Journal of Advances in Physics Vol 18 (2020) ISSN: 2347-3487
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is the Universe Expanding?: an Historical and Philosophical Perspective for Cosmologists Starting Anew
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1996 Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew David A. Vlosak Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Cosmology, Relativity, and Gravity Commons Recommended Citation Vlosak, David A., "Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew" (1996). Master's Theses. 3474. https://scholarworks.wmich.edu/masters_theses/3474 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. IS THEUN IVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STAR TING ANEW by David A Vlasak A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements forthe Degree of Master of Arts Department of Philosophy Western Michigan University Kalamazoo, Michigan June 1996 IS THE UNIVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STARTING ANEW David A Vlasak, M.A. Western Michigan University, 1996 This study addresses the problem of how scientists ought to go about resolving the current crisis in big bang cosmology. Although this problem can be addressed by scientists themselves at the level of their own practice, this study addresses it at the meta level by using the resources offered by philosophy of science. There are two ways to resolve the current crisis. -
Durham E-Theses
Durham E-Theses Black holes, vacuum decay and thermodynamics CUSPINERA-CONTRERAS, JUAN,LEOPOLDO How to cite: CUSPINERA-CONTRERAS, JUAN,LEOPOLDO (2020) Black holes, vacuum decay and thermodynamics, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13421/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras A Thesis presented for the degree of Doctor of Philosophy Institute for Particle Physics Phenomenology Department of Physics University of Durham England September 2019 To my family Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras Submitted for the degree of Doctor of Philosophy September 2019 Abstract In this thesis we study two fairly different aspects of gravity: vacuum decay seeded by black holes and black hole thermodynamics. The first part of this work is devoted to the study of black holes within the (higher dimensional) Randall- Sundrum braneworld scenario and their effect on vacuum decay rates. -
Cosmic Infrared Background and Early Galaxy Evolution
Cosmic Infrared Background and Early Galaxy Evolution A. Kashlinsky Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center, Greenbelt, MD 20771, and SSAI e-mail address: [email protected] ABSTRACT The Cosmic Infrared Background (CIB) reflects the sum total of galactic luminosi- ties integrated over the entire age of the universe. From its measurement the red-shifted starlight and dust-absorbed and re-radiated starlight of the CIB can be used to deter- mine (or constrain) the rates of star formation and metal production as a function of time and deduce information about objects at epochs currently inaccessible to telescopic studies. This review discusses the state of current CIB measurements and the (mostly space-based) instruments with which these measurements have been made, the obstacles (the various foreground emissions) and the physics behind the CIB and its structure. Theoretical discussion of the CIB levels can now be normalized to the standard cos- mological model narrowing down theoretical uncertainties. We review the information behind and theoretical modeling of both the mean (isotropic) levels of the CIB and their fluctuations. The CIB is divided into three broad bands: near-IR, mid-IR and far-IR. For each of the bands we review the main contributors to the CIB flux and the epochs at which the bulk of the flux originates. We also discuss the data on the various quanti- ties relevant for correct interpretation of the CIB levels: the star-formation history, the present-day luminosity function measurements, resolving the various galaxy contribu- tors to the CIB, etc. The integrated light of all galaxies in the deepest near-IR galaxy counts to date fails to match the observed mean level of the CIB, probably indicating arXiv:astro-ph/0412235v1 9 Dec 2004 a significant high-redshift contribution to the CIB. -
Link to the Live Plenary Sessions
IWARA2020 Video Conference Mexico City time zone, Mexico 9th International Workshop on Astronomy and Relativistic Astrophysics 6 – 12 September, 2020 Live Plenary Talks Program SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY DAYS/HOUR 06/09/2020 07/09/2020 08/09/2020 09/09/2020 10/09/2020 11/09/2020 12/09/2020 COSMOLOGY, DE MMA, DE, DM, CCGG COMPSTARS, DM, GWS DENSE MATTER, QCD DM, DE, GWS, BHS DENSE MATTER, SNOVAE ARCHAEOASTRONOMY TOPICS DM, COMPACT STARS X- & CR- RAYS, MWA PARTICLES, ϒ-RAYS QGP, QFT, HIC, GWS GRAVITATION, GALAXIES DM, COMPACT STARS BHS, GRBS, SNOVAE GRAVITY, BHS, GWS NSS, SNOVAE, GRAVITY QCD, HIC, SNOVAE DM, COSMOLOGY EROSITA DE, BHS, COSMOLOGY LIVE PLENARY TALKS PETER HESS & THOMAS BOLLER & STEVEN GULLBERG & PETER HESS & Steven Gullberg & LUIS UREÑA-LOPEZ & PETER HESS & MODERATORS CESAR ZEN GABRIELLA PICCINELLI CESAR ZEN THOMAS BOLLER Luis Ureña-Lopes BENNO BODMANN CESAR ZEN 07:00 WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM 07:45 OPENING 08:00 R. SACAHUI P. SLANE A. SANDOVAL S. FROMENTEAU G. PICCINELLI V. KARAS F. MIRABEL60’ 08:30 M. GAMARRA U. BARRES G. WOLF J. RUEDA R. XU J. STRUCKMEIER60’ 09:00 ULLBERG ARRISON ANAUSKE ENEZES EXHEIMER S. G D. G M. H D. M 60’ V. D D. ROSIŃSKA 09:30 V. ORTEGA G. ROMERO D. VASAK D. PAGE J. AICHELIN M. VARGAS 10:00 – CONFERENCE-BREAK: VIDEO-SYNTHESIS OF RECORDED VIDEOS LIVE SPOTLIGHTS TALKS MODERATORS MARIANA VARGAS MAGAÑA & GABRIELLA PICCINELLI 10:15 J. HORVATH Spotlight Session 1 SPOTLIGHT SESSION 2 Spotlight Session 3 Spotlight Session 4 Spotlight Session 5 SPOTLIGHT SESSION 6 MARCOS MOSHINSKY 10:45 AWARD 11:15 – CONFERENCE-BREAK: VIDEO-SYNTHESIS OF RECORDED VIDEOS LIVE PLENARY TALKS PETER HESS & THOMAS BOLLER & STEVEN GULLBERG & PETER HESS & Steven Gullberg & LUIS UREÑA-LOPEZ & PETER HESS & MODERATORS CESAR ZEN GABRIELLA PICCINELLI CESAR ZEN THOMAS BOLLER Luis Ureña-Lopes BENNO BODMANN CESAR ZEN C. -
Three Duality Symmetries Between Photons and Cosmic String Loops, and Macro and Micro Black Holes
Symmetry 2015, 7, 2134-2149; doi:10.3390/sym7042134 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Three Duality Symmetries between Photons and Cosmic String Loops, and Macro and Micro Black Holes David Jou 1;2;*, Michele Sciacca 1;3;4;* and Maria Stella Mongiovì 4;5 1 Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain 2 Institut d’Estudis Catalans, Carme 47, Barcelona 08001, Spain 3 Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy 4 Istituto Nazionale di Alta Matematica, Roma 00185 , Italy 5 Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo, Viale delle Scienze, Palermo 90128, Italy; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.J.); [email protected] (M.S.); Tel.: +34-93-581-1658 (D.J.); +39-091-23897084 (M.S.). Academic Editor: Sergei Odintsov Received: 22 September 2015 / Accepted: 9 November 2015 / Published: 17 November 2015 Abstract: We present a review of two thermal duality symmetries between two different kinds of systems: photons and cosmic string loops, and macro black holes and micro black holes, respectively. It also follows a third joint duality symmetry amongst them through thermal equilibrium and stability between macro black holes and photon gas, and micro black holes and string loop gas, respectively. The possible cosmological consequences of these symmetries are discussed. Keywords: photons; cosmic string loops; black holes thermodynamics; duality symmetry 1. Introduction Thermal duality relates high-energy and low-energy states of corresponding dual systems in such a way that the thermal properties of a state of one of them at some temperature T are related to the properties of a state of the other system at temperature 1=T [1–6]. -
Generic Affinities, Posthumanisms and Science-Fictional Imaginings
GENERIC AFFINITIES, POSTHUMANISMS, SCIENCE-FICTIONAL IMAGININGS SPECULATIVE MATTER: GENERIC AFFINITIES, POSTHUMANISMS AND SCIENCE-FICTIONAL IMAGININGS By LAURA M. WIEBE, B.A., M.A. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy McMaster University © Copyright by Laura Wiebe, October 2012 McMaster University DOCTOR OF PHILOSOPHY (2012) Hamilton, Ontario (English and Cultural Studies) TITLE: Speculative Matter: Generic Affinities, Posthumanisms and Science-Fictional Imaginings AUTHOR: Laura Wiebe, B.A. (University of Waterloo), M.A. (Brock University) SUPERVISOR: Professor Anne Savage NUMBER OF PAGES: vi, 277 ii ABSTRACT Amidst the technoscientific ubiquity of the contemporary West (or global North), science fiction has come to seem the most current of genres, the narrative form best equipped to comment on and work through the social, political and ethical quandaries of rapid technoscientific development and the ways in which this development challenges conventional understandings of human identity and rationality. By this framing, the continuing popularity of stories about paranormal phenomena and supernatural entities – on mainstream television, or in print genres such as urban fantasy and paranormal romance – may seem to be a regressive reaction against the authority of and experience of living in technoscientific modernity. Nevertheless, the boundaries of science fiction, as with any genre, are relational rather than fixed, and critical engagements with Western/Northern technoscientific knowledge and practice and modern human identity and being may be found not just in science fiction “proper,” or in the scholarly field of science and technology studies, but also in the related genres of fantasy and paranormal romance. -
" All That Matter... in One Big Bang...," & Other Cosmological Singularities
“All that matter ... in one Big Bang ...,” & other cosmological singularities∗ Emilio Elizalde 1,2,3,† 1 Spanish National Higher Council for Scientific Research, ICE/CSIC and IEEC Campus UAB, C/ Can Magrans s/n, 08193 Bellaterra (Barcelona) Spain 2 International Laboratory for Theoretical Cosmology, TUSUR University, 634050 Tomsk, Russia 3 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan e-mail: [email protected] February 23, 2018 Abstract The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singular- ity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, R2, f(R), and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given. -
Book of Abstracts Ii Contents
TeV Particle Astrophysics 2019 Monday, 2 December 2019 - Friday, 6 December 2019 Book of Abstracts ii Contents A Unique Multi-Messenger Signal of QCD Axion Dark Matter ............... 1 The Light Dark Matter eXperiment, LDMX .......................... 1 Why there is no simultaneous detection of Gamma rays and x-rays from x-ray bright galaxy clusters? A hydrodynamical study on the manufacturing of cosmic rays in the evolving dynamical states of galaxy clusters ............................ 1 Mathematical results on hyperinflation ............................ 2 Cuckoo’s eggs in neutron stars: can LIGO hear chirps from the dark sector? . 3 Lensing of fast radio bursts: future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion/ boson stars . 3 Potential dark matter signals at neutrino telescopes ..................... 4 Anomalous 21-cm EDGES Signal and Moduli Dominated Era ................ 4 Precision Measurement of Primary Cosmic Rays with Alpha MAgnetic spectrometer on ISS ................................................ 4 Properties of Secondary Cosmic Ray Lithium, Beryllium and Boron measured with the Alpha Magnetic Spectrometer on the ISS ......................... 5 The Role of Magnetic Field Geometry in the Evolution of Neutron Star Merger Accretion Disks ............................................. 5 Dependence of accessible dark matter annihilation cross sections on the density profiles of dSphs ............................................. 6 Ways of Seeing: Finding BSM physics at the LHC ...................... 6 Probing the Early Universe with Axion Physics ....................... 6 Evidence the 3.5 keV line is not from dark matter decay ................... 7 Global study of effective Higgs portal dark matter models using GAMBIT . 7 Angular power spectrum analysis on current and future high-energy neutrino data . 8 Testing the EWPT of 2HDM at future lepton Colliders .................. -
Can the Ball Lightning Be the Manifestation of a Micro Black Hole?
Physics & Astronomy International Journal Opinion Open Access Can the ball lightning be the manifestation of a micro black hole? Abstract Volume 5 Issue 1 - 2021 The physical nature of the ball lightning (BL) is still the mystery regardless of several Vladimir F Burov,1 Sergey V Sheleg2 proposed theories. The hypothesis stating that the BL can represent the “micro black hole” 1ZIO-KOTES Ltd, Novosibirsk, Russian Federation (MBH), which, interacting with the terrestrial gravity force, generates the directed radiation, 2ENIT Inc, Scottsdale, AZ 85261, USA which allows it to “levitate”, deserves special interest. Having taken this possibility into account, the analysis had been held with regard to the ability of the MBH to generate Correspondence: Sergey V Sheleg, ENIT Inc, Scottsdale, USA, electromagnetic radiation (ER) for “levitation”, with the BL weighing one gram as a basic Tel +1 (850) 364-8462, Email point. Additionally, the duration of its potential lifecycle is evaluated. The performed calculations attest to the fact that the BL cannot represent the MBH. Received: May 10, 2021 | Published: May 20, 2021 Keywords: The ball lightning, micro black holes, electromagnetic radiation Introduction 2 rcg = 2/GMbh , The ball lightning (BL) is quite a rare atmospheric phenomenon.1 Its physical nature still remains a mystery. The variety of ball lightning −11 where rGg −=gravitational radius( m) ; 6.67430× 10 , theories had been proposed for the past several years, but unfortunately, −2 none of them cannot describe all the observable parameters of N×× m² kg – gravitational constant, Mbh − the mass of the 2 this natural phenomenon. Rabinowitz proposed an interesting MBH(kg), с − 3×108m/s. -
Mankind May Be Impossible to Manufacture out Any Artificial Real
The Journal of American Science, 2(1), 2006, Zhang, Artificial Real Gravitational Black Hole (BH) Mankind May Be Impossible to Manufacture out Any Artificial Real Gravitational Black Hole (BH) Forever ---- Part 3 of “New Concepts to Big Bang and Black Holes” [6][7]---- ----A incidental comment to BBC News about artificial BH on 3/17 /2005---- Dongsheng Zhang Graduated in 1957 From Beijing University of Aeronautics and Astronautics. China. Permanent address: 17 Pontiac Road, West Hartford, CT 06117-2129, U.S.A. Email: [email protected] Abstract: Recently, many scientists in different countries did some alarmist talks to “artificial black holes”. Probably, those scientists only depended upon their unreal image to talk about “artificial black hole”. They might not conscientiously study the characteristics of a real gravitational BH, and not calculated out the exact values of various parameter of a real gravitational BH in detail. Most scientists hankered after new modern theories, such as string theory, but almost neglect to apply classical theories, such as Hawking’s formulas about BHs in calculations of BHs. However, BH is the product of classical theories, it can be correctly explained only by classical theories. Some experimental scientists probably made up news about manufacturing artificial BHs for their special purpose. Thus, they did not apply the suitable formulas to calculate out correct value of every parameter of a real gravitational BH so that they might consciously or unconsciously obscured the principal differences between a real gravitational BH and non-BH with specious arguments. The calculated fundamental formulas in this article originate from GTR and Hawking about theory of BH, through qualitatively analyses and detailed calculations to various parameters of different real BHs, this article will show that, any “artificial BH ” will have no possibility to be manufactured out by mankind forever. -
Bounds on Extra Dimensions from Micro Black Holes in the Context of the Metastable Higgs Vacuum
Bounds on extra dimensions from micro black holes in the context of the metastable Higgs vacuum Katherine J. Mack∗ North Carolina State University, Department of Physics, Raleigh, NC 27695-8202, USA Robert McNeesy Loyola University Chicago, Department of Physics, Chicago, IL 60660, USA. We estimate the rate at which collisions between ultra-high energy cosmic rays can form small black holes in models with extra dimensions. If recent conjectures about false vacuum decay catalyzed by black hole evaporation apply, the lack of vacuum decay events in our past light cone places tight bounds on the black hole formation rate and thus on the fundamental scale of gravity in these models. Conservatively, we find that the lower bound on the fundamental scale E∗ must be within about an order of magnitude of the energy where the cosmic ray spectrum begins to show suppression from the GZK effect, in order to avoid the abundant formation of semiclassical black holes with short lifetimes. Our bound, which assumes a Higgs vacuum instability scale at the low 18:8 end of the range compatible with experimental data, ranges from E∗ ≥ 10 eV for n = 1 extra 18:1 dimension down to E∗ ≥ 10 eV for n = 6. These bounds are many orders of magnitude higher than the previous most stringent bounds, which derive from collider experiments or from estimates of Kaluza-Klein processes in neutron stars and supernovae. I. INTRODUCTION that evaporating black holes formed in theories with ex- tra dimensions are capable of seeding vacuum decay. The decay of the false vacuum is a dramatic consequence that In models with extra dimensions, the fundamental scale presents an unmistakable (and fatal) observational sig- of gravity may be lower than the four-dimensional Planck nature of microscopic black hole production. -
Black Hole Math Is Designed to Be Used As a Supplement for Teaching Mathematical Topics
National Aeronautics and Space Administration andSpace Aeronautics National ole M a th B lack H i This collection of activities, updated in February, 2019, is based on a weekly series of space science problems distributed to thousands of teachers during the 2004-2013 school years. They were intended as supplementary problems for students looking for additional challenges in the math and physical science curriculum in grades 10 through 12. The problems are designed to be ‘one-pagers’ consisting of a Student Page, and Teacher’s Answer Key. This compact form was deemed very popular by participating teachers. The topic for this collection is Black Holes, which is a very popular, and mysterious subject among students hearing about astronomy. Students have endless questions about these exciting and exotic objects as many of you may realize! Amazingly enough, many aspects of black holes can be understood by using simple algebra and pre-algebra mathematical skills. This booklet fills the gap by presenting black hole concepts in their simplest mathematical form. General Approach: The activities are organized according to progressive difficulty in mathematics. Students need to be familiar with scientific notation, and it is assumed that they can perform simple algebraic computations involving exponentiation, square-roots, and have some facility with calculators. The assumed level is that of Grade 10-12 Algebra II, although some problems can be worked by Algebra I students. Some of the issues of energy, force, space and time may be appropriate for students taking high school Physics. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr.