: Windows XP and higher (Including IA64). Miscellaneous Utilities Server: Windows Server 2003 and higher (Including Share this content IA64). Additional Introduction Installation Resources Ever wondered which program has a particular file or directory open? Now Simply run Process Explorer (procexp.exe). Forum you can find out. Process Explorer shows you information about which handles and DLLs processes have opened or loaded. The help file describes Process Explorer operation and Site Blog usage. If you have problems or questions please visit The Process Explorer display consists of two sub-windows. The top window the Sysinternals Process Explorer Forum. Sysinternals Learning always shows a list of the currently active processes, including the names of Mark's Webcasts their owning accounts, whereas the information displayed in the bottom Mark's Blog window depends on the mode that Process Explorer is in: if it is in handle Learn More mode you'll see the handles that the process selected in the top window has Software License opened; if Process Explorer is in DLL mode you'll see the DLLs and memory- Here are some other handle and DLL viewing tools and Licensing FAQ mapped files that the process has loaded. -
Windows Kernel Hijacking Is Not an Option: Memoryranger Comes to The
WINDOWS KERNEL HIJACKING IS NOT AN OPTION: MEMORYRANGER COMES TO THE RESCUE AGAIN Igor Korkin, PhD Independent Researcher Moscow, Russian Federation [email protected] ABSTRACT The security of a computer system depends on OS kernel protection. It is crucial to reveal and inspect new attacks on kernel data, as these are used by hackers. The purpose of this paper is to continue research into attacks on dynamically allocated data in the Windows OS kernel and demonstrate the capacity of MemoryRanger to prevent these attacks. This paper discusses three new hijacking attacks on kernel data, which are based on bypassing OS security mechanisms. The first two hijacking attacks result in illegal access to files open in exclusive access. The third attack escalates process privileges, without applying token swapping. Although Windows security experts have issued new protection features, access attempts to the dynamically allocated data in the kernel are not fully controlled. MemoryRanger hypervisor is designed to fill this security gap. The updated MemoryRanger prevents these new attacks as well as supporting the Windows 10 1903 x64. Keywords: hypervisor-based protection, Windows kernel, hijacking attacks on memory, memory isolation, Kernel Data Protection. 1. INTRODUCTION the same high privilege level as the OS kernel, and they also include a variety The security of users’ data and of vulnerabilities. Researchers applications depends on the security of consider that “kernel modules (drivers) the OS kernel code and data. Modern introduce additional attack surface, as operating systems include millions of they have full access to the kernel’s lines of code, which makes it address space” (Yitbarek and Austin, impossible to reveal and remediate all 2019). -
P 240/1 Process Control on Windows
P240.qxp_June 2018 03/05/2018 22:16 Page 41 Process Control on Windows P 240/1 Optimise and Stabilise Your Windows System by Taking Control of Your Processes Using the information given in this article you will be able to: Investigate exactly what processes are using your PC’s processor and memory, Optimise the performance of your system with perfect process management, Find and close Trojans, viruses and other suspicious processes. You’ve probably come across messages from Windows telling you that an application is no longer responding, and wondered exactly what is happening in the background on your Windows system. The egg timer icon or a little blue circle usually appear, the hard drive grinds away and you wait for what seems like an eternity for Windows to do something. When this happens, it usually indicates that Windows is performing tasks in the background. You can take a look at the list of the processes that are running on your system, but they usually have cryptic names which makes it difficult to work out exactly what is going on. However, if a program or service doesn’t run in a stable way, or you suspect that a virus or Trojan may be doing damage to your system, then you can’t avoid checking which processes are running. In this article I will show you the most important processes that Windows runs internally, and the tasks you need to perform in order to maintain your processes and take control of your system. • Check the Hidden Tasks Your Windows System is Running ................. -
Process Explorer Copyright © 1996-2012 Mark Russinovich Sysinternals
Process Explorer Copyright © 1996-2012 Mark Russinovich Sysinternals - www.sysinternals.com Process Explorer is an advanced process management utility that picks up where Task Manager leaves off. It will show you detailed information about a process including its icon, command-line, full image path, memory statistics, user account, security attributes, and more. When you zoom in on a particular process you can list the DLLs it has loaded or the operating system resource handles it has open. A search capability enables you to track down a process that has a resource opened, such as a file, directory or Registry key, or to view the list of processes that have a DLL loaded. The Process Explorer display consists of two sub-windows. The top always shows a list of the currently active processes, including the names of their owning accounts, whereas the information displayed in the bottom window, which you can close, depends on the mode that Process Explorer is in: if it is in handle mode you will see the handles that the process selected in the top window has opened; if Process Explorer is in DLL mode you will see the DLLs and memory-mapped files that the process has loaded. Process Explorer also has a powerful search capability that will quickly show you which processes have particular handles opened or DLLs loaded. The unique capabilities of Process Explorer make it useful for tracking down DLL-version problems or handle leaks, and provide insight into the way Windows and applications work. You can obtain equivalent command-line tools, Handle and ListDLLs, at the Sysinternals Web site. -
The Flask Security Architecture: System Support for Diverse Security Policies
The Flask Security Architecture: System Support for Diverse Security Policies Ray Spencer Secure Computing Corporation Stephen Smalley, Peter Loscocco National Security Agency Mike Hibler, David Andersen, Jay Lepreau University of Utah http://www.cs.utah.edu/flux/flask/ Abstract and even many types of policies [1, 43, 48]. To be gen- erally acceptable, any computer security solution must Operating systems must be flexible in their support be flexible enough to support this wide range of security for security policies, providing sufficient mechanisms for policies. Even in the distributed environments of today, supporting the wide variety of real-world security poli- this policy flexibility must be supported by the security cies. Such flexibility requires controlling the propaga- mechanisms of the operating system [32]. tion of access rights, enforcing fine-grained access rights and supporting the revocation of previously granted ac- Supporting policy flexibility in the operating system is cess rights. Previous systems are lacking in at least one a hard problem that goes beyond just supporting multi- of these areas. In this paper we present an operating ple policies. The system must be capable of supporting system security architecture that solves these problems. fine-grained access controls on low-level objects used to Control over propagation is provided by ensuring that perform higher-level functions controlled by the secu- the security policy is consulted for every security deci- rity policy. Additionally, the system must ensure that sion. This control is achieved without significant perfor- the propagation of access rights is in accordance with mance degradation through the use of a security decision the security policy. -
DAC Vs. MAC Bell-La Padula Model [BL]
DAC vs. MAC Bell-La Padula model [BL] Most people familiar with discretionary access View the system as subjects accessing objects • • control (DAC) - The system input is requests, the output is decisions - Unix permission bits are an example - Objects can be organized in one or more hierarchies, H - Might set a file private so only group friends can read it (a tree enforcing the type of decendents) Discretionary means anyone with access can Four modes of access are possible: • • propagate information: - execute – no observation or alteration - Mail [email protected] < private - read – observation Mandatory access control - append – alteration • - Security administrator can restrict propagation - write – both observation and modification - Abbreviated MAC (NOT to be confused w. Message The current access set, b, is (subj, obj, attr) tripples Authentication Code or Medium Access Control) • An access matrix M encodes permissible access types • (as before, subjects are rows, objects columns) 1/39 2/39 Security levels Security properties A security level is a (c, s) pair: The simple security or ss-property: • • - c = classification – E.g., unclassified, secret, top secret - For any (S, O, A) b, if A includes observation, then level(S) ∈ - s = category-set – E.g., Nuclear, Crypto must dominate level(O) (c , s ) dominates (c , s ) iff c c and s s - E.g., an unclassified user cannot read a top-secret document • 1 1 2 2 1 ≥ 2 1 ⊇ 2 - L dominates L sometimes written L L or L L The star security or ⋆-property: 1 2 1 ⊒ 2 2 ⊑ 1 • - levels then form a lattice (partial order w. -
What Is Active Directory
What is Active Directory Originally created in the year 1996, Active Directory, also referred as an AD, was first used with Windows 2000 Server as a directory service for Windows domain networks. Active Directory is a special purpose database, which serves as a central location for authenticating and authorizing all the users and computers within a network. Active Directory uses the Lightweight Directory Access Protocol (LDAP), an application protocol used for accessing and maintaining directory information services distributed over an IP network. What is Active Directory? The basic internal structure of the Active Directory consists of a hierarchical arrangement of Objects which can be categorized broadly into resources and security principles. Some of the examples of Active Directory objects are users, computers, groups, sites, services, printers, etc. Every Object is considered as a single entity with some specific set of attributes. The attributes of Objects along with the kind of objects that can be stored in the AD are defined by a Schema. The intrinsic framework of Active Directory is divided into a number of levels on the basis of visibility of objects. An AD network can be organized in four types of container structure namely, Forest, Domains, Organizational Units and Sites. y Forests: It is a collection of AD objects, their attributes and set of attribute syntax. y Domain: Domain is a collection of computers objects in the AD which share a common set of policies, a name and a database of their members. y Organizational Units: OUs are containers in which domains are grouped. They are used to create a hierarchy for the domain to resemble the structure of the Active Directory's company in organizational terms. -
The Windows Operating System, Such As the Logon Process and the Session Manager
TTHEHE WWINDOWSINDOWS OOPERATINGPERATING SSYSTEMYSTEM William Stallings This document is an extract from Operating Systems: Internals and Design Principles, Fifth Edition Prentice Hall, 2005, ISBN 0-13-147954-7 Copyright 2005 William Stallings TTABLEABLE OFOF CCONTENTSONTENTS 2.5 MICROSOFT WINDOWS OVERVIEW...........................................................................3 History............................................................................................................................3 Single-User Multitasking...............................................................................................5 Architecture....................................................................................................................7 Operating System Organization.........................................................................7 User-Mode Processes.......................................................................................10 Client/Server Model.....................................................................................................11 Threads and SMP.........................................................................................................13 Windows Objects.........................................................................................................13 4.4 WINDOWS THREAD AND SMP MANAGEMENT.....................................................17 Process and Thread Objects.........................................................................................18 -
Windows Rootkit Analysis Report
Windows Rootkit Analysis Report HBGary Contract No: NBCHC08004 SBIR Data Rights November 2008 Page 1 Table of Contents Introduction ................................................................................................................................... 4 Clean Monitoring Tool Logs......................................................................................................... 5 Clean System PSList ................................................................................................................. 5 Clean System Process Explorer ................................................................................................ 6 Vanquish......................................................................................................................................... 7 PSList Vanquish ........................................................................................................................ 7 Vanquish Process Monitor (Process Start – Exit) .................................................................. 8 Process Explorer Thread Stack Vanquish .............................................................................. 8 Process Monitor Events Vanquish ........................................................................................... 9 Vanquish Log File (Created by rootkit, placed in root directory “C:”) ............................. 21 Process Explorer Memory Strings Vanquish ........................................................................ 23 NTIllusion.................................................................................................................................... -
DAC Vs. MAC Bell-Lapadula Model Security Levels Security Properties
DAC vs. MAC Bell-Lapadula model • Most people familiar with discretionary access • View the system as subjects accessing objects control (DAC) - The system input is requests, the output is decisions - Unix permission bits are an example - Objects can be organized in one or more hierarchies, H - Might set a file private so only group friends can read it (a tree enforcing the type of decendents) • Discretionary means anyone with access can • Four modes of access are possible: propagate information: - execute – no observation or alteration - Mail [email protected] < private - read – observation • Mandatory access control - append – alteration - Security administrator can restrict propagation - write – both observation and modification - Abbreviated MAC (NOT to be confused w. Message • The current access set, b, is (subj, obj, attr) tripples Authentication Code or Medium Access Control) • An access matrix M encodes permissible access types (as before, subjects are rows, objects columns) 1/36 2/36 Security levels Security properties • A security level is a (c, s) pair: • The simple security or ss-property: - c = classification – E.g., unclassified, secret, top secret - For any (S, O, A) ∈ b, if A includes observation, then level(S) - s = category-set – E.g., Nuclear, Crypto must dominate level(O) - E.g., an unclassified user cannot read a top-secret document • (c1, s1) dominates (c2, s2) iff c1 ≥ c2 and s2 ⊆ s1 • The star security or : - L1 dominates L2 sometimes written L1 ⊒ L2 or L2 ⊑ L1 *-property - levels then form a lattice (partial order w.