Degree's Final Thesis
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE’S FINAL THESIS Thesis Title: Analysis and optimisation of radio spectrum pollution on 1030/1090 MHz bands associated with mode S transponders. Degree: Aerospace systems engineering AUTHOR: Borin Kaduk Aguilar DIRECTOR: Eduard Úbeda Farré DATE: 7th February 2021 Títol: Anàlisi i optimització de la pol·lució radio espectral en les bandes de 1030/1090 MHz associada als transponedors mode S. Autor: Borin Kaduk Aguilar Director: Eduard Úbeda Farré Data: 7 de Febrer del 2021 Resum La vigilància actual de les aeronaus es duu a terme amb un parell d’elements clau: el transponedor i l’interrogador. L’interrogador s’encarrega d’enviar senyals a l’aire per a detectar aeronaus i aquests, quan reben la senyal, transmeten una resposta que conté informació codificada en forma de polsos. Posteriorment la resposta serà processada pels mateixos interrogadors o antenes receptores, i amb el conjunt de respostes de diferents aeronaus i un teixit prou dens d’equips de recepció, podem arribar a vigilar tot el que succeeix a l’espai aeri. Aquest sistema col·laboratiu ha funcionat remarcablement bé des de la seva creació. Amb el temps, la tecnologia evoluciona i el número de vols creix, però les bandes de freqüència utilitzades romanen les mateixes. Com a conseqüència d’aquest creixement continu en un sistema basat en la utilització de dues bandes freqüencials fixes, trobem que en l’espai aeri apareixen cada vegada més i més missatges (interrogacions i respostes), arribant, en casos extrems, a la saturació del sistema de vigilància actual. Cal esmentar que amb l’avenç tecnològic hem pogut aportar solucions per a mitigar els problemes que han anat sorgint fins avui dia en quant a la vigilància aèria, com podrien ser el “garbling” o el “FRUIT”, però es tot un repte d’enginyeria aportar solucions contínues a un sistema que no para de créixer. Aquest treball final de grau es basa en l’estudi del sistema de vigilància actual, donant èmfasis als cada vegada més recurrents transponedors mode S. Començant amb un breu explicació de com hem arribat a aquest sistema de vigilància, analitzant el seu funcionament, monitoritzant la pol·lució radioelèctrica que genera, estudiant els seus principals inconvenients i aportant possibles solucions per a comprendre com es pot mitigar la sobrecàrrega actual en les bandes de 1030 i 1090 MHz. Title: Analysis and optimisation of radio spectrum pollution on 1030/1090 MHz bands associated with mode S transponders. Author: Borin Kaduk Aguilar Director: Eduard Úbeda Farré Date: 7th February 2021 Overview At present, aircraft surveillance is made possible thanks to two key-elements: the transponder and the interrogator. The interrogator is in charge of sending radioelectric signals into the air in order to detect aircrafts. When these receive the interrogator signals, they transmit a response that contains information codified with pulses. The response is then processed by the same interrogators or other receiver antennas. The joint processing of different aircrafts’ responses through a big enough network of receivers can actually detect and track everything that is happening on the air. This collaborative system has been working remarkably well since its creation over the second half of the twentieth century. However, the rise in the daily number of flights together with the increased complexity of the adopted technology has raised the usage of the two allocated frequency bands (1030MHz-1090MHz) designed for air surveillance purposes. As a consequence of this continuous growth on the usage of two fixed frequency bands, more and more messages (interrogations and replies) appear in the airspace, which may end up, in some particular cases, with the saturation of the actual surveillance system. Technological advances have been able to provide solutions to minimize problems that had been emerging up to the date in terms of aircraft surveillance, as the well-known “garbling” or “FRUIT”. Nevertheless, it is a huge engineering challenge to constantly come up with solutions in a system that never stops growing. This thesis is based on the study of current aircraft surveillance systems, focusing on the worldwide used Mode S transponders. A brief explanation and analysis of such system is first given, monitoring the radio-spectrum pollution it generates and studying its biggest drawbacks. Moreover, possible solutions are then introduced to minimize the current overload of messages on the bands of 1030 and 1090 MHz. Inscription To Petr Jonáš, The one that gave me the huge opportunity to take a traineeship in Eurocontrol and engage myself into the world of CNS in aviation. To Kiko Moriche, To show me who the real engineers are and allow me to see the heart of CNS systems. To Eduard Úbeda, The radio-location professor who accepted to direct my thesis and made possible for me to choose an interesting topic instead of the proposed ones. To my family, Who paid for my whole tuition and my accommodation near the University during these 4 years. GLOSSARY ADS-B: Automatic Dependant Surveillance – Broadcast. ATC: Air Traffic Control. ATCRBS: Air Traffic Control Radar Beacon System. BDS: Binary Data Selector / Comm-B Data Selector. CET: Central European Time. CRC: Cyclic Redundacy Check. DAP: Downlink Aircraft Parameters. DF: Downlink Format. EHS: Enhanced Surveillance. ELM: Extended Length Message. FIR: Flight Information Region. FRUIT: False Replies Unsynchronised to Interrogation Transmission / False Replies Unsinchronisde In Time. GICB: Ground Initiated Comm-B. GPS: Global Positioning System. IC: Interrogator Code. ICAO: International Civil Aviation Organisation IFF: Identification Friend or Foe. IFR: Instrumental Flight Rules. NOTAM: Notification To Airmen. MIP: Mode Interlace Pattern. MLAT: Multilateration. MTOW: Maximum Take-Off Weight. OVC: Overlay Control Bit. PRF: Pulse Repetition Frequency. PRI: Pulse Repetition Interval. PSR: Primary Surveillance Radar. RA: Resolution Advisory. RCS: Radar Cross Section. RF: Radio Frequency. SLM: Standard Length Message. SLS: Side Lobe Supression. SPI-IR: Surveillance Performance and Interoperability-Implementing Rule. SSR: Secondary Surveillance Radar. TA: Traffic Advisory. TCAS: Traffic alert and Collision Avoidance System. UF: Uplink Format. WAM: Wide Area Multilateration. INDEX INTRODUCTION ................................................................................................................. 1 CHAPTER 1. Establishment of the cooperative surveillance system ........................... 2 1.1. SSR System ............................................................................................................................................ 2 1.2. Mode A and Mode C .............................................................................................................................. 3 1.3. Transition from mode A/C to Mode S .................................................................................................. 7 Chapter 2. Mode S ............................................................................................................. 9 2.1. Mode S technologies ............................................................................................................................. 9 2.1.1. TCAS .......................................................................................................................................... 9 2.1.2. Short messages ........................................................................................................................ 13 2.1.3. ADS-B ....................................................................................................................................... 13 2.1.4. Long messages ........................................................................................................................ 16 2.2. Mode S messages ................................................................................................................................ 18 2.3. Mode S technical specifications ........................................................................................................ 20 2.3.1. Transponder Level .................................................................................................................... 20 2.3.2. Pulse characteristics ................................................................................................................. 21 2.4. Mode S techniques .............................................................................................................................. 24 2.4.1. Mode Interlace Patterns ........................................................................................................... 24 2.4.2. Acquisition ................................................................................................................................ 25 2.4.3. Lockout and clustering techniques ........................................................................................... 28 Chapter 3. Analysis of RF pollution in central Europe ................................................. 30 3.1. Briefing ................................................................................................................................................. 30 3.2. Monitoring flight data Analysis .......................................................................................................... 32 3.2.1. Material and preparation ..........................................................................................................