Degree's Final Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Degree's Final Thesis DEGREE’S FINAL THESIS Thesis Title: Analysis and optimisation of radio spectrum pollution on 1030/1090 MHz bands associated with mode S transponders. Degree: Aerospace systems engineering AUTHOR: Borin Kaduk Aguilar DIRECTOR: Eduard Úbeda Farré DATE: 7th February 2021 Títol: Anàlisi i optimització de la pol·lució radio espectral en les bandes de 1030/1090 MHz associada als transponedors mode S. Autor: Borin Kaduk Aguilar Director: Eduard Úbeda Farré Data: 7 de Febrer del 2021 Resum La vigilància actual de les aeronaus es duu a terme amb un parell d’elements clau: el transponedor i l’interrogador. L’interrogador s’encarrega d’enviar senyals a l’aire per a detectar aeronaus i aquests, quan reben la senyal, transmeten una resposta que conté informació codificada en forma de polsos. Posteriorment la resposta serà processada pels mateixos interrogadors o antenes receptores, i amb el conjunt de respostes de diferents aeronaus i un teixit prou dens d’equips de recepció, podem arribar a vigilar tot el que succeeix a l’espai aeri. Aquest sistema col·laboratiu ha funcionat remarcablement bé des de la seva creació. Amb el temps, la tecnologia evoluciona i el número de vols creix, però les bandes de freqüència utilitzades romanen les mateixes. Com a conseqüència d’aquest creixement continu en un sistema basat en la utilització de dues bandes freqüencials fixes, trobem que en l’espai aeri apareixen cada vegada més i més missatges (interrogacions i respostes), arribant, en casos extrems, a la saturació del sistema de vigilància actual. Cal esmentar que amb l’avenç tecnològic hem pogut aportar solucions per a mitigar els problemes que han anat sorgint fins avui dia en quant a la vigilància aèria, com podrien ser el “garbling” o el “FRUIT”, però es tot un repte d’enginyeria aportar solucions contínues a un sistema que no para de créixer. Aquest treball final de grau es basa en l’estudi del sistema de vigilància actual, donant èmfasis als cada vegada més recurrents transponedors mode S. Començant amb un breu explicació de com hem arribat a aquest sistema de vigilància, analitzant el seu funcionament, monitoritzant la pol·lució radioelèctrica que genera, estudiant els seus principals inconvenients i aportant possibles solucions per a comprendre com es pot mitigar la sobrecàrrega actual en les bandes de 1030 i 1090 MHz. Title: Analysis and optimisation of radio spectrum pollution on 1030/1090 MHz bands associated with mode S transponders. Author: Borin Kaduk Aguilar Director: Eduard Úbeda Farré Date: 7th February 2021 Overview At present, aircraft surveillance is made possible thanks to two key-elements: the transponder and the interrogator. The interrogator is in charge of sending radioelectric signals into the air in order to detect aircrafts. When these receive the interrogator signals, they transmit a response that contains information codified with pulses. The response is then processed by the same interrogators or other receiver antennas. The joint processing of different aircrafts’ responses through a big enough network of receivers can actually detect and track everything that is happening on the air. This collaborative system has been working remarkably well since its creation over the second half of the twentieth century. However, the rise in the daily number of flights together with the increased complexity of the adopted technology has raised the usage of the two allocated frequency bands (1030MHz-1090MHz) designed for air surveillance purposes. As a consequence of this continuous growth on the usage of two fixed frequency bands, more and more messages (interrogations and replies) appear in the airspace, which may end up, in some particular cases, with the saturation of the actual surveillance system. Technological advances have been able to provide solutions to minimize problems that had been emerging up to the date in terms of aircraft surveillance, as the well-known “garbling” or “FRUIT”. Nevertheless, it is a huge engineering challenge to constantly come up with solutions in a system that never stops growing. This thesis is based on the study of current aircraft surveillance systems, focusing on the worldwide used Mode S transponders. A brief explanation and analysis of such system is first given, monitoring the radio-spectrum pollution it generates and studying its biggest drawbacks. Moreover, possible solutions are then introduced to minimize the current overload of messages on the bands of 1030 and 1090 MHz. Inscription To Petr Jonáš, The one that gave me the huge opportunity to take a traineeship in Eurocontrol and engage myself into the world of CNS in aviation. To Kiko Moriche, To show me who the real engineers are and allow me to see the heart of CNS systems. To Eduard Úbeda, The radio-location professor who accepted to direct my thesis and made possible for me to choose an interesting topic instead of the proposed ones. To my family, Who paid for my whole tuition and my accommodation near the University during these 4 years. GLOSSARY ADS-B: Automatic Dependant Surveillance – Broadcast. ATC: Air Traffic Control. ATCRBS: Air Traffic Control Radar Beacon System. BDS: Binary Data Selector / Comm-B Data Selector. CET: Central European Time. CRC: Cyclic Redundacy Check. DAP: Downlink Aircraft Parameters. DF: Downlink Format. EHS: Enhanced Surveillance. ELM: Extended Length Message. FIR: Flight Information Region. FRUIT: False Replies Unsynchronised to Interrogation Transmission / False Replies Unsinchronisde In Time. GICB: Ground Initiated Comm-B. GPS: Global Positioning System. IC: Interrogator Code. ICAO: International Civil Aviation Organisation IFF: Identification Friend or Foe. IFR: Instrumental Flight Rules. NOTAM: Notification To Airmen. MIP: Mode Interlace Pattern. MLAT: Multilateration. MTOW: Maximum Take-Off Weight. OVC: Overlay Control Bit. PRF: Pulse Repetition Frequency. PRI: Pulse Repetition Interval. PSR: Primary Surveillance Radar. RA: Resolution Advisory. RCS: Radar Cross Section. RF: Radio Frequency. SLM: Standard Length Message. SLS: Side Lobe Supression. SPI-IR: Surveillance Performance and Interoperability-Implementing Rule. SSR: Secondary Surveillance Radar. TA: Traffic Advisory. TCAS: Traffic alert and Collision Avoidance System. UF: Uplink Format. WAM: Wide Area Multilateration. INDEX INTRODUCTION ................................................................................................................. 1 CHAPTER 1. Establishment of the cooperative surveillance system ........................... 2 1.1. SSR System ............................................................................................................................................ 2 1.2. Mode A and Mode C .............................................................................................................................. 3 1.3. Transition from mode A/C to Mode S .................................................................................................. 7 Chapter 2. Mode S ............................................................................................................. 9 2.1. Mode S technologies ............................................................................................................................. 9 2.1.1. TCAS .......................................................................................................................................... 9 2.1.2. Short messages ........................................................................................................................ 13 2.1.3. ADS-B ....................................................................................................................................... 13 2.1.4. Long messages ........................................................................................................................ 16 2.2. Mode S messages ................................................................................................................................ 18 2.3. Mode S technical specifications ........................................................................................................ 20 2.3.1. Transponder Level .................................................................................................................... 20 2.3.2. Pulse characteristics ................................................................................................................. 21 2.4. Mode S techniques .............................................................................................................................. 24 2.4.1. Mode Interlace Patterns ........................................................................................................... 24 2.4.2. Acquisition ................................................................................................................................ 25 2.4.3. Lockout and clustering techniques ........................................................................................... 28 Chapter 3. Analysis of RF pollution in central Europe ................................................. 30 3.1. Briefing ................................................................................................................................................. 30 3.2. Monitoring flight data Analysis .......................................................................................................... 32 3.2.1. Material and preparation ..........................................................................................................
Recommended publications
  • Communications-Electronics (C-E) Managers
    DEPARTMENT OF THE AIR FORCE Air Force Qualification Training Headquarters US Air Force Package 2EXXX-201LB Washington DC 20330-1680 1 October 1999 COMMUNICATIONS- ELECTRONICS (C-E) MANAGER’S HANDBOOK 1. This Air Force Qualification Training Package (AFQTP) has been developed to provide information on Communications Electronics (C-E) systems likely to be encountered by senior NCOs as they assume C-E management responsibilities. 2. Review Air Force publishing bulletins and AFIND 8 to identify available training materials. 3. Maintain this AFQTP IAW AFIs 36-2201 and 36-2233. Routine changes will be accomplished via page changes and urgent changes will be disseminated via message. Submit recommended AFQTP improvements/ corrections to the 81 TRSS Qualification Training Flight (81 TRSS/TSQS), 601 D Street, Keesler AFB MS 39534-2229. BY ORDER OF THE SECRETARY OF THE AIR FORCE OFFICIAL JOHN W. HANDY, Lieutenant General, USAF Deputy Chief of Staff/Installations and Logistics 1 Atch Handbook ____________ Supersedes AFQTP 300X0-201LB, dated 21 Nov 1996 OPR: HQ USAF/LGMM OCR: 81 TRSS/TSQA DISTRIBUTION: F TABLE OF CONTENTS PREFACE Resource constraints in the Air Force are impacting the availability of our most valuable resource - manpower. This condition which will continue to exist in the future, makes it essential for the work force to be effectively trained to perform duties within each level of an Air Force Specialty (AFS). This handbook is another tool that will enable the Air Force and each MAJCOM to place the needed emphasis on total career field training. This handbook is identified as a mandatory training requirement in several Career Field Training Education Plan.
    [Show full text]
  • Introduction 1 Features
    ASX-1 Encoding aviation altimeter with serial output and airspeed Indicator (ASI) Operating Manual – English 1.06 Introduction The ASX-1 altimeter/airspeed combo is a 2 1/4” instrument based on a precision altimeter and a wide range, sensitive airspeed indicator. The altimeter conforms to ANSI standard atmosphere rules from –1000 ft up to a maximum of 30 000 ft.The altimeter includes an encoding serial output that, when used in combination with MGL Avionics CNV-AT, provides a parallel Gillham code interface for transponders. The altimeter can display altitude in feet or meters. Local pressure can be set in millibars or inches of Mercury. The airspeed indicator can show air speeds from 16 to 250 mph and is well suited for use in slow aircraft due to very good sensitivity and linearity at low air speeds. The airspeed indicator as well as altimeter can interface to a static port and the airspeed indicator is based on a standard aviation pitot tube. The airspeed indicator can be set to indicate speeds in statute miles per hour (mph), kilometers per hour (km/h) or nautical miles per hour (knots) with the air-distance being displayed in corresponding units. The airspeed sensitivity can be calibrated by the user to cater for errors caused by pitot tube placement. The ASX-1 also outputs airspeed information via the airtalk protocol for interfacing to the Infinity FF-1 / Velocity FF-3 (fuel flow computer for single or dual fuel tanks) and the SP-X (AHRS) instruments. In addition the ASX-1 provides a 24 entry automatic flight log that stores the duration of each of the last 24 flights, an air- distance trip counter and a current flight timer.
    [Show full text]
  • US National Aviation Standard for the Mode Select Beacon System
    DEPAF~TMENT OF TRANSPORTATION ORDER FE )ERAL.AVIATION ADMINISTRATION 6365.1A 1/3/83 SUBJ: U.S. NATIONAL AVIATION STANDARD FOR THE MODE SELECT BEACON SYSTEM (MODE S) 1. PURPOSE. This order establishes the U.S. National Aviation Standard for the *Mode Select Beacon System (Hode S) which defines the performance requirements of the Mode S system. * 2. DISTRIBUTION. The order is distributed to the director level in Washington with a division level distribution in the Acquisition and Materiel, Air Traffic, Program Engineering and Maintenance, and Systems Engineering Services, the Offices of Airworthiness, Flight Operations, and Budget; to the director level in the regions, with division level distribution in Air Traffic, Airway Facilities, and Flight Standards Divisions; to the director level at the Aeronautical Center with division level distribution to the FAA Depot; and to the director level at the FAA Technical Center with division level distribution in the Systems Test and Evaluation and Systems Simulation and Analysis Divisions. 3. CANCELLATION. Order 6365.1, u.s. National Aviation Standard for the Discrete Address Beacon System (DABS), dated December 9, 1980; is cancelled. 4 • BACKGROUND. * a. It was recognized in a study conducted for the Department of Transportation in 1968, that improvements would be required in the Air Traffic Control Radar Beacon System (ATCRBS) to support air traffic control through the 1990's. Also recognized was the need for a data link system to support enhanced automation with sufficient capacity to meet traffic growth through the same period. b. The concept that emerged was a discrete address beacon system with an integral data link.
    [Show full text]
  • Airborne Collision Avoidance System (ACAS) Manual
    Doc 9863 AN/461 Airborne Collision Avoidance System (ACAS) Manual Approved by the Secretary General and published under his authority First Edition — 2006 International Civil Aviation Organization AMENDMENTS The issue of amendments is announced regularly in the ICAO Journal and in the supplements to the Catalogue of ICAO Publications and Audio-visual Training Aids, which holders of this publication should consult. The space below is provided to keep a record of such amendments. RECORD OF AMENDMENTS AND CORRIGENDA AMENDMENTS CORRIGENDA No. Date Entered by No. Date Entered by (ii) FOREWORD This manual has been developed by the Surveillance and Conflict Resolution Systems Panel (SCRSP) (now known as the Aeronautical Surveillance Panel (ASP)). On 2 June 2005, the Air Navigation Commission approved Recommendations 1/2 of the first meeting of the SCRSP relating to the publication of this manual which is a compendium of information on various technical and operational aspects of the airborne collision avoidance system (ACAS). The material contained in this manual supplements ACAS Standards and Recommended Practices (SARPs) and procedures contained in Annex 10 — Aeronautical Telecommunications, Volume IV — Surveillance Radar and Collision Avoidance Systems, Procedures for Air Navigation Services — Air Traffic Management (PANS-ATM, Doc 4444) and Procedures for Air Navigation Services — Aircraft Operations (PANS-OPS, Doc 8168). Guidance provided in this manual includes a detailed description of ACAS and associated technical and operational issues in order to facilitate correct operation and operational monitoring, as well as training of personnel. Like other manuals, this document will be amended as and when deemed necessary. In that respect, comments from States and other parties concerned with ACAS would be appreciated.
    [Show full text]
  • CNV-ALT2 RS232 Serial Altitude to Parallel Gillham Code for Mode C Transponders
    CNV-ALT2 RS232 serial altitude to parallel Gillham code for mode C transponders Operating Manual – English 1.00 Introduction The CNV-ALT2 converter accepts the RS232 output from a MGL Avionics Infinity ALT-2 encoding altimeter or stratomaster XTreme-EFIS and converts the serial altitude information to a parallel Gillham code in a format compatible with mode C transponders. 1 Features • RS232 input directly from a MGL Avionics Infinity ALT-2 or XTreme-EFIS • Parallel Gillham output compatible with mode-C transponders. • Red LED for status indication. • Wide input supply voltage range of 8 to 30V DC with built in reverse voltage protection. • Light weight design • 1 year limited warranty CNV-ALT2 Operating Manual Page 2 2 Installation The CNV-ALT2 produces inverted Gillham codes as required by virtually all transponders. The outputs are open collector types and will sink currents up to a few mA. Installation of the CNV-ALT2 unit is quite simple. Follow these steps: Connect the black and red wires to a suitable on-board power source. The voltage may be in the range from 8 to 30 volts DC. Connect the red wire to the positive supply (+) and the black wire to the negative supply (-). You can connect the two wires directly to the power supply terminals of the ALT-2 altimeter or XTreme-EFIS. The red LED on the CNV-ALT2 should be flashing rapidly or should be steady on. Connect the RS232 output from the Infinity ALT-2 or XTreme-EFIS to the blue wire on the CNV-ALT2. Please make sure that the serial protocol in the ALT-2 or XTreme-EFIS is set to MGL Avionics.
    [Show full text]
  • ALT-4 Encoding Aviation Altimeter with a Transponder Compatible Serial RS232 & Parallel Gillham Code Output
    ALT-4 Encoding aviation altimeter with a transponder compatible Serial RS232 & Parallel Gillham code output Operating Manual – English 1.00 Introduction The ALT-4 is a 3 1/8” instrument that contains a precision encoding altimeter and a wide range vertical speed indicator. The altimeter conforms to ANSI standard atmosphere rules from –700 ft up to a maximum of 30 000 ft. The altimeter can display altitude in feet or meters and local pressure can be set in millibars or inches of mercury. The ALT-4 also provides a transponder compatible Serial RS232 and parallel gillham code output. The onboard VSI indicator is altitude compensated and can be displayed in either feet/minute (ft/min) or meters/second (m/s). It also offers a digital readout with a wide range from +/-20 ft/min to as high as +/-10 000 ft/min, it also offers a logarithmic analog display with a +/-2000 ft range. The VSI can be calibrated by the user once the instrument has been installed in the aircraft. In addition the ALT-4 provides an OAT sender which is used in determining the density altitude of the aircraft. The ALT-4 can also be used to measure relative altitude and it has a facility for the pilot to enter a reference altitude and deviation band that has to be kept. 1 Features • Precision altimeter from –700 ft up to a maximum of 30 000 ft (-213m to 9144m) • Provides a transponder compatible Serial RS232 and parallel gillham code output. • Built in encoder test functions • The altimeter can display altitude in feet or meters, local pressure can be set in millibars or inches
    [Show full text]
  • ALT-4 Manual
    ALT-4 Encoding aviation altimeter with a transponder compatible Serial RS232 & Parallel Gillham code output Operating Manual – English 1.01 Introduction The ALT-4 is a 3 1/8” instrument that contains a precision encoding altimeter and a wide range vertical speed indicator. The altimeter conforms to ANSI standard atmosphere rules from –1000 ft up to a maximum of 30 000 ft. The altimeter can display altitude in feet or meters and local pressure can be set in millibars or inches of mercury. The ALT-4 also provides a transponder compatible Serial RS232 and parallel Gillham code output. The onboard VSI indicator is altitude compensated and can be displayed in either feet/minute (ft/min) or meters/second (m/s). It also offers a digital readout with a wide range from +/-20 ft/min to as high as +/-10 000 ft/min, it also offers a logarithmic analog display with a +/-2000 ft range. The VSI can be calibrated by the user once the instrument has been installed in the aircraft. In addition the ALT-4 provides an OAT sender which is used in determining the density altitude of the aircraft. The ALT-4 can also be used to measure relative altitude and it has a facility for the pilot to enter a reference altitude and deviation band that has to be kept. 1 Features • Precision altimeter from –1000 ft up to a maximum of 30 000 ft (-304m to 9144m) • Provides a transponder compatible Serial RS232 and parallel Gillham code output. • Built in encoder test functions • The altimeter can display altitude in feet or meters, local pressure can be set in millibars or
    [Show full text]
  • Student Comments
    CHAPTER 8 IDENTIFICATION EQUIPMENT LEARNING OBJECTIVES After you finish this chapter , you should be able to do the following: 1. Describe a basic IFF system and how it operates. 2. Identify the AIMS MK XII IFF system components and explain their operation. 3. Explain the use of the AIMS MK XII equipment in a jamming environment and in emergency (Mode 4) operations. INTRODUCTION ATCRBS Air Traffic Control Radar Beacon System Identification Friend or Foe (IFF) is the system that IFF Identification Friend or Foe ships and stations use to identify friendly aircraft and MK XII Mark XII ships. Since hostile aircraft, with their fast speeds, pose S System a greater threat than ships, we will concentrate on aircraft IFF procedures. However, some of the IFF Today, all U.S. armed forces use the AIMS (Mark procedures also can be used for identifying ships. XII IFF) system, primarily to identify friendly units Basically, the ship or station desiring to know whether rapidly and positively. They also use AIMS for an approaching aircraft is friendly sends out a special tracking and controlling aircraft. In the military world, electronic signal in the direction of the aircraft. The high-speed aircraft present a critical problem in detection, identification, tracking, and evaluation. signal triggers an electronic response from an IFF Time is extremely critical when aircraft are transmitter in friendly aircraft. This response signal, in approaching at Mach (speed of sound) speeds. To turn, generates a coded symbol on the radar scope of provide ample time for initiating appropriate action, a the interrogating ship or station.
    [Show full text]
  • Low-Cost Measurement for a Secondary Mode S Radar Transmitter
    Low-Cost Measurement for a Secondary Mode S Radar Transmitter Angel Parra-Cerrada, Vicente Gonzalez-Posadas, Jose Luis Jimenez-Martin, Alvaro Blanco-del-Campo, Wilmar Hernandez, Senior Member, IEEE, and Carlos Calderon-Cordova Abstract—A low-cost, multiple-purpose, and high-precision MSSR [3]. However, these papers do not deal with the up-link timing test setup for the measurements of secondary signal of the MSSR taking into consideration the modulation Mode S radar transmission signal was proposed. The goal performances of this signal. This paper 34 shows a detailed was to fully guarantee compliance of the proposed transmitter under test with the really hard International Civil Aircraft analysis of the transmitted signal by an MSSR, allowing Organization requirements using traditional measurement us to verify compliance with International Standards and equipment, which was difficult or even impossible to ensure Recommended Practices [4]. This verification is made by using up to now. The low-cost structure proposed in this paper a exible user-controlled method that is independent of any allows the user to perform measurements independently of manufacturer of specific commercial test equipment, which the measurements performed by the pieces of test equipment shelled by the manufacturer of radar, which is a very important in many cases is the same as the manufacturer of the radar. aspect since the independence of the verifications is a mandatory This method guarantees that problems cannot be undetected requirement established by the safety standards of civil aviation. because of the same implementation of some hardware is used The proposed setup has been used to verify several transmitters in transmitter and test equipment.
    [Show full text]
  • Mce-100 Non-Tso Mode C Encoder User's Manual
    MCE-100 NON-TSO MODE C ENCODER USER'S MANUAL Adaptive Interfaces, Inc. 2012 The MCE-100 is not certified by the FAA and is intended for use only in Homebuilt, Experimental or Ultralight aircraft. Any questions pertaining to the use of this instrument in a particular aircraft should be addressed to your local aviation authorities. It is the responsibility of the aircraft pilot to be thoroughly familiar with the operation of the MCE-100 and know its limitations. Correct installation of this instrument should be verified by a qualified avionics facility. TABLE OF CONTENTS PAGE INTRODUCTION 1 SCOPE 1 DESCRIPTION 1 SPECIFICATIONS 1 BUTTON FUNCTIONS 2 DIGITAL OUTPUTS 2 MENUS 3 OVERVIEW 3 FUNCTIONS 4 ALT (ALTITUDE) - MAIN MENU 4 MC (MODE C) - MAIN MENU 4 BAR (BAROMETER) - MAIN MENU 5 FLD (FIELD ALTITUDE) - MAIN MENU 5 AA (ALTITUDE ALERT) - MAIN MENU 6 br (DISPLAY BRIGHTNESS CONTROL) - MENU LEVEL 1 7 Ad (AUTO DIMMER FUNCTION) - MENU LEVEL 1 8 Sb (STROBE INPUT FUNCTION) - MENU LEVEL 1 9 Lo E (LOW VOLTAGE WARNING) - SPECIAL FUNCTION 10 AIR CONNECTION 10 INSTRUMENT PLACEMENT 10 ELECTRICAL CONNECTIONS 11 POWER INPUT 11 GROUNDS 11 DIGITAL OUTPUTS 11 STROBE INPUT 12 ALARM OUTPUT 12 DISPLAY BRIGHTNESS CONTROL INPUT 13 BACKLIGHT BRIGHTNESS CONTROL INPUT 14 CALIBRATION AND VERIFICATION 15 BACK PANEL DIAGRAM APPENDIX A COMMON TRANSPONDER CONNECTIONS APPENDIX B INTRODUCTION SCOPE This manual provides specifications, operating instructions, installation instructions and calibration instructions for the MCE-100 Mode C Encoder. This manual is for use by persons who are familiar with aircraft, aircraft avionics, and general electronic principles.
    [Show full text]
  • DABS/ATCRBS Transponder Bench Test Program
    FAA-RD-73-160 Project Report ATC-25 DABS/ATCRBS Transponder Bench Testing Program J.R. Samson J.D. Welch E.R. Becotte E.A. Crocker H.D. Schofield 28 November 1973 Lincoln Laboratory MASSACHUSETTS INSTITUTE OF TECHNOLOGY LEXINGTON, MASSACHUSETTS Prepared for the Federal Aviation Administration, Washington, D.C. 20591 This document is available to the public through the National Technical Information Service, Springfield, VA 22161 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. TECHNICAL REPORT STANDARD TIT LE?AGI 1. R.pe,t Ne. 2, Gov.rnm.nt Accession No. 3. Recipi.nl’s CotaleQ No. FAA-RD-73-160 4. ~,d. and Subtitl. 5. R.po,t Dole 28 Novem&r 1973 DARS/ATCRBS Transponder Wnch Tesfing ProWam 6. Per formtng OrQonizotien Code 9. Autho,(,) 8. Performing OrgenizaNon RePort No. J.R. Samson,J.D. Welch, E. R. Becotte, E.A. Grocker andH.D. Schofield P.TC-25 9, Performing Orgon+zation Neme and Address 10, Werk Unit No. Reject No. 034-241-012 Massachusettsbstitute of Tectiolou Lincok Laboratory II. contractor Gront No. P. 0. Box 73 DOT-FA 72wAI-261 Lexin@on, Massachtisetts 02173 13, Type of R.po,t and Period Covered 12. SPomsQrin9AgencyNow.o.d.Adir.ss fioject Report DepartmentofTransportation Federal Aviation AdmitisWation Systems Re8earch and DevelopmentService }4, SPonsoringAg6ncYCede... Washington,DC. 20591: 15, Supplemen,o,y Noles Tbework reported inthisdocummt%vas. Frfomedat Lincoln Laboratory, acenterf orre@earcho peratedby MassachusettsInstituteof TectioloW under"Air Force Contract Fl9628-73-C-OOO2; $6.
    [Show full text]
  • CNV-ALT Serial Altitude to Parallel Gillham Code Converter for Mode C Transponders
    CNV-ALT Serial altitude to parallel Gillham code converter for mode C transponders Operating Manual – English 1.00 Introduction The CNV-ALT accepts RS232 or Airtalk serial data from a compatible MGL Avionics instrument and produces parallel Gillham codes in a format compatible with mode C transponders. 1 Features • Accepts RS232 or Airtalk serial data from a MGL Avionics compatible instrument. • Outputs parallel Gillham codes compatible with mode-C transponders. • Red LED for status indication. • Wide input supply voltage range of 8 to 30V dc with built in reverse voltage protection. • Light weight design • 1 year limited warranty CNV-ALT Operating Manual Page 2 2 Specifications Operating Temperature Range -10ºC to 50ºC (14ºF to 122ºF) Storage Temperature Range -20ºC to 80ºC (-4ºF to 176ºF) Humidity <85% non-condensing Power Supply 8 to 30Vdc with built in reverse voltage protection Current Consumption Approx. 15mA @ 13.8V (All output drivers off) Enclosure Material Anodized Aluminum Enclosure Color Black Enclosure Dimensions 76mmx88mmx33mm (2.99”x3.46”x1.3”) Weight Approx. 120 grams without cables Output contact current rating Open collector transistor switch to ground. Maximum rating 0.5A DC RS232 Line Settings 9600 Baud, 8 data bits, no parity, 1 stop bit RS232 protocol MGL Avionics Airtalk Line Settings 19200 Baud, 8 data bits, no parity, 1 stop bit Airtalk protocol MGL Avionics 3 Installation The CNV-ALT produces inverted Gillham codes as required by virtually all transponders. The outputs are open collector types and will sink currents up to a few mA. Connect the black and red wires to a suitable on-board power source.
    [Show full text]